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Background
Long noncoding RNAs (lncRNAs) represent a highly heterogeneous class of RNA mol-
ecules arbitrarily defined as transcripts of more than 200 nucleotides in length that are 
not translated into proteins. They are found in virtually all eukaryotes and are known to 
play essential biological roles. Despite growing efforts to understand the biology of lncR-
NAs, the origin, evolution and functions of the majority of lncRNAs remain unknown.

Abstract 

Background:  Long noncoding RNAs represent a large class of transcripts with two 
common features: they exceed an arbitrary length threshold of 200 nt and are assumed 
to not encode proteins. Although a growing body of evidence indicates that the vast 
majority of lncRNAs are potentially nonfunctional, hundreds of them have already been 
revealed to perform essential gene regulatory functions or to be linked to a number 
of cellular processes, including those associated with the etiology of human diseases. 
To better understand the biology of lncRNAs, it is essential to perform a more in-depth 
study of their evolution. In contrast to protein-encoding transcripts, however, they do 
not show the strong sequence conservation that usually results from purifying selec-
tion; therefore, software that is typically used to resolve the evolutionary relationships 
of protein-encoding genes and transcripts is not applicable to the study of lncRNAs.

Results:  To tackle this issue, we developed lncEvo, a computational pipeline that 
consists of three modules: (1) transcriptome assembly from RNA-Seq data, (2) predic-
tion of lncRNAs, and (3) conservation study—a genome-wide comparison of lncRNA 
transcriptomes between two species of interest, including search for orthologs. Impor-
tantly, one can choose to apply lncEvo solely for transcriptome assembly or lncRNA 
prediction, without calling the conservation-related part.

Conclusions:  lncEvo is an all-in-one tool built with the Nextflow framework, utilizing 
state-of-the-art software and algorithms with customizable trade-offs between speed 
and sensitivity, ease of use and built-in reporting functionalities. The source code of the 
pipeline is freely available for academic and nonacademic use under the MIT license at 
https​://gitla​b.com/spiri​t678/lncrn​a_conse​rvati​on_nf.

Keywords:  lncRNAs, Orthologs, Synteny

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Bryzghalov et al. BMC Bioinformatics           (2021) 22:59  
https://doi.org/10.1186/s12859-021-03991-2

*Correspondence:   
miszcz@amu.edu.pl 
Institute of Human Biology 
and Evolution, Faculty 
of Biology, Adam Mickiewicz 
University in Poznan, 
Uniwersytetu Poznanskiego 
6, 61‑614 Poznan, Poland

http://orcid.org/0000-0002-6050-9525
https://gitlab.com/spirit678/lncrna_conservation_nf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-03991-2&domain=pdf


Page 2 of 14Bryzghalov et al. BMC Bioinformatics           (2021) 22:59 

Evolutionary conservation has been proven to be a useful metric for evaluating the 
functional importance of genes, but the majority of lncRNAs are poorly conserved com-
pared to protein-encoding genes [1]. According to Hezroni et al. [2], more than 70 per-
cent of lincRNAs, i.e. autonomously transcribed lncRNAs that do not overlap annotated 
coding genes, cannot be linked to homologs in species that diverged > 50 million years 
ago. It should be noted, however, that there are diverse patterns of lncRNA conserva-
tion, which are believed to reflect their mode of action [3]. Most often, lncRNAs show 
only positional conservation, with the sequence itself showing little or no similarity to 
the assumed homologue (referred to as a syntenic homologue or syntolog) [4]. They are 
expected to exert their functions, such as cotranscriptional recruitment of the complex 
epigenetic machinery that mediates histone modifications, in a sequence-independent 
manner, leading to transcriptional regulation of genes in cis [5]. In contrast to syntenic 
transcripts, orthologous lncRNAs with high exon sequence identities are expected to 
play similar sequence-dependent roles in the two species of interest, and these functions 
could be exerted both in cis and in trans [6]. Finally, a number of lncRNAs show locus 
sequence identity with their homologues without preservation of the exonic sequences 
[2, 7]; this reflects scenarios in which only parts of the sequence are essential, such as 
motifs required for RNA:protein interactions or splicing signals [8, 9].

