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Background
Despite continuous advances in modern technologies, the process of traditional drug 
discovery is still extremely time-consuming and costly. According to a recent study [1], 
it takes over 10 years and more than $2 billion to bring a new drug to market. Moreo-
ver, the risk of failure during drug discovery is significantly high. Most drug leads could 
not pass beyond the early stage of development because of toxicity, and lack of efficacy 
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or adverse side-effects could further prevent testing drugs from entering clinical trials. 
Therefore, improving research and development (R&D) productivity becomes the most 
important priority for the global pharmaceutical industry [2].

Drug repositioning [3], which aims to find new indications for approved or investi-
gational drugs, has emerged as an important alternative to the traditional drug discov-
ery. As it uses de-risked drug compounds, drug repositioning has the potential to reduce 
development time and increase success ratio compared to developing an entirely new 
drug for disease treatment [4]. Some successful examples of drug repositioning have 
been reported. A well-known instance is sildenafil, which has been repurposed from an 
antihypertensive drug to the treatment of erectile dysfunction. Existing antivirals, such 
as baloxavir, azvudine and darunavir, are repurposed to fight the current COVID-19 
pandemic [5].

With the accumulation of biomedical data, computational approaches exploiting 
multi-source information for drug repositioning have been continuously proposed [6–
27]. These methods can be roughly categorized as drug-based and disease-based (see 
Review [28] for more details). Drug-based approaches are preferred when rich chemical 
or pharmacological data for drugs are available. For example, under the principle that 
drugs with chemical similarities could suggest shared biological activity, Keiser et al. [7] 
applied a similarity ensemble approach (SEA) to evaluate the 2D structural similarity 
of drugs to identify new drug–target interactions for drug repositioning. Based on the 
hypothesis that the mechanism of actions (MoA) of two drugs would be same if they 
induced the same side effects, Yang and Agarwal [8] used clinical side-effects of drugs 
as features to build Naive Bayes models to predict indications for diseases. Because pro-
tease is a common target for SARS-CoV-2, HIV-1 and hepatitis C viral (HCV) strains. 
FDA approved HIV-1 protease inhibitors and HCV protease inhibitors have been 
screened to be potential effective drugs against the COVID-19 [27]. Considering the fact 
that a drug usually acts on multiple targets, Rutherford et al. [14] extracted drug-disease 
associations for drug repositioning using the interactions between disease-related genes 
and drug targets. For these methods, different drug features are applied to address the 
drug repositioning problem from different angles.

Generally, these drug-based approaches compare some unique signature of a drug 
against that of another one. The signature of a drug could be mainly derived from three 
categories of data: chemical structures, genomic data and adverse event profiles. As we 
know, collection bias and noise may exist in these data and some are even not complete. 
Meanwhile, complementary information exists in these different types of data. There-
fore, it is necessary to combine these data for a comprehensive understanding of drug’s 
MoA. However, integrating these different kinds of data to improve in silico drug reposi-
tioning is an open question till now.

In this paper, we first collect 3 types of drug data (i.e., drug substructures, drug targets 
and drug side-effects) from public databases. Drug–drug similarities are then calculated 
based on each of the three types of features. A method using propagation to integrate 
the three similarity measurements is proposed. Under the guilt-by-association princi-
ple, we finally test their ability to infer drug-disease associations for drug repositioning. 
Experimental results based on cross-validations and case studies show that the inte-
grated similarity measurement outperforms each of the 3 similarity measurements. We 
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also compare our fusion method with 3 state-of-the-art similarity-integration methods 
and our method shows superior prediction performance in drug repositioning.

Results
Evaluation metrics

In order to evaluate the prediction performance of the 4 similarity measurements, we 
implement leave-one-out cross-validations (LOOCVs) on the 548 drugs. For each drug, 
we consider it as a new one and leave it out once as the testing data. We remove all the 
associated diseases of the testing drug from our dataset. The remaining 547 drugs with 
indication information and similarity measurement are taken as the training data.

For each drug, we prioritize the whole candidate diseases according to the scores 
derived from Eq. (8) (see “Methods”). When the score of a predicted association exceeds 
a given threshold, we consider it as a positive prediction; otherwise, a negative predic-
tion. True positive rate (TPR), false positive rate (FPR), Precision (P) and Recall (R) are 
calculated by varying the thresholds to plot ROC and PR curves. Area under ROC curve 
(AUC) values and area under precision-recall curve (AUPR) values are computed for 
performance comparison.

