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Background
Epigenome-wide association studies (EWAS) and differential gene expression analyses 
elucidate the association of disease traits (or conditions) with the level of omics expres-
sion, namely DNA methylation and gene expression. Thus far, tissue samples, which 
consist of heterogeneous cell types, have mainly been examined, because cell sorting is 
not feasible in most tissues and single-cell assay is still expensive. Nevertheless, the cell 
type composition of a sample can be quantified statistically by comparing omics meas-
urement of the target sample with reference data obtained from sorted or single cells [1, 
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2]. By utilizing the composition, the disease association specific to a cell type was statis-
tically inferred for gene expression [3–10] and DNA methylation [11–14].

For the imputation of cell type composition, omics markers are usually analyzed in the 
original linear scale, which measures the proportion of mRNA molecules from a spe-
cific gene or the proportion of methylated cytosine molecules among all cytosines at a 
specific CpG site [15]. The proportion can differ between cell types, and the weighted 
average of cell-type-specific proportions becomes the proportion in a bulk tissue sam-
ple. Using the fact that the weight equals the cell type composition, the cell type compo-
sition of a sample is imputed. In contrast, gene expression analyses are performed in the 
log-transformed scale because the signal and noise are normally distributed after log-
transformation [16]. In DNA methylation analysis, the logit-transformed scale, which is 
called the M-value, is statistically valid [17], although the linear scale could yield com-
parable performance under large sample size [18]. Consequently, the optimal scales for 
analyzing differential gene expression or methylation can differ from the optimal scale 
for analyzing cell type composition.

Aiming to perform cell-type-specific EWAS or differential gene expression analy-
ses by using unsorted tissue samples, we study two issues that have been overlooked. 
Whereas previous studies were performed in linear scale, we develop a nonlinear regres-
sion, which simultaneously analyzes cell type composition in linear scale and differ-
ential expression/methylation in log/logit scale. The second issue is multicollinearity. 
Cell-type-specific effects of a trait, such as disease, on omics expression are usually esti-
mated by linear regression that includes terms representing the interaction between the 
cell type proportions and the trait. We show that the interaction terms can mutually be 
highly correlated, which obstructs ordinary regression. To cope with the multicollinear-
ity, we implement ridge regularization. Our methods and previous ones are compared in 
simulated and real data.

Results
Multicollinearity of interaction terms

Typically, cell-type-specific effects of a trait on omics marker expression is analyzed by 
the linear regression in Eq. (2). For each omics marker, the goal is to estimate βh,k , the 
effect of trait k on the expression level in cell type h. This is estimated based on the rela-
tion between the bulk expression level Yi of sample i and the regressor Wh,iXi,k , which is 
an interaction term defined as the product of the cell type proportion Wh,i and the trait 
value Xi,k of the sample. We assume that Yi , Wh,i and Xi,k are given as input data.

The variable Wh,i for cell type composition cannot be mean-centered for our purpose. 
If Wh,i were centered, we would obtain, instead of βh,k , the deviation of βh,k from the 
average across cell types. In general, interaction terms involving uncentered variables 
can become collinear [19]. We first survey the extent of multicollinearity in real data for 
cell-type-specific association.

In peripheral blood leukocyte data from a rheumatoid arthritis study (GSE42861), 
the proportion of cell types ranged from 0.59 for neutrophils to 0.01 for eosinophils 
(Table 1). The proportion of neutrophils was negatively correlated with the proportion of 
other cell types (apart from monocytes) with correlation coefficient of – 0.68 to – 0.46, 
whereas the correlation was weaker for other pairs (Table 2). Rheumatoid arthritis status 
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was modestly correlated with proportions of cell types. The product of the disease status 
Xk , centered to have zero mean, and the proportion of a cell type becomes an interaction 
term. The correlation coefficients between the interaction terms were mostly > 0.8, apart 
from eosinophils (Table 3). The coefficient of variation (CV), which is the ratio of stand-
ard deviation to mean, of the proportion was low for all cell types apart from eosinophils 
(Table 1). The interaction terms for low-CV cell types were strongly correlated with Xk , 
which in turn caused strong correlation between the relevant interaction terms.

The situation was the same for the interaction with age in GTEx data. The granulo-
cytes (which include neutrophils and eosinophils) were the most abundant (Table 4). The 
proportion of granulocytes was negatively correlated with other cell types (apart from 
monocytes) with correlation coefficient of − 0.89 to − 0.41, and the correlation between 
other pairs was generally weaker (Table 5). Age was modestly correlated with propor-
tions of cell types. In this dataset, the CV of the proportion was low in all cell types 
(Table 4), which caused strong mutual correlation between interaction terms (Table 6).

In the above empirical data, multicollinearity between interaction terms seemed to 
arise not due to the correlation between cell type proportions or Xk , but due to the low 

Table 1  Blood cell type proportion in rheumatoid arthritis dataset

SD standard deviation, CV coefficient of variation, Neu neutrophils, Mono monocytes, Eos eosinophils

Cell type Neu CD4+T CD8+T NK Mono Bcells Eos

Mean 0.59 0.10 0.08 0.08 0.07 0.07 0.01

SD 0.11 0.06 0.05 0.04 0.02 0.03 0.02

CV 0.2 0.6 0.6 0.5 0.3 0.4 2.7

Table 2  Correlation between blood cell type proportion and rheumatoid arthritis (Xk)