The lack of proper tools for integrative studies of lncRNAs that allow their identifica-
tion from RNA-Seq data, the identification of orthologues and the characterization of 
their conservation properties, motivated us to develop a dedicated computational pipe-
line. The pipeline consists of our own scripts as well as a number of previously published 
software, which were carefully selected based on their performance, popularity and own 
experience. For example, reference-guided assembly of transcriptomes (also referred to 
as ab initio assembly), which takes advantage of a genome sequence to which RNA-Seq 
reads are aligned using splice-aware software, is done with StringTie [10]; the tool out-
performs other software for transcriptome assembly, such as Cufflinks [11] and Bayes-
embler [12]. The identification of lncRNAs, on the other hand, benefits from a number 
of lncRNA features that are employed to differentiate mRNAs from noncoding RNAs 
[13]. For instance, Coding Potential Calculator [14], a part of our lncRNA search algo-
rithm, is focused on the coding capability of transcripts and much relies on sequences of 
already known protein-coding genes from public databases.

By coupling lncRNA discovery and annotation with conservation studies, we ensured 
that the data required for interspecies analyses were prepared in a uniform manner 
and that annotation quality bias was minimized. The computational workflow, which is 
called lncEvo, uses raw RNA-Seq data as a starting point and returns a list of conserved 
long noncoding transcripts, allowing its users to obtain insights into the conservation 
characteristics of particular lncRNAs as well as ab initio assembled transcriptomes and 
sets of predicted lncRNAs, which can be outputted in several commonly used formats.

lncEvo represents a fully integrated automatic pipeline for transcriptome assembly and 
identification of lncRNAs, which can be followed by cross-species conservation analy-
sis of noncoding transcriptomes. The pipeline offers ease of use with well-tested, opti-
mized software packages with default settings; the user-inputted data are expected to be 
regular FASTQ files obtained from RNA-Seq experiments. The software is executed in a 
Docker container, providing flexibility to run lncEvo within a variety of infrastructures, 
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while the dataflow programming model allows for straightforward and efficient paral-
lelization of the computational tasks.

Implementation
lncEvo is written using a reactive workflow framework called Nexflow [15]. Nexflow is 
based on the dataflow programming model, which greatly simplifies the coding of com-
plex distributed pipelines with Docker containers [https​://docke​r.com] as an executive 
environment. This means that the binary dependencies are contained within a stand-
ard and portable format and can be executed on any platform supporting the Docker 
engine. The Conda [https​://conda​.io] management system is applied to easily configure 
the workflow dependencies with Conda environment files.

Docker container

The Nextflow script is transparently executed in a Docker container. There are two 
options: (1) to build the image from scratch using Dockerfile and the docker build com-
mand; (2) to use the spirit678/lncrna_conservation:latest repository from Docker Hub 
[https​://hub.docke​r.com] (default option; may be changed in docker.config). As a base, 
continuumio/miniconda3:4.7.12 is used with procps installed, while the list of soft-
ware that is used is declared within the Conda environment files environment.yml and 
cpc2.yml. The applied Conda channels are conda-forge, bioconda, khourhin, cbp44 and 
defaults.