Furthermore, comprehensive drug-disease association predictions using all known 
information as training set are conducted. We analyse the top-ranked results for the 548 
drugs by searching evidence from public databases.

Prediction performance comparison

We report in Table 1 the average AUC values and AUPR values received by LOOCVs 
on the 548 drugs from the 4 similarity measurements. As shown in Table 1, Integrated-
Sim receives the highest average values of AUC and AUPR and performs best in the 4 
similarity measurements. The average AUC value for IntegratedSim increases by 0.0659, 
0.0310 and 0.0536 than these for the other 3 measurements, respectively. Meanwhile, 
the average AUPR value for IntegratedSim is 0.1474, 0.0586 and 0.1289 higher compared 
with these for the other 3 measurements, respectively. The overall results of LOOCVs 
for all 4 similarity measurements are illustrated by ROC curves and PR curves in Figs. 1 
and 2, respectively.

We conduct paired t-tests to measure whether the AUC values and AUPR values 
obtained by IntegratedSim across the 548 drugs are significantly higher than these in the 
other 3 datasets. The calculated p-values are available at Table 2. We can discover from 
the statistical results that IntegratedSim achieves significantly better performance than 
all the other 3 measurements at the significance level 0.05.

We show the precision and recall values across the 548 drugs in the 4 similarity 
datasets within the top k (k = 5, 10, 15 and 20) candidates in Figs. 3 and 4, respectively. 

Table 1  Comparison of  average values of  AUC and  AUPR received for  the  548 drugs 
in the 4 similarity datasets by leave-one-out cross-validations

The bold value indicated the highest one in each row

chemSim genoSim pharSim IntegratedSim

Average AUC value 0.7792 0.8141 0.7915 0.8451
Average AUPR value 0.0727 0.1615 0.0912 0.2201
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Because higher values of precision and recall within the top k predictions indicate 
that more real drug indications are successfully inferred. We can conclude from the 
two figures that IntegratedSim consistently outperforms the other 3 measurements at 
different k cutoffs.

Fig. 1  ROC curves of the 4 similarity measurements to predict drug-disease associations by leave-one-out 
cross-validation tests

Fig. 2  PR curves of the 4 similarity measurements to predict drug-disease associations by leave-one-out 
cross-validation tests

Table 2  Pairwise comparison with  paired t-tests on  the  performance results obtained 
by IntegratedSim and the other 3 measurements across the 548 drugs

chemSim genoSim pharSim

p-value between IntegratedSim and 
another similarity measurement based 
on AUC values

3.0384E−06 0.02104148 0.00015592

p-value between IntegratedSim and 
another similarity measurement based 
on AUPR values

1.70373E−32 3.89275E−05 2.11912E−23
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Effects of parameters k and t in similarity fusion on drug repositioning

There are two parameters k and t in our method for similarity fusion. The parameter k 
is the number of neighbours and t is the number of iterations. We comprehensively set 
their values in the range of [1, 30] and list the average AUC values and AUPR values in 
Tables  3 and 4, respectively. We find from the 2 tables that the best inference perfor-
mance can be achieved when the values of both parameters are set to be 5.

Comprehensive prediction of novel drug–disease associations

After extensive comparison, we choose the best-performed similarity measurement 
IntegratedSim to conduct comprehensive drug-disease association predictions. In this 
inference process, all known information including associations and similarity measure-
ment are used as the training set. We rank the unknown pairs according to their scores 
derived from Eq. (8). The list of the top 20 predicted results can be seen in Additional 
file 1.