r Neu CD4+T CD8+T NK Mono Bcells Eos Xk = disease

Neu 1  − 0.68  − 0.60  − 0.46  − 0.06  − 0.49  − 0.48 0.44

CD4+T  − 0.68 1 0.14 0.05  − 0.17 0.38 0.26  − 0.33

CD8+T  − 0.60 0.14 1 0.08  − 0.05 0.19 0.13  − 0.27

NK  − 0.46 0.05 0.08 1  − 0.04 0.01 0.11  − 0.27

Mono  − 0.06  − 0.17  − 0.05  − 0.04 1  − 0.17 0.05 0.10

Bcells  − 0.49 0.38 0.19 0.01  − 0.17 1 0.11  − 0.22

Eos  − 0.48 0.26 0.13 0.11 0.05 0.11 1  − 0.10

Table 3  Correlation between interaction terms

r Neu*Xk CD4+T*Xk CD8+T*Xk NK*Xk Mono*Xk Bcells*Xk Eos*Xk

Neu*Xk 1 0.83 0.80 0.85 0.93 0.90 0.27

CD4+T*Xk 0.83 1 0.78 0.78 0.83 0.88 0.42

CD8+T*Xk 0.80 0.78 1 0.77 0.82 0.83 0.35

NK*Xk 0.85 0.78 0.77 1 0.85 0.83 0.35

Mono*Xk 0.93 0.83 0.82 0.85 1 0.88 0.35

Bcells*Xk 0.90 0.88 0.83 0.83 0.88 1 0.36

Eos*Xk 0.27 0.42 0.35 0.35 0.35 0.36 1
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CV in the cell type proportions. Subsequently, this property was derived mathematically. 
As we derived in Eq.  (19), the correlation between interaction terms WhXk and Wh′Xk 
approaches one when CV[Wh] and CV[Wh′ ] are low, irrespective of Cor[Wh,Wh′ ] (Fig. 1). 
The CV was 0.2 to 0.6 (apart from eosinophils) in the rheumatoid arthritis dataset and 
0.1 to 0.2 in the GTEx dataset. We looked up datasets of several ethnicities and found 
the CV to be ≤ 0.6 in majority of blood cell types (Additional file 1: Table S1). Thus, mul-
ticollinearity can be a common problem for cell-type-specific association analyses. Bio-
logically, in tissues where cell type composition is tightly controlled, the CV of cell type 
proportion becomes low and the multicollinearity is exacerbated.

Evaluation in simulated data

By using simulated data, we evaluated previous methods and new approaches of the 
omicwas package. In order to simultaneously analyze two scales, the linear scale for 
heterogeneous cell mixing and the log/logit scale for trait effects, we applied nonlinear 
regression [Eqs. (4) and (5)]. To cope with the multicollinearity of interaction terms, we 
applied ridge regularization [formula (10)].

Table 4  Blood cell type proportion in GTEx dataset

SD standard deviation, CV coefficient of variation, Gran granulocytes, Mono monocytes

Cell type Gran CD4+T CD8+T Mono NK Bcells

Mean 0.53 0.22 0.10 0.07 0.05 0.03

SD 0.037 0.020 0.013 0.004 0.012 0.003

CV 0.1 0.1 0.1 0.1 0.2 0.1

Table 5  Correlation between blood cell type proportion and age (Xk)

r Gran CD4+T CD8+T Mono NK Bcells Xk = Age

Gran 1  − 0.89  − 0.83 0.56  − 0.76  − 0.41  − 0.23

CD4+T  − 0.89 1 0.59  − 0.64 0.50 0.51 0.14

CD8+T  − 0.83 0.59 1  − 0.40 0.59 0.15 0.15

Mono 0.56  − 0.64  − 0.40 1  − 0.44  − 0.42 0.02

NK  − 0.76 0.50 0.59  − 0.44 1 0.13 0.31

Bcells  − 0.41 0.51 0.15  − 0.42 0.13 1  − 0.03

Table 6  Correlation between interaction terms

r Gran*Xk CD4+T*Xk CD8+T*Xk Mono*Xk NK*Xk Bcells*Xk

Gran*Xk 1 0.99 0.98 1.00 0.96 0.99

CD4+T*Xk 0.99 1 1.00 0.99 0.98 1.00

CD8+T*Xk 0.98 1.00 1 0.99 0.98 0.99

Mono*Xk 1.00 0.99 0.99 1 0.96 0.99

NK*Xk 0.96 0.98 0.98 0.96 1 0.97

Bcells*Xk 0.99 1.00 0.99 0.99 0.97 1
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Previous regression type methods are based either on the full model of linear regres-
sion [Eq. (2)] or the marginal model [Eq. (3)]. The full model fits and tests cell-type-spe-
cific effects for all cell types simultaneously, and its variations include TOAST, csSAM.
lm and CellDMC. The marginal model fits and tests cell-type-specific effect for one cell 
type at a time, and its variations include csSAM.monovariate and TCA. We also exam-
ined a hybrid of the two models (Marginal.Full005), which becomes positive when the 
models agree.

The simulation data was generated from real datasets of DNA methylation (658 sam-
ples; 451,725 CpG sites) and gene expression (389 samples; 14,038 genes). The original 
cell type composition was retained for all samples, and the case–control status was ran-
domly assigned. Ninety-five percent of omics markers were set to be unassociated with 
disease status, 2.5% were up-regulated in cases at one cell type, and 2.5% were similarly 
down-regulated. The cell-type-specific effect-size was fixed in a simulation trial, either 
to methylation odds ratio (OR) of 1.3, 1.6 or 1.9 or to gene expression fold change of 1.7, 
3.0 or 5.0. The significance level was set to P < 2.4 × 10–7 for DNA methylation and false 
discovery rate < 5% for gene expression. In each simulation trial, the sensitivity, specific-
ity and precision for detecting cell-type-specific association was calculated for each cell 
type. To compare algorithms, the performance measures for the same effect-size and cell 
type were averaged over the simulation trials.

Overall, in the simulation for DNA methylation the sensitivity (Fig.  2) was higher 
under large effect-size (bottom row of panels) and in abundant cell types (left columns of 
panels). The average specificity (Fig. 3) was high across the effect-size settings and across 
cell types, being > 0.97 for the Marginal model, > 0.98 for TCA and > 0.999 for other algo-
rithms. The precision (Fig. 4) was higher in abundant cell types within each effect-size 
setting. As effect-size increased, the precision decreased in neutrophils but increased 

0.1

0.2

0.3

0.4

0.5
0.6

0.8

1.0

-1.0 -0.5 0.0 0.5 1.0

Cor[ Wh Xk , Wh' Xk ]

Cor[ Wh , Wh' ]

C
V
[W

h
]

0.9

1.00.8

0.7
0.6
0.5

0.40.3
0.2

0.1

Fig. 1  Contour plot of the correlation coefficient between interaction terms WhXk and Wh′Xk . Wh and Wh′ 
represent proportions of cell types h and h′ , and Xk represents the value of trait k. For this plot, we assume 
the coefficient of variation CV[Wh] and CV[Wh′ ] to be equal. As the CV decreases 0.6, 0.4 to 0.2, the correlation 
coefficient raises > 0.5, > 0.7 to > 0.9, over most range of Cor[Wh ,Wh′ ]



Page 6 of 25Takeuchi and Kato ﻿BMC Bioinformatics          (2021) 22:141 

Neu CD4+T CD8+T NK Mono Bcells Eos

m
ethO

R
=
1.3

m
ethO

R
=
1.6

m
ethO

R
=
1.9

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
en

si
tiv
ity

Algorithm

Marginal

TCA

omicwas.logit.ridge

omicwas.identity.ridge

omicwas.logit

omicwas.identity

Full

TOAST

CellDMC

Marginal.Full005

Fig. 2  Sensitivity for detecting cell-type-specific association in simulated data for DNA methylation. Panels 
are aligned in rows according to the simulation settings with the methylation odds ratio of 1.3, 1.6 or 1.9. 
In each row, panels for different cell types are aligned in decreasing order of proportion. The vertical axis 
indicates sensitivity. In each panel, results from different algorithms are aligned horizontally in different colors. 
Results from 50 simulation trials are summarized in a box plot. The middle bar of the box plot indicates the 
median, and the lower and upper hinges correspond to the first and third quartiles. The whiskers extend to 
the value no further than 1.5 × inter-quartile range from the hinges. MethOR, methylation odds ratio; Neu, 
neutrophils; Mono, monocytes; Eos, eosinophils
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in the other minor cell types. Excluding the cases where all algorithms lacked sensitivity 
(monocytes and B cells under methOR = 1.3 and eosinophils), the average precision of 
omicwas.logit.ridge was > 0.79 and was the highest in 13/16 of the cases.