Input data

As an input, the pipeline only requires paired-end FASTQ files and genome assembly 
IDs, such as GRCh38, Pan_tro_3.0, or the species’ names (here, human and chimpan-
zee, respectively) (Fig.  1). Currently, we support only species that are available in the 
ENSEMBL repository. A Python script is used to find a proper assembly version with 
ENSEMBL mart using a pybiomart library [https​://jrder​uiter​.githu​b.io/pybio​mart/] to 
create the download queues and prepare additional datasets, if they are available (rep-
resenting a set of ribosomal RNAs (rRNAs) and a set of known lncRNAs). The requests, 
ftplib and urllib Python libraries are used for downloading the sequences of rRNAs and 

Fig. 1  A schematic representation of the lncEvo workflow. There are two sequential parts: (1) ab initio 
transcriptome assembly from RNA-Seq data followed by identification of lncRNAs, and (2) the search for 
conserved counterparts in the two species of interest

https://docker.com
https://conda.io
https://hub.docker.com
https://jrderuiter.github.io/pybiomart/


Page 4 of 14Bryzghalov et al. BMC Bioinformatics           (2021) 22:59 

toplevel FASTA files for a given genome assembly as well as the reference gene annota-
tions in GTF format.

Identification of lncRNAs

The identification task is divided into two parts: ab initio assembly of the transcriptome, 
which is followed by identification and filtering of the lncRNAs (Fig. 2). Starting with 
the FASTQ files, the initial quality check is performed using FastQC [http://www.bioin​
forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/]. The metrics for this step and the other steps 
of transcriptome assembly are collected in a single HTML document with multiQC [16]. 
Quality filtering, trimming and clipping of the adapters is performed with either fastp 
[17] or bbduk [sourceforge.net/projects/bbmap/]. Fastp is used by default because of 
its unique combination of speed, quality and ease of use [17]. Subsequently, the rRNA-
derived reads are discarded by mapping them against a set of ribosomal RNAs with 
Bowtie 2 [18] and retaining only the unmapped reads. Then, mapping against the corre-
sponding genome is performed with STAR​ [19] using the recommended settings [https​://
githu​b.com/alexd​obin/STAR/blob/maste​r/doc/STARm​anual​.pdf ]. For this, the genome 
index is built from a FASTA file and additional ENSEMBL annotations in GTF format 
to improve the accuracy of the splice mapping. The obtained BAM files (one per sam-
ple) represent the input for ab  initio transcriptome assembly with StringTie [10] using 
annotations from ENSEMBL as a reference. The resulting GTF files with custom tran-
scriptomes (one per sample) are merged with StringTie into a single transcriptome. The 
transcriptome is then compared against reference annotations with Cuffcompare [20], 
and transcripts belonging to the class codes c, e, p or s, which represent potential errors 
in transcriptome assembly, are removed. The sequences of transcripts are extracted 
from the corresponding genome with gffread [21]. The estimation of expression levels is 

Fig. 2  A schematic representation of the computational steps for ab initio transcriptome assembly and 
identification of lncRNAs. Data flow is represented with green arrows, whereas the metadata relationships 
are marked with red dotted lines. A more detailed representation of the workflow is available on the tool 
webpage

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf
https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf


Page 5 of 14Bryzghalov et al. BMC Bioinformatics           (2021) 22:59 	

performed using Salmon [22] and summarized with a custom Python script utilizing the 
pandas library.

The identification of lncRNAs consists of several filtering steps that are applied to the 
assembled transcriptome. In the first step, the transcriptome is compared against the 
reference annotations using Cuffcompare with the -R and -C options. Then, lncRNA 
identification is performed using a set of Python scripts according to the following 
criteria:

Transcripts with Cuffcompare class codes = j or o are discarded if the reference gene 
is not classified as a lncRNA in ENSEMBL;
Transcripts shorter than 200 bases are removed;
Transcripts containing open reading frames (ORFs) identified by TransDecoder [23] 
with the -m 100 (minimum protein length; default value) and -S (strand-specific) 
options are discarded;
Transcripts classified as encoding proteins by the Coding Potential Calculator (CPC) 
[14] with the default settings are eliminated as well;
Each transcript is required to meet the expression threshold of 1 TPM in at least one 
sample.

Regardless of the TransDecoder and CPC results, retained are all expressed RNAs clas-
sified as lncRNAs in ENSEMBL.