Fig. 3  Comparison of average precision values in the top-k predictions for the 548 drugs in the 4 similarity 
datasets by leave-one-out cross-validations

Fig. 4  Comparison of average recall values in the top-k predictions for the 548 drugs in the 4 similarity 
datasets by leave-one-out cross-validations
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We check the top 20 predicted results according to the public database CTD [29], a 
knowledgebase that contains information for chemicals, genes, phenotypes, diseases, 
and exposures to advance our understanding about human health. Literature-based 
drug-disease associations are downloaded from this database to validate our predic-
tions. For the predicted results in IntegratedSim, we discover that  158, 612, 1006 and 
1575 predictions from the top 1, top 5, top 10 and top 20 results for the 548 drugs are 
verified in CTD, respectively. We also predict new drug-disease associations using the 
other 3 similarity measurements. Comparison of numbers of confirmed associations 
in the top k (k = 1, 5, 10 and 20) predictions is showed in Fig. 5. We receive the larg-
est numbers of confirmed predictions from IntegratedSim in most cases. It should be 

Table 3  AUC values received from leave-one-out cross-validations by parameter tuning

The bold value indicated the highest one

k = 1 5 10 20 30

t = 1 0.8313 0.8348 0.8287 0.8177 0.8100

5 0.8310 0.8451 0.8398 0.8320 0.8264

10 0.8307 0.8391 0.8273 0.8156 0.8096

20 0.8306 0.8253 0.8096 0.7989 0.7935

30 0.8306 0.8154 0.7993 0.7899 0.7862

Table 4  AUPR values received from leave-one-out cross-validations by parameter tuning

The bold value indicated the highest one

k = 1 5 10 20 30

t = 1 0.2042 0.1868 0.1593 0.1342 0.1181

5 0.2084 0.2201 0.1943 0.1651 0.1537

10 0.2088 0.1962 0.1604 0.1357 0.1178

20 0.2085 0.1646 0.1296 0.0965 0.0835

30 0.2085 0.1456 0.1073 0.0822 0.0738

Fig. 5  The numbers of confirmed results in the top-k predictions in the 4 similarity datasets
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noted that the top predictions that are not supported in CTD yet may also exist in 
reality.

Comparison with other similarity fusion methods

We compare our integration method with 3 latest similarity fusion methods. We refer to 
the 3 methods as Napolitano’s method [30], Oerton’s method [31] and Li’s method [32]. 
To make fair comparison, we apply the 3 fusion methods to our datasets for drug-disease 
association prediction. We also use leave-one-out cross validations to test their predic-
tion abilities. The average AUC and AUPR values of these methods are listed in Table 5. 
We discover that our method performs best in the 4 fusion methods.

Discussion
Drug-based inference methods for drug repositioning make use of some unique drug 
features for matching. However, such information may be incomplete or contain noise. 
The incomplete or noisy data would produce biased results for drug repositioning.

We develop a method to combine 3 different drug features. We ensure in our integra-
tion method that a drug is more similar to itself than to other drugs throughout itera-
tions, which results in more reliable drug-disease association predictions.

Note that the information of target proteins used in our manuscript is not complete. 
Meanwhile, according to a review [33], non-coding RNAs (ncRNAs) would be another 
new class of drug targets as they play significant roles in gene expression regulation and 
in disease progression. Integrating these ncRNAs with target proteins would make us 
know better about drug’s MoA. We therefore expect that the performance of our method 
would be improved when more experimentally supported drug targets are integrated.

In addition, our method could be easily extended when more drug features are avail-
able. This is useful because diverse categories of biomedical data are becoming available 
with recent advances in technologies. These biomedical data offer new potential for drug 
repositioning [34–37].

It should be noted that the performance of our similarity integration method depends 
on suitable parameter setting. Choosing proper parameters under different conditions 
for our method is a problem that needs to be properly addressed. Meanwhile, we only 
study the effects of drug features on drug repositioning. Recent repurposing approaches 
[38–41] are making using of both drug and disease data. Our previous study [42] dem-
onstrated that the topology of drug-disease bipartite network is also a vital factor in pre-
dicting new indications for drugs. In the future, we plan to integrate more information 
to improve the prediction ability.

Table 5  Comparison with 3 other similarity fusion methods based on leave-one-out cross-
validations

The bold value indicated the highest one in each row

Napolitano’s 
method

Oerton’s method Li’s method Our method

Average AUC value 0.7989 0.7970 0.7993 0.8451
Average AUPR value 0.0974 0.0851 0.0986 0.2201
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Conclusions
In this paper, we comprehensively study the effects of 3 drug features from chemi-
cal, genomic and pharmacological spaces on drug repositioning. Cross-validations 
and case studies suggest the 3 drug features are all predictive factors for drug reposi-
tioning. We further develop a fusion method to integrate these features for better in 
silico drug repositioning. Compared with 3 latest state-of-the-art methods, our fusion 
method shows improvements in prediction accuracy. We expect that our study will 
provide guidance in data integration for in silico drug repositioning.