There was trade-off between sensitivity and precision. Among the algorithms, the 
Marginal model attained the highest sensitivity and the lowest precision. TCA, which is 
a variation of the marginal model, had relatively high sensitivity and relatively low preci-
sion. Marginal.Full005 attained the second highest sensitivity and moderate precision. 
The ridge regressions (omicwas.logit.ridge and omicwas.identity.ridge) attained moder-
ate sensitivity and high precision. The full models without ridge regularization (omic-
was.logit, omicwas.identity, Full, TOAST and CellDMC) had the lowest sensitivity.

The overall tendency was similar in the simulation for gene expression. The sensitivity 
(Fig. 5) was higher under large effect-size and in abundant cell types. The average speci-
ficity (Fig. 6) was high across the effect-size settings and across cell types, being > 0.96 for 
the marginal models (Marginal and csSAM.monovariate), > 0.98 for the nonlinear and 
ridge regressions (omicwas.log.ridge, omicwas.identity.ridge, omicwas.log) and > 0.996 
for other algorithms. The precision (Fig. 7) was higher in abundant cell types within each 
effect-size setting. As effect-size increased, the precision decreased in granulocytes but 
increased in the other minor cell types. Excluding the full models (omicwas.identity, 
Full, TOAST, csSAM.lm) that lacked sensitivity, the algorithms that were frequently top 
in average precision were omicwas.identity.ridge (5 cases), omicwas.log (5 cases), omic-
was.log.ridge (3 cases) and Marginal.Full005 (3 cases).

There again was trade-off between sensitivity and precision. Among the algorithms, 
the marginal models attained the highest sensitivity but relatively low precision. The 

Neu CD4+T CD8+T NK Mono Bcells Eos

m
ethO

R
=
1.3

m
ethO

R
=
1.6

m
ethO

R
=
1.9

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
re
ci
si
on

Algorithm

Marginal

TCA

omicwas.logit.ridge

omicwas.identity.ridge

omicwas.logit

omicwas.identity

Full

TOAST

CellDMC

Marginal.Full005

Fig. 4  Precision (positive predictive value) for detecting cell-type-specific association in simulated data for 
DNA methylation. The figure format is same as Fig. 2
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nonlinear and ridge regressions and Marginal.Full005 attained moderate sensitivity and 
highest precision. The full models had very low average sensitivity of < 0.01.

For gene expression, we also simulated a scenario where cell-type-specific disease 
effect occurred in cell type “marker” genes (Additional files 2, 3, 4: Figs. S1, S2, S3). In 
other words, the expression level in the target cell type differed between cases and con-
trols, and the expression level in other cell types was zero (in linear scale). Thus, non-
target cell types did not introduce noise to bulk expression level. The Marginal model 
attained the highest average sensitivity of > 0.93 but relatively low average precision 
of ~ 0.16. As equal number of differentially expressed genes were generated in the six cell 
types, picking up signals for all such genes, including those not for the tested cell type, 
would result in precision of 1/6 = 0.16. The full models had low sensitivity. The nonlinear 
and ridge regressions and Marginal.Full005 attained moderate sensitivity and moderate 
precision. With regards to the frequency of being the top in average precision, the algo-
rithms were ordered Marginal.Full005 (9 cases), omicwas.log.ridge (6 cases), omicwas.
identity.ridge (2 cases) and omicwas.log (1 case), excluding the full models that lacked 
sensitivity.

Cell‑type‑specific association with rheumatoid arthritis and age

The detection of cell-type-specific association in bulk tissue was evaluated by using 
physically sorted cells. In principle, sorted cells should serve as genuine verification, 
however, due to the relatively small sample size (94 or 203 for rheumatoid arthritis and 
214 or 1202 for age) the available datasets were underpowered to generate a gold stand-
ard list of differentially expressed omics markers [20]. Instead, we generated a bench-
mark set of differentially expressed markers by imposing a relaxed significance level 

Gran CD4+T CD8+T Mono NK Bcells

FC
=
1.7

FC
=
3.0

FC
=
5.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

P
re
ci
si
on

Algorithm

Marginal

csSAM.monovariate

omicwas.log.ridge

omicwas.identity.ridge

omicwas.log

omicwas.identity

Full

TOAST

csSAM.lm

Marginal.Full005

Fig. 7  Precision (positive predictive value) for detecting cell-type-specific association in simulated data for 
gene expression. The figure format is same as Fig. 5



Page 10 of 25Takeuchi and Kato ﻿BMC Bioinformatics          (2021) 22:141 

of P < 0.05; the set would be enriched for true differentially expressed markers yet also 
include unassociated markers. The benchmark set was cross-checked with the predic-
tion by each algorithm; in the same manner as the simulation analysis, we assessed the 
sensitivity, specificity and precision.

The cell-type-specific association of DNA methylation with rheumatoid arthritis was 
predicted using bulk peripheral blood leukocyte data and was evaluated in sorted mono-
cytes and B cells (Fig. 8). The input bulk methylation data was normalized by applying 
the logit-transformation for the Marginal.logit algorithm, which otherwise was the same 
as Marginal. Although the sensitivity was extremely low for all algorithms, it was posi-
tive in both cell types for Marginal (0.8–1.1 × 10–4), Marginal.logit (1.2–1.4 × 10–4), TCA 
(0.5–1.2 × 10–4) and omicwas.logit (0.5 × 10–4). The cell-type-specific association of 
DNA methylation with age was predicted using the same bulk dataset and was evaluated 
in sorted CD4+T cells and monocytes (Fig. 8). The Marginal and Marginal.logit models 
attained by far the highest sensitivity (both 0.15–0.27) in both cell types, and moderate 
precision (0.59–0.68 and 0.60–0.68 respectively).