As a result, one obtains a set of lncRNAs in the GTF and FASTA formats as well as a 
tab-separated text file with the detailed annotation data. The overall lncRNA search pro-
cedure represents a modification of previously published protocols and was previously 
applied by us in large-scale studies [4, 24].

Conservation study

Conservation analysis is performed in a pairwise manner between the two species of 
interest. The set of predicted lncRNAs in both species and the species names represent 
the input. One of the species is the target, providing the reference set of lncRNAs, while 
the query species is the source of potentially conserved counterparts (Fig. 3). A set of 
Python scripts is used to preprocess the data and build slncky-compatible annotations 
for the target and query transcriptomes.

Based on our previously described methodology [4], we redesigned the process of 
the generation of cross-species genome alignments, which allowed us to significantly 
reduce the required computational time while maintaining comparable sensitivity. 
The alignment itself is performed with lastal from the LAST package [25]. To prepare 
the genome index, we used the seeding scheme that corresponds to the estimated 
evolutionary distance; NEAR was used for closely related species (such as humans 
and chimps), and MAM4 [26] was used in the remaining cases. Next, last-train [27] 
was used to determine the suitable substitution and gap scores for aligning the query 
and target sequences. The obtained matrix was then applied with lastal to produce 
the alignments in MAF format. As these steps are quite computationally intense, we 
conducted performance tuning to optimize the trade-offs among speed, sensitiv-
ity, memory and disk usage according to developer recommendations and our own 
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observations. The resulting alignments were converted into a PSL format with the 
maf-convert [https​://githu​b.com/ENCOD​E-DCC/kentU​tils] utility. Then, axtChain 
was applied with the scoreScheme produced by last-train, the genome sequences pro-
duced by the faToTwoBit utility and one of three distance options, “near”, “medium” 
or “far” (each determines the minScore and linearGap parameters). This produced a 
file with all chains of the alignments, which was then subject to chain netting with 
the chainNet and netChainSubset utilities and stored in the query species direc-
tory as a target_species.query_species.over.chain.gz file. Importantly, it is possible to 
use the chain files from UCSC if they are generated from the same genome versions; 
they should simply be placed in the root of the query species directory.In the next 
step, slncky [28] is used to identify the conserved counterparts of the query lncR-
NAs. The filtering options built into slncky are disabled, and only the orthology search 
is retained. A reference set of lncRNAs is divided into batches of 2500 transcripts 
for efficient computation, and each batch is processed independently. The results are 
merged into a single file with all orthologs and separately into a file with only the top-
ranked orthologs to collect only the best query-target associations as determined by 
the calculated exonic identity of the two given lncRNAs.

Exploratory data analysis (EDA) is used to analyze the obtained data and provide the 
main characteristics of the datasets with the use of visual methods. To automate the 
EDA in the version of the pipeline designed for the local executor, summary reports are 
generated with a patched version of SweetViz [https​://githu​b.com/fbdes​ignpr​o/sweet​
viz]. The resulting HTML files provide visualizations as well as summary statistics for 
the predicted set of lncRNAs and the results of the conservation analysis. Additionally, 
comparison of the two sets of predicted lncRNAs or the results of the conservation anal-
ysis may be performed as an optional step.

Fig. 3  A schematic workflow for the lncEvo conservation study module. The module utilizes three 
consecutive steps: (1) preprocessing of the lncRNA annotations into the desired format, (2) preparation of the 
cross-species genome alignments, and (3) utilization of slncky for the pairwise conservation search, which is 
followed by postprocessing and generation of the final reports

https://github.com/ENCODE-DCC/kentUtils
https://github.com/fbdesignpro/sweetviz
https://github.com/fbdesignpro/sweetviz
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AWS batch implementation

In addition to the regular implementation of lncEvo, a separate execution script designed 
to be run in the cloud is provided (Fig. 4). The pipeline can be launched either on a local 
computer or as an AWS EC2 instance; the latter is suggested for heavy workloads or long 
runs.