Methods
Data preparation

In our manuscript, we collect and integrate 3 types of drug signatures for drug repo-
sitioning. The datasets used for performance evaluation and new drug indication pre-
diction are downloaded from two references [43, 44].

In reference [43], Zhang et  al. collected chemical structures of 1103 drugs from 
PubChem [45]. They used 881-dimensional binary fingerprint profiles to encode the 
presence or absence of substructures. Target proteins of 1007 drugs were obtained 
from DrugBank [46]. Each drug was represented by a 775-dimensional binary tar-
get profile. Side-effects of 888 drugs were received from SIDER [47]. They used 
1385-dimensional binary profiles to encode the presence or absence of each side-
effect keyword.

In reference [44], Li and Lu extracted therapeutic uses for 799 drugs from NDF-
RT (http://www.nlm.nih.gov/resea​rch/umls/sourc​erele​asedo​cs/curre​nt/NDFRT​/) and 
provided 3250 drug-disease relationships between the 799 drugs and 719 diseases. 
Finally, we receive 548 drugs which contain all information of chemical structures, 
target proteins, side-effects and indications.

Similarity calculation and fusion

As there are three types of drug features (chemical structures, target proteins and 
side-effects) in our study and these features are represented by binary profiles, we 
separately calculate the similarity between drugs in each feature set according to the 
Jaccard score. This strategy of similarity calculation is also applied in reference [48], 
in which the similarity score between two drugs based on the feature of chemical 
structures is computed as the size of the intersection over the union when viewing 
each chemical structure as specifying a set of elements. We refer to the 3 similarity 
datasets as chemSim, genoSim and pharSim.

Inspired by the successful work of reference [49] in shape/image retrieval and refer-
ence [50] in cancer subtype identification, we apply a diffusion method as follows to 
combine the 3 calculated similarity measurements. We refer to this integrated simi-
larity as IntegratedSim.

For generality, we use an n× n similarity matrix W  with W (i, j) indicating the simi-
larity between drug xi and drug xj . We define a full and sparse kernel on the similarity 
matrix  W  and the full kernel is normalized as:

http://www.nlm.nih.gov/research/umls/sourcereleasedocs/current/NDFRT/
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Let Ni represent a set of drug xi ’s neighbours. We use K nearest neighbours (KNN) to 
measure local affinity as:

Suppose there are 2 similarity datasets for fusion. We compute P(1) and P(2) according 
to Eq. (1) for the two similarity matrices; then the matrices S(1) and S(2) are calculated as 
in Eq.  (2). Let P(1)

t=0 = P(1) and P(2)
t=0 = P(2) denote the initial two status matrices when 

t = 0. We propagate the similarity information through the common neighbourhood and 
update the two similarity matrices iteratively as follows:

After t steps, the final integrated similarity matrix is computed as

For the 3 similarity measurements in our study, we adjust Eq. (3) to

The final fused similarity matrix is calculated as

Drug‑disease association prediction

Based on the guilt-by-association principle, we assume if a drug is prescribed to treat a 
disease, similar drugs might also be able to cure the disease (see Fig. 6). The same idea 
for association analysis has been used in some other bioinformatics fields [51–53].

For an unknown drug-disease association (ri, dj), we calculate its inference score as,

where ri and dj denote drug i and disease j, Sim(ri, rl) is the similarity value between 
drugs i and l, and alj = 1if there exists an association between drug l and disease j, oth-
erwise alj = 0. The higher a score is received from Eq. (8), the higher with confidence a 

(1)P(i, j) =

{

W (i, j)
/

(

2
∑

k �=i W (i, k)
)

j �= i

1/2 j = i

(2)S(i, j) =

{

W (i, j)
/

∑

k∈Ni
W (i, k) j ∈ Ni

0 otherwise

(3)P
(1)
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(2)
t × (S(1))T

(4)P
(2)
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(5)Simfinal =
P
(1)
t + P

(2)
t

2

(6)P
(1)
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P
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l=1,l �=i Sim(ri, rl)
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prediction is. The top predicted diseases are considered as new indications for drugs of 
interest.

Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-021-03988​-x.

Additional file 1. The top 20 predicted indications for the 548 drugs based on the similarity measurement 
IntegratedSim.
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