The cell-type-specific association of gene expression with age was predicted using 
whole blood data and was evaluated in sorted CD4+ T cells and monocytes (Fig. 9). The 
input bulk gene expression data was normalized by applying the log-transformation 
for the Marginal.log algorithm, which otherwise was the same as Marginal. Although 
the sensitivity was low for all algorithms, it was positive in both cell types for Marginal 
(0.02–0.07), Marginal.log (0.07–0.11), omicwas.identity.ridge (0.01–0.22) and omicwas.
log (0.03–0.05). The precision was modest for Marginal (0.06–0.31), Marginal.log (0.07–
0.28), omicwas.identity.ridge (0.03–0.21) and omicwas.log (0.04–0.17). The dataset of 
sorted CD4+ T cells (214 samples) is smaller than the monocyte dataset (1202 samples) 
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Fig. 8  Performance of the predictions for cell-type-specific association of DNA methylation. For the 
association with rheumatoid arthritis in monocytes and B cells and the association with age in CD4+ T cells 
and monocytes, sensitivity (top), specificity (middle) and precision (bottom) are plotted. In each panel, results 
from different algorithms are aligned horizontally in different colors. Precision is not plotted when there were 
no positive CpG sites. RA, rheumatoid arthritis; Mono, monocytes
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thus could be underpowered to pick enough true differentially expressed genes into the 
benchmark set.

For DNA methylation dataset GSE42861 and for GTEx gene expression dataset, the 
omicwas.logit.ridge and omicwas.log.ridge models of the omicwas package was com-
puted in 8.1 and 0.7 h respectively, using 8 cores of a 2.5 GHz Xeon CPU Linux server.

Discussion
Aiming to elucidate cell-type-specific trait association in DNA methylation and gene 
expression, this article explored two aspects, multicollinearity and scale. We observed 
multicollinearity in real data and derived mathematically how it emerges. To cope with 
the multicollinearity, we applied ridge regularization. To properly handle multiple scales 
simultaneously, we applied nonlinear regression. Among the examined algorithms, 
nonlinear ridge regression attained moderate sensitivity and highest precision in sim-
ulated data. We also developed an algorithm that combines full and marginal models, 
which attained balanced sensitivity and precision in simulation. In real benchmark data, 
all algorithms performed poorly yet the marginal models tended to attain the highest 
sensitivity.

The statistical methods discussed in this article are applicable, in principle, to any tis-
sue. For validation of the methods, we need datasets for bulk tissue as well as sorted 
cells, ideally of several hundred samples. Currently, the publicly available data is limited 
to peripheral blood. By no means, the rheumatoid arthritis EWAS datasets [21–23] or 
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(bottom) are plotted. In each panel, results from different algorithms are aligned horizontally in different 
colors. Precision is not plotted when there were no positive genes. Mono, monocytes
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the datasets for age association of gene expression [24, 25] are representative. Neverthe-
less, we think verification in real data is valuable.

By the performance in simulated and real data, we can roughly divide algorithms 
into three groups: full (and its variations), marginal (and its variations) and the third 
group that includes ridge regressions and the hybrid Marginal.Full005. In marginal 
models, we test one cell type at a time. If we knew in advance that one particular cell 
type is associated with the trait, which would be a rare situation, testing that cell type 
with the marginal model is the most simple and correct approach. However, when the 
test target cell type is not associated, but instead another cell type is associated, the 
marginal models can pick up false signals due to the collinearity between regressor 
variables. Indeed, marginal models attained highest sensitivity (Figs.  2, 5) and rela-
tively low precision (Figs.  4, 7), which could lead to unstable performance. The full 
model fits and tests all cell types simultaneously, by which it adjusts for the effects 
of other cell types. Due to the simultaneous inclusion of collinear predictors, the 
sensitivity was low (Figs.  2, 5). The ridge regressions (omicwas.identity.ridge, omic-
was.logit.ridge and omicwas.log.ridge) were in the middle between full and marginal 
models with regards to the sensitivity (Figs. 2, 5), while attaining the highest preci-
sion (Figs. 4, 7). The hybrid Marginal.Full005 algorithm is intended to gain sensitiv-
ity by the marginal model while keeping precision by incorporating the full model. It 
attained moderate sensitivity (Figs. 2, 5) and moderate precision (Figs. 4, 7) in simula-
tion. In real data, all algorithms performed poorly yet Marginal, Marginal.logit and 
Marginal.log tended to attain the highest sensitivity. With regards to the performance 
measures of all algorithms, the association of DNA methylation with age (Fig. 8) was 
roughly similar to the simulation setting of methylation OR = 1.6 for B cells (Figs. 2, 3 
and 4), and the association of gene expression with age (Fig. 9) was roughly similar to 
the simulation setting of fold change = 1.7 for CD8+T cells (Figs. 5, 6 and 7). For the 
respective simulation settings, the median coefficient of determination for the Mar-
ginal model was 0.020 and 0.007, indicating weak association.

A limitation of our simulation is that only one cell type was assumed to be associated 
with disease status at each marker. In reality, two or more cell types can be associated 
with disease under homogeneous or heterogeneous effect. In the physically sorted cells, 
the association of DNA methylation with rheumatoid arthritis tended to be consistent 
between monocytes and B cells; the association statistics across CpG sites were positively 
correlated with Spearman’s rank correlation coefficient of 0.20 (P-value < 2.2 × 10–16). 
Similarly, the association with age tended to be consistent between CD4+T cells and 
monocytes with correlation coefficient of 0.27 and 0.07 (P-value < 2.2 × 10–16), respec-
tively, for DNA methylation and gene expression. The consistency suggests that multiple 
cell types tend to be associated under homogeneous effect. If the association is com-
pletely consistent, the effect-size is uniform across cell types. As there is no cell-type-
specific effect, a simple regression by disease (or relevant trait), ignoring the cell type 
composition, becomes the appropriate modeling [formula (8)]. Moreover, when cell type 
composition has low CV (as observed in Tables 1 and 4), the marginal model with nor-
malized input (formula (9)) becomes almost identical to the simple regression. In other 
words, the marginal model can pick up signal in cases where effect-size is homogene-
ous across cell types. Correspondingly, in real data of DNA methylation Marginal.logit 
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performed the best and was slightly better than Marginal (Fig. 8), and in gene expression 
Marginal.log performed mostly the best and was better than Marginal (Fig. 9).