AWS Batch dynamically provides the optimal quantity and type of computer resources 
based on the volume and specific resource requirements of the submitted batch jobs. 
Nextflow automatically manages the computing environment, allocates resources, and 
initiates and terminates nodes for each task according to the executed directed acyclic 
graph (DAG), job queues and computing environments. AWS batch settings are located 
within an awsbatch.config file. Nextflow retrieves the credentials from the user ~/.aws/
credentials or ~/.aws/config files; alternatively, AWS_ACCESS_KEY_ID and AWS_
SECRET_ACCESS_KEY may be specified in the environment.

The custom AMI should be based on the ECS-Optimized Amazon Linux AMI with 
an increased ulimit for open files (-n 20,000), an EBS volume of at least 500 GB on the 
Throughput Optimized HDD (st1), and an installed AWS CLI and Docker container size 
that is adjusted according to the EBS volume size. For testing, two computation environ-
ments were used—128 cores of m5.2xlarge (8 vCPUs; 32 GiB of RAM) for routine tasks 
and 128 cores of m5.8xlarge (32 vCPUs; 128 GiB of RAM) for intensive computations. 
Both types of instances utilized by Intel Xeon Platinum 8000 series processors.

AWS Athena

Athena is an interactive query service that simplifies the analysis of data in Amazon S3 
using standard SQL. With AWS Batch implementation of the conservation analysis using 
an additional parameter, –analytics yes, a new folder named Analytics will be created in 
the Data directory of the S3 bucket with the Hive-compatible partitioned data. The data 
schema is described in Athena_schema.txt. One can use Athena to run ad hoc queries 
with ANSI SQL without the need to aggregate or load the data into Athena. Athena inte-
grates with Amazon QuickSight for easy data visualization. One can use Athena to gen-
erate reports or to explore data with business intelligence tools or SQL clients connected 
with a JDBC or an ODBC driver.

Fig. 4  A schematic representation of AWS batch execution. A predefined S3 bucket is used as the pipeline 
working directory as well as the location used to store the input and output data. Execution scripts are 
located on the local machine, whereas the computational steps take place on the AWS batch cluster
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Output
The main output data

LncEvo generates output data for each of the three consecutive steps: transcriptome 
assembly, the lncRNA search and the lncRNA conservation analysis (Fig. 5). The tran-
scriptome is available in GTF format for downstream processing and in a FASTA file, 
which contains the sequences of the transcripts. The transcript expression values can 
be found in a tab-separated file in the expression directory. The predicted lncRNAs are 
reported in GTF and FASTA formats as well, but there is also a TSV file with extended 
annotation data, such as the relationships of lncRNAs to the reference annotations, the 
results of the protein coding potential evaluation or the expression values provided in 
TPM units.

The output of the conservation study is presented in two files: one file contains the 
top-ranked orthologs selected based on the exonic identity, and the other file contains 
all of the possible conserved counterparts; the lncRNAs in both files are presented 
with the calculated conservation metrics. If a cross-species chain file is created, it is 
also stored for possible future runs using the same or other samples. Importantly, for 
lncRNA identification and conservation studies, interactive reports are provided in the 
form of HTML files that present the statistics in columns and the associations in rows. 

Fig. 5  The structure of the output files, with an analysis of sequences from Canis lupus familiaris compared 
with human lncRNAs shown as an example. The QC folder contains multiple quality reports, with multiQC.
html containing data from a number of software utilities. The set of predicted lncRNAs is kept in the 
PREDICTION folder, whereas the assembled transcriptome is available in the species_name_final.gtf and 
species_name_final.fasta files. The file hsapiens.clfamiliaris.over.chain.gz is the cross-species alignment chain 
file. Finally, the HTML files contain interactive reports
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By implementing an additional analytic step (with a -main comparison flag), users can 
directly compare the summary statistics between the two noncoding transcriptomes or 
only the conserved counterparts.