Conclusions
For cell-type-specific differential expression analysis by using unsorted tissue sam-
ples, we recommend trying the nonlinear ridge regression as a first choice because 
it balances sensitivity and precision. Although marginal models can be powerful 
when the tested cell type actually is the only one associated with the trait, caution is 
needed in its low precision. Under the idea of first scanning by the marginal model 
and then reanalyzing in full model, we developed the hybrid Marginal.Full005 algo-
rithm, which attained balanced sensitivity and precision  in simulation but was not 
corroborated in experimental data. Ridge regression is preferable compared to the 
full model without ridge regularization because ridge estimator of the effect-size has 
smaller mean squared error [Eq. (15)]. The number of cell types associated with dis-
ease at each marker was restricted to one in our simulation but could be two or more 
with homogeneous or heterogeneous effect. If the effect-size is uniform across all cell 
types, a simple regression by disease status is suitable, which can be substituted with 
the marginal model that takes normalized input. We do not claim the ridge regression 
to substitute previous algorithms. Indeed, we think none of the current algorithms is 
superior to others in all aspects, indicating possibility for future improvement.

Methods
Linear regression

We begin by describing the linear regressions used in previous studies. Let the indexes 
be h for a cell type, i for a sample, j for an omics marker (CpG site or gene), k for a 
trait that has cell-type-specific effects on marker expression, and l for a trait that has 
a uniform effect across cell types. The input data is given in four matrices. The matrix 
Wh,i represents cell type composition. The matrices Xi,k and Ci,l represent the values of 
the traits that have cell-type-specific and uniform effects, respectively. We assume the 
two matrices are centered: 

∑

i Xi,k =
∑

i Ci,l = 0. For example, Xi,k = 0.5 for disease 
cases and Xi,k = −0.5 for controls when the number of cases and controls are equal. 
The matrix Yi,j represents the omics marker expression level in tissue samples.

The parameters we estimate are the cell-type-specific trait effect βh,j,k , tissue-uni-
form trait effect γj,l , and basal marker level αh,j in each cell type. For the remaining of 
the first five sections (up to “Multicollinearity of interaction terms”), we focus on one 
marker j, and omit the index for readability. For cell type h, the marker level of sample 
i is

This is a representative value rather than a mean because we do not model a probability 
distribution for cell-type-specific expression. By averaging the value over cell types with 
weight Wh,i , and combining with the tissue-uniform trait effects, we obtain the mean 
marker level in bulk tissue of sample i,

(1)αh +
∑

k

βh,kXi,k .
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With regards to the statistical model, we assume the error of the marker level to be 
normally distributed with variance σ 2 , independently among samples, as

The statistical significance of all parameters is tested under the full model of linear 
regression,

or its variations [5, 9, 13]. Alternatively, the cell-type-specific effects of traits can be fit-
ted and tested for one cell type h at a time by the marginal model,

or its variations [7, 8, 10, 11, 14].

Nonlinear regression

Aiming to simultaneously analyze cell type composition in linear scale and differential 
expression/methylation in log/logit scale, we develop a nonlinear regression model. The 
differential analyses are performed after applying normalizing transformation. The nor-
malizing function is the natural logarithm f = log for gene expression, and f = logit for 
methylation (see Background). Conventional linear regression can be formulated by 
defining f as the identity function. We denote the inverse function of f by g; g = exp for 
gene expression, and g = logistic for methylation. Thus, f converts from the linear scale to 
the normalized scale, and g does the opposite.

The marker level in a specific cell type [formula (1)] is modeled in the normalized 
scale. The level is linearized by applying function g, then averaged over cell types with 
weight Wh,i , and normalized by applying function f. Combined with the tissue-uniform 
trait effects, the mean normalized marker level in bulk tissue of sample i becomes

We assume the normalized marker level to have an error that is normally distributed 
with variance σ 2 , independently among samples, as

We obtain the ordinary least squares (OLS) estimator of the parameters by minimizing 
the residual sum of squares,

µi =
∑

h

αhWh,i +
∑

h,k

βh,kWh,iXi,k +
∑

l

γlCi,l .

Yi = µi + εi,

εi ∼ N
(

0, σ 2
)

.

(2)Yi =
∑

h

αhWh,i +
∑

h,k

βh,kWh,iXi,k +
∑

l

γlCi,l + εi,

(3)Yi =
∑

h′
αh′Wh′,i +

∑

k

βh,kWh,iXi,k +
∑

l

γlCi,l + εi,

(4)µi = f

(

∑

h

Wh,ig

(

αh +
∑

k

βh,kXi,k

))

+
∑

l

γlCi,l .

(5)
f (Yi) = µi + εi,

εi ∼ N
(

0, σ 2
)

.
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and then estimate the error variance as

where n is the number of samples and p is the number of parameters ([26], Sect. 6.3.1).
In the special case where the marker expression is homogeneous across cell types, the 

formulae become simple. Suppose that αh regardless of cell type h equals α and that βh,k 
equals βk . The regression formulae (4) and (5) of sample i reduces to

On the other hand, the marginal model for cell type h in formula (3) reduces to

Moreover, when the CV for cell type composition is low, the cell type proportion Wh,i 
of sample i approximately equals the average Wh taken over samples. Thus, the formula 
reduces further to

If we replace the input bulk expression level Yi with the normalized value f (Yi) , the 
model becomes

Under the special case of cell-type-homogeneous expression and low-CV cell type com-
position, formula (8) for nonlinear regression and formula (9) for the marginal model 
with normalized input become almost identical. The difference is the multiplication by 
constant Wh , which does not change the test statistics for βk.

Ridge regression

The parameters βh,k for cell-type-specific effect cannot be estimated accurately by ordi-
nary linear regression because the regressors Wh,iXi,k in Eq.  (2) are highly correlated 
between cell types (see below). Multicollinearity also occurs to the nonlinear case in for-
mula (4) because of local linearity. To cope with the multicollinearity, we apply ridge 
regression with a regularization parameter � ≥ 0 , and obtain the ridge estimator of the 
parameters that minimizes

(6)RSS =
∑

i

(

f (Yi)− µi

)2
,

(7)σ̂ 2 = 1

n− p
RSS,

(8)f (Yi) = α +
∑

k

βkXi,k +
∑

l

γlCi,l + εi.

Yi = α +
∑

k

βkWh,iXi,k +
∑

l

γlCi,l + εi.

Yi = α +Wh ·
∑

k

βkXi,k +
∑

l

γlCi,l + εi.

(9)f (Yi) = α +Wh ·
∑

k

βkXi,k +
∑

l

γlCi,l + εi.

(10)RSS+ �

∑

h,k

β2
h,k ,
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where the second term penalizes βh,k for taking large absolute values. The ridge estima-
tor θ̂(�) is asymptotically normally distributed (see Additional file  5: Supplementary 
note) with

where µ is the vector form of µi , θ is the vector form of the parameters αh , βh,k and γl 
combined, (∂µ/∂θ) is the Jacobian matrix, 

(

∂2µ/∂θ∂θT
)

 is the array of Hessian matrices 

for µi taken over samples, and superscript T indicates matrix transposition. The dot 
product of 

(

f (Y )− µ(θ)
)T and the array of Hessians is taken by multiplying for each 

sample and then summing up over samples. The matrix after � has one only in the diago-
nal corresponding to βh,k . The assigned value θ is the true parameter value. By taking the 
expectation of Q , we obtain a rougher approximation [27] as

The matrices Q and Q∗ are the observed and expected Fisher matrices multiplied by σ 2 
and adapted to ridge regression, respectively.

Since our objective is to predict the cell-type-specific trait effects, we choose the regu-
larization parameter � that can minimize the mean squared error (MSE) of βh,k . Our 
methodology is based on [28]. To simplify the explanation, we assume the Jacobian 
matrices (∂µ(θ)/∂α) , (∂µ(θ)/∂β) and (∂µ(θ)/∂γ ) to be mutually orthogonal, where α , β 
and γ are the vector forms of αh , βh,k and γl , respectively. Then, from formulae (13) and 
(14), the ridge estimator β̂(�) is asymptotically normally distributed with

(11)Mean
[

θ̂(�)
]

= Q(�)−1Q(0)θ ,

(12)Var
[

θ̂(�)
]

= σ 2Q(�)−1

(

∂µ(θ)

∂θ

)T(
∂µ(θ)

∂θ

)

Q(�)−1,

Q(�) =
�

∂µ(θ)

∂θ

�T�
∂µ(θ)

∂θ

�

+ �





O O O
O I O
O O O



−
�

f (Y )− µ(θ)
�T ·

�

∂2µ(θ)

∂θ∂θT

�

,

(13)Mean
[

θ̂(�)
]

= Q∗(�)−1Q∗(0)θ ,

(14)Var
[

θ̂(�)
]

= σ 2Q∗(�)−1

(

∂µ(θ)

∂θ

)T(
∂µ(θ)

∂θ

)

Q∗(�)−1,

Q∗(�) = E[Q(�)] =
�

∂µ(θ)

∂θ

�T�
∂µ(θ)

∂θ

�

+ �





O O O
O I O
O O O



.
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where the assigned values θ and β are the true parameter values. We apply singular value 
decomposition

where U and V are orthogonal matrices, the columns of V are v1, . . . , vM , and the diago-
nals of diagonal matrix D are sorted d1 ≥ · · · ≥ dM ≥ 0 . The bias, variance and MSE of 
the ridge estimator are decomposed as

For each m in the summation for MSE in Eq. (15), the minimum of the summand is 
attained at �m = σ 2/

(

v
T
mβ

)2 . To minimize MSE, we need to find some “average” of the 
optimal �m over the range of m. Hoerl et al. [29] proposed to use the harmonic mean 
� = Mσ 2/�β�2 . However, if an OLS estimator β̂(0) is actually plugged into ‖β‖2 , the 
denominator is biased upwards, and the computed mean is biased downwards. Indeed, 
with regards to the estimator of 1/

√
�m , we notice that

where the terms with larger m have larger variance. Thus, we take the average of 
(

v
T
mβ̂(0)

)2
/σ 2 , weighted by d2m/

∑M
m=1 d

2
m , and also subtract the upward bias as,

Mean
[

β̂(�)
]

=
[

(

∂µ(θ)

∂β

)T(
∂µ(θ)

∂β

)

+ �I

]−1(
∂µ(θ)

∂β

)T(
∂µ(θ)

∂β

)

β ,

Var
[

β̂(�)
]

= σ 2

[

(

∂µ(θ)

∂β

)T(
∂µ(θ)

∂β

)

+ �I

]−1(
∂µ(θ)

∂β

)T(
∂µ(θ)

∂β

)

[

(

∂µ(θ)

∂β

)T(
∂µ(θ)

∂β

)

+ �I

]−1

,

(

∂µ(θ)

∂β

)

= UDVT ,

(15)

Bias
[

β̂(�)
]

= E
[

β̂(�)− β
]

= −�

[

(

∂µ(θ)

∂β

)T(
∂µ(θ)

∂β

)

+ �I

]−1

β

=
{

M
∑

m=1

vm
−�

d2m + �
v
T
m

}

β ,

Var
[

β̂(�)
]

= σ 2
M
∑

m=1

vm
d2m

(

d2m + �
)2

v
T
m,

MSE
[

β̂(�)
]

= E
[

�β̂(�)− β�2
]

=
∥

∥

∥ Bias
[

β̂(�)
]∥

∥

∥

2
+ tr

(

Var
[

β̂(�)
])

=
M
∑

m=1

(

�

d2m + �

)2(

v
T
mβ

)2
+

(

d2m
d2m + �

)2(
σ 2

d2m

)

.

1

σ
v
T
mβ̂(0) ∼ N

(

1

σ
v
T
mβ ,

1

d2m

)
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The weighting and subtraction were mentioned in [28], where the subtraction term was 
dismissed, under the assumption of large effect-size β . Since the effect-size could be 
small in our application, we keep the subtraction term. The statistic κ can be nonposi-
tive, and is unbiased in the sense that

equals the weighted sum of 1/�m . Our choice of regularization parameter is

where d21 is taken instead of positive infinity.

Implementation of omicwas package

For each omics marker, the parameters α , β and γ (denoted in combination by θ ) are esti-
mated and tested by nonlinear ridge regression in the following steps. As we assume the 
magnitude of trait effects β and γ to be much smaller than that of basal marker level α , we 
first fit α alone for numerical stability.

1.	 Compute OLS estimator α̂(0) by minimizing formula (6) under β = γ = 0 . Apply 
Wald test.

2.	 Calculate σ̂ 2 by formula (7). Use it as a substitute for σ 2 . The residual degrees of free-
dom n− p is the number of samples minus the number of parameters in α.

3.	 Compute OLS estimators β̂(0) and γ̂ (0) by minimizing formula (6) under α = α̂(0) . 
Let θ̂(0) =

(

α̂(0)T , β̂(0)T , γ̂ (0)T
)T

.

4.	 Apply singular value decomposition 
(

∂µ
(

θ̂(0)
)

/∂β
)

= UDVT .

5.	 Calculate κ and then the regularization parameter � by formulae (16) and (17).
6.	 Compute ridge estimators β̂(�) and γ̂ (�) by minimizing formula (10) under α = α̂(0) . 