Quality reports and log files

Nextflow generates an HTML execution report with a number of metrics regarding 
workflow execution. The file is organized into three sections: Summary, Resources and 
Tasks. The summary section reports the execution status, launch commands, over-
all execution time and supplementary workflow metadata. The Resources section con-
tains the plots of the distributions of resource usage for each workflow process, which 
are generated using the plotly.js JavaScript library. Finally, the Tasks section lists all exe-
cuted tasks with their status and the actual command that was applied. There are also 
detailed reports for each of the lncEvo analytical steps. For transcriptome assembly, the 
FastQC HTML report provides the results of the quality control check of the raw input 
sequences; Fastp provides the quality control reports for the RNA-Seq data in a single 
HTML document. To aggregate the results of bioinformatics analyses of many samples 
and assembly stages into a single HTML report, multiQC is used.

Performance and test run
To test lncEvo, five species were selected: human (Homo sapiens), mouse (Mus muscu-
lus), chimp (Pan troglodytes), horse (Equus caballus) and dog (Canis familiaris). In the 
conservation study, humans were used as a reference. The data used for testing were 
fetched from ENA using a Python script [https​://githu​b.com/wwood​/ena-fast-downl​
oad]. Data from the following Sequence Read Archive runs were analyzed: SRR4421334, 
SRR4421792, and SRR4421350 for humans; SRR7771840, SRR7771842, SRR7771843, 
and SRR7771846 for mice; SRR1602576, SRR1758919, and SRR1758927 for chimps; 
SRR9133801, SRR10140550, and SRR10205788 for horses; SRR10915304, SRR10915305, 
and SRR10915307 for dogs. Extensive details regarding analysis of human and mouse 
lncRNAs are provided in Additional file 1.

The computation time of the conservation process of the pipeline differed for different 
workflow executions and depended on the number of annotated lncRNAs in both spe-
cies, the quality of the cross-species alignments and the evolutionary distance between 
the species (Table 1). Importantly, in the search for conserved lncRNAs, three distance 
options for building cross-species alignments are available: near, medium and far [https​

Table 1  Transcriptome assembly and  lncRNA identification test run metrics for  selected 
species

Species CPU-hours Duration Memory 
(max) (GB)

Human 134.1 6 h 14 m 47 s 39.07

Chimp 115.5 5 h 38 m 12 s 38.04

Horse 32.8 1 h 44 m 20 s 33.75

Dog 138.5 6 h 51 m 47 s 33.48

Mouse 115.3 5 h 28 m 17 s 36.47

https://github.com/wwood/ena-fast-download
https://github.com/wwood/ena-fast-download
https://github.com/mcfrith/last-genome-alignments
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://githu​b.com/mcfri​th/last-genom​e-align​ments​]. The last two options may also be 
fine-tuned by using the medium_fast and far_fast versions, which in comparison with 
medium and far consume fewer resources and less CPU time but are expected to result 
in lower sensitivity. The fast options utilize the standard -m10 flag for Last instead of 
-m100 and enable the -W99 parameter when building the Last index. Overall, it is rec-
ommended to use the fast options. Additional file  1 compares results obtained with 
medium and medium_fast parameters, with human lncRNAs used as a reference and 
a mouse as a target species. To reduce the computational time at the slncky stage, the 
target lncRNA dataset is divided into batches of 2500 transcripts each, which can be 
executed in parallel with the AWS Batch executor (one can use up to 10 forks at once).

One of the main advantages of lncEvo compared with the methodology used by us pre-
viously [4] is that lncEvo enables the parallelization of tasks. For transcriptome assembly 
using AWS Batch, the pipeline can handle as many samples at once as the cluster capac-
ity allows, whereas for local execution, this is true only for tasks that do not utilize all 
available CPUs; however, it still represents a meaningful improvement for the pipeline.