Let θ̂(�) =
(

α̂(0)T , β̂(�)T , γ̂ (�)T
)T

.

7.	 Approximate the variance of ridge estimator, according to formula (12), by

(16)κ = 1
�M

m=1 d
2
m

M
�

m=1











d2m

�

v
T
mβ̂(0)

�2

σ 2
− 1











.

E[κ] = 1
∑M

m=1 d
2
m

M
∑

m=1

d2m
(

v
T
mβ

)2

σ 2
= 1

∑M
m=1 d

2
m

M
∑

m=1

d2m
�m

(17)� =
{

1/κ if κ > 0,

d21 otherwise,
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8.	 Apply the “non-exact” t-type test [30]. For the s-th coordinate,

under the null hypothesis 
(

β
γ

)

s

= 0.

The formula (18) is the same as a Wald test, but the test differs, because the ridge estima-
tors are not maximum-likelihood estimators. The algorithm was implemented as a package 
for the R statistical language. We used the NL2SOL algorithm of the PORT library [31] for 
minimization.

In analyses of quantitative trait locus (QTL), such as methylation QTL (mQTL) and 
expression QTL (eQTL), an association analysis that takes the genotypes of a single nucleo-
tide polymorphism (SNP) as Xi,k is repeated for many SNPs. In order to speed up the com-
putation, we perform rounds of linear regression. First, the parameters α̂(0) and γ̂ (0) are 
fit by ordinary linear regression under β = 0 , which does not depend on Xi,k . By taking the 
residuals, we practically dispense with α̂(0) and γ̂ (0) in the remaining steps. Next, for Xi,k of 
each SNP, β̂(0) is fit by ordinary linear regression under α = α̂(0) , γ = γ̂ (0). The regulari-
zation parameter � is computed according to steps 4 and 5 above. Finally, β̂(�) is fitted and 
tested by linear ridge regression under α = α̂(0) , γ = γ̂ (0).

Multicollinearity of interaction terms

The regressors for cell-type-specific trait effects in the full model [Eq.  (2)] are the inter-
action terms Wh,iXi,k . To assess multicollinearity, we mathematically derive the correlation 
coefficient between two interaction terms Wh,iXi,k and Wh′,iXi,k . In this section, we treat 
Wh,i , Wh′,i and Xi,k as sampled instances of random variables Wh , Wh′ and Xk , respectively; 
note that the sample index i is omitted. For simplicity, we assume Wh and Wh′ are inde-
pendent of Xk . Let E[•], Var[•], Cov[•], Cor[•] and CV[•] denote the expectation, vari-
ance, covariance, correlation and coefficient of variation, respectively. Since Xk is centered, 
E[WhXk ] = E[Wh′Xk ] = 0. The correlation coefficient between interaction terms becomes

Var

��
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If CV[Wh] and CV[Wh′ ] approach zero, the correlation of interaction terms approaches 
one, irrespective of Cor[Wh,Wh′ ].

EWAS of rheumatoid arthritis and age

EWAS datasets for rheumatoid arthritis were downloaded from the Gene Expression 
Omnibus. Using the RnBeads package (version 2.2.0) [32] of R, IDAT files of Human-
Methylation450 array were preprocessed by removing low quality samples and mark-
ers, by normalizing methylation level, and by removing markers on sex chromosomes 
and outlier samples. The association of methylation level with disease status was tested 
with adjustment for sex, age, smoking status and experiment batch; the covariates were 
assumed to have uniform effects across cell types. Alternatively, the association of meth-
ylation level with age was tested with adjustment for disease status, sex, smoking status 
and experiment batch. After quality control, dataset GSE42861 included bulk peripheral 
blood leukocyte data for 336 cases and 322 controls [22].

The cell type composition of bulk samples was imputed using the Houseman algorithm 
[33] in the GLINT software (version 1.0.4) [34]. The reference data of GLINT software 
characterizes seven cell types [35] by 300 CpG sites [36], of which 284 were measured in 
our data. We used prediction results for the seven cell types (Tables 1, 2, 3).

Dataset GSE131989 included sorted CD14+ monocyte data for 63 cases and 31 con-
trols [23]. By meta-analysis of GSE131989 and GSE87095 [21], we obtained sorted 
CD19+ B cell data for 108 cases and 95 controls. Under the nominal significance level 
P < 0.05 (two-sided), the number of CpG sites up- or down-regulated in cases were 
20,869 (5%) and 14,911 (3%), respectively, in CD14+ monocyte and 28,004 (6%) and 
26,582 (6%) in CD19+ B cell.

From the Gene Expression Omnibus dataset GSE56047 [25], we obtained sorted 
CD14+ monocyte data for 1200 samples and sorted CD4+ T cell data for 214 samples. 
Under the nominal significance level P < 0.05 (two-sided), the number of CpG sites up- 
or down-regulated by higher age were 45,283 (10%) and 80,871 (18%), respectively, in 
CD14+ monocyte and 35,822 (8%) and 25,020 (5%) in CD4+ T cell.

(19)
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Differential gene expression by age

Whole blood RNA-seq data of GTEx v7 was downloaded from the GTEx website [24]. 
Genes of low quality or on sex chromosomes were removed, expression level was nor-
malized, outlier samples were removed, and 389 samples were retained. The association 
of read count with age was tested with adjustment for sex.

The cell type composition of bulk samples was imputed using the DeconCell package 
(version 0.1.0) [10] of R. The reference data of DeconCell characterizes 33 cell types by 
two to 217 signature genes. Our data measured 39% of the signature genes. We used 
prediction results for six main cell types (Tables 4, 5, 6), for which the prediction perfor-
mance was 44.4 to 90.9.

From the Gene Expression Omnibus dataset GSE56047 [25], we obtained sorted 
CD14+ monocyte data for 1202 samples and sorted CD4+ T cell data for 214 samples. 
Under the nominal significance level P < 0.05 (two-sided), the number of genes up- or 
down-regulated by higher age were 2715 (11%) and 3240 (13%), respectively, in CD14+ 
monocyte and 1082 (4%) and 1246 (5%) in CD4+ T cell.