Results of the test runs

Using the tested datasets, we predicted from ~ 5000 lncRNA transcripts in dogs up 
to ~ 25,000 in mice (Fig. 6). The differences across species may be explained by the qual-
ity of the available annotations and the number and sources of samples used in analysis 
(i.e., samples from diverse types of tissues, organs and cell lines). For humans, most of 
the lncRNAs fall into one of the three Cuffcompare class codes: “ = ” (equal to known 
ENSEMBL transcript), “i” (intronic variants of known genes) and “j” (novel isoforms 
of known genes) (Fig. 6). In the other species, most of the transcripts represent novel 
intergenic transcripts (class code “u”); this reflects the fact that most species have poor 
lncRNA annotations, which justifies our strategy of identifying the lncRNAs ourselves 
rather than relying on publicly available datasets.

In the conservation study, humans were used as the reference species during the 
cross-species analysis of mice, chimps, horses and dogs. The conserved transcripts were 
automatically assigned to one of three categories based on the extent of the sequence 
conservation (Fig. 7a); in mice, horses and dogs, half of the transcripts represent only the 
syntenic identity, while the conserved counterparts in chimps typically show high exonic 
identity with transcripts in humans, which is easily explained by the relatively short evo-
lutionary distance between the two species. Interestingly, more than half of the lncRNAs 
conserved in mice, horses and dogs were also detected in the human-chimp comparison 
(Fig. 7b). On the other hand, the majority of transcripts conserved in the chimp were 
not detected in the other species, thus hinting that they might represent lineage-specific 
lncRNAs (Fig. 7c).

We were interested to see how switching the species affects the obtained results. To 
this point, we performed the analysis with human (query) vs mouse and, separately, 
mouse (query) vs human. As expected, the sets of obtained conserved lncRNAs were 
not identical but differences were not critical. For example, there were 550 positionally 
conserved lncRNAs for a human-mouse pair and 569 for the second one (see Table 8 in 
Additional file 1 for more details). The differences stem from a couple of factors, such 
as the size and completeness of the compared transcriptomes (the human and mouse 

https://github.com/mcfrith/last-genome-alignments
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sets of lncRNAs are summarized in Additional file 1). Another reason is that a syntenic 
region is going to be different in human-mouse than in mouse-human comparison, 
which is due to differences in genomic sequences and the available annotations, includ-
ing protein-coding genes. Once a transcript is detected in a syntenic region, the cross-
species alignment is scored relative to a set of random intergenic regions from one of the 
genomes—the score value (hence a decision whether a lncRNA is conserved) is going to 
be different, depending on which species is used as a query.

Finally, we checked the performance of lncEvo on a manually selected set of eleven 
lncRNAs, whose evolutionary conservation has been previously studied. For that pur-
pose, we looked into human lncRNAs and their conserved counterparts in mice (Addi-
tional file  1). The analysis demonstrates lncEvo is able to efficiently detect lncRNAs 
conserved between humans and mice, such as MALAT1 or GAS5, often yielding mul-
tiple splicing isoforms of the lncRNA gene. As expected, it finds no orthologs for a pri-
mate-specific lncRNA (LINC00473).

Fig. 6  a lncRNAs found in each of the four species in test runs of lncEvo; b class codes of lncRNA transcripts 
identified according to Cuffcompare in comparison to those identified based on the reference ENSEMBL 
annotations; “=”: complete match with the intron chain; “j”: potential novel isoform; “i”: transcript falls entirely 
within a reference intron; “o”: generic exonic overlap with a reference transcript; “u”: unknown intergenic 
transcript; “x”: exonic overlap with a reference transcript on the opposite strand. The distributions reflect the 
quality of the ENSEMBL annotations, but the volume of the sequencing data and the types of samples used 
also have an impact on the distributions (some tissues possess a much more diverse repertoire of lncRNAs 
than other tissues)
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Downstream analyses

LncEvo produces a diversity of tabular data that can be fed into analytical platforms, 
thus enabling to query, filter the data, and plot graphs, among others. For users who deal 
with a number of species or transcriptomes and