Simulation of cell‑type‑specific disease association

Bulk tissue sample data for case–control comparison were simulated based on the 
above-mentioned EWAS dataset GSE42861 and GTEx gene expression dataset. We 
randomly assigned the case–control status to the samples. Among the omics markers, 
2.5% were set to be up-regulated in cases in single cell type, 2.5% were similarly down-
regulated, and 95% were unrelated to case–control status. The cell-type-specific effect-
size of the differentially expressed markers was fixed within a simulation trial, and was 
chosen from methylation OR of 1.3, 1.6 or 1.9 for EWAS [20] and fold-change of 1.7, 
3.0 or 5.0 for gene expression analysis; the effect-sizes correspond to log(1.3), log(1.6) 
and log(1.9) or log(1.7), log(3.0) and log(5.0) in normalized scale. If the mean methyl-
ation level of a CpG site in cases and controls are µcase and µcontrol , respectively, the 
methylation odds become µcase/(1− µcase) and µcontrol/(1− µcontrol) . The methyla-
tion OR represents the case–control contrast of methylation level by the ratio of odds, 
{µcase/(1− µcase)}/{µcontrol/(1− µcontrol)} (see [20]).

For each effect-size, we performed 50 simulation trials. In each simulation trial, we 
randomly assigned half of the samples as cases ( Xi,k = 0.5 ) and the other half as con-
trols ( Xi,k = −0.5 ). We retained the covariates matrix Ci,l and the cell type composition 
matrix Wh,i from the original data. From the original bulk expression level matrix Yi,j , 
95% of the markers were randomly chosen and retained; these markers had no associa-
tion with disease because the case–control status was randomized. Cell-type-specific 
association was introduced into the remaining 5% of markers, such that an equal num-
ber of markers were up- or down-regulated in each cell type. For example, in the EWAS 
dataset, 451, 725× 0.05× 0.5÷ 7 = 1613 CpG sites were up-regulated in neutrophils of 
cases.

The bulk expression level of a marker j with normalized-scale effect-size β specific to a 
cell type h was generated as follows. First, the average µ and the variance σ 2 of the nor-
malized bulk expression level f

(

Yi,j
)

 in the original data was measured. Next, we gen-
erated normalized expression level in each cell type. For cases, the expression level in 
cell type h was randomly sampled from the normal distribution N

(

µ+ β , σ 2
)

 and the 
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expression level in each of the other cell types was sampled from N
(

µ, σ 2
)

 . For controls, 
the expression level in each cell type was sampled from N

(

µ, σ 2
)

 . Finally, for each indi-
vidual, the expression levels in cell types were converted to the linear scale, multiplied by 
the cell type composition and added, to obtain the bulk expression level in linear scale.

In the truly disease-associated cell type h, we introduced signal β and noise σ 2 . The 
signal level was fixed in a simulation trial, for example to methylation OR = 1.3. Since the 
noise level was taken from real data, the level varied between markers. In the process of 
obtaining bulk expression the expression of all cell types was mixed, which dilutes the 
signal. The signal dilution becomes stronger if h is a minor cell type. The mixing process 
adds noise from other cell types, which becomes stronger if h is a minor cell type. Con-
sequently, minor cell types tend to manifest weaker association in bulk tissue. We empir-
ically measured the strength of association by the coefficient of determination, R2 , for 
the marginal model. The coefficient of determination is defined as the proportion of var-
iance explained by the model, and R2/

(

1− R2
)

 equals the signal-to-noise ratio. Under 
methylation OR of 1.3, 1.6, 1.9 for EWAS simulation, the median R2 was 0.322, 0.589, 
0.712 for neutrophils, 0.010, 0.033, 0.057 for NK cells, and 0.001, 0.003, 0.005 for eosino-
phils. Under fold-change of 1.7, 3.0 or 5.0 for gene expression simulation, the median R2 
was 0.135, 0.331, 0.434 for granulocytes, 0.007, 0.026, 0.049 for CD8+ T cells, and 0.001, 
0.003, 0.007 for B cells.

For gene expression, we also simulated a scenario where cell-type-specific disease 
effect occurs in cell type marker genes. The simulation procedure is same as above 
except that the expression level was set to zero (in linear scale) in all cell types other than 
the target cell type h, for both cases and controls.

Evaluation of statistical methods

Cell-type-specific effects of traits was statistically tested by using bulk tissue data as 
input. We applied the omicwas package with the normalizing function f = log, logit, 
identity without ridge regularization (omicwas.log, omicwas.logit, omicwas.identity) or 
under ridge regression (omicwas.log.ridge, omicwas.logit.ridge, omicwas.identity.ridge). 
The omicwas package was used also for conventional linear regression under the full and 
marginal models. We also developed a hybrid of marginal and full models (Marginal.
Full005): if the effect direction agreed in two models and if P < 0.05 in the full model, we 
adopted the Z-score of the marginal model; otherwise, the Z-score was set to zero.

Among previous methods, we evaluated those that accept cell type composition as 
input and compute test statistics for cell-type-specific association. For DNA methyla-
tion data, we applied TOAST (version 1.2.0) [9], CellDMC (version 2.0.2) [13] and TCA 
(version 1.0.0) [14]. For gene expression data, we applied TOAST and csSAM (version 
1.4) [5]. For csSAM, we either fitted all cell types together or one cell type at a time, 
and denoted the results as csSAM.lm and csSAM.monovariate, respectively. The csSAM 
method is applicable to binomial traits but not to quantitative traits.

For simulated data of EWAS dataset GSE42861, we adopted the significance level 
P < 2.4 × 10–7, which accounts for the correlation among the probes on HumanMeth-
ylation450 array [37]. For the GTEx gene expression dataset, multiple testing was con-
trolled by the Benjamini–Hochberg procedure with the false discovery rate < 5% in each 
cell type [38].
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The performance of an algorithm for the simulated data was assessed by sensitivity, 
specificity and precision. The performance measures were obtained from each simula-
tion trial. For a target cell type h, we counted the four possible outcomes, true positives 
( TPh ), true negatives ( TNh ), false positives ( FPh ) and false negatives ( FNh ). The sum 
TPh + TNh + FPh + FNh equals the total number of omics markers (which was 451,725 
CpG sites for DNA methylation and 14,038 genes for gene expression). For 5% of the 
markers, one randomly selected cell type h∗ was set to be truly associated with disease 
status at data generation. The remaining 95% of the markers were null cases with no 
truly associated cell types. The outcome counts can be subtotaled according to the truly 
associated cell type, which is denoted in superscript,

Remark that FPh can occur when in cell type h a marker is truly up-regulated in disease 
cases but an algorithm predicts the marker to be down-regulated in h. The performance 
measures can be represented as

Whereas sensitivity is obtained solely from markers that are truly associated in the tar-
get cell type h, the specificity and precision are obtained by aggregating with the markers 
associated in other cell types and the null markers.

For the association with rheumatoid arthritis and age, “true” association was deter-
mined from the measurements in physically sorted blood cells, under the nominal 
significance level P < 0.05 (two-sided). In the same manner as the simulation analysis, 
we assessed the sensitivity, specificity and precision.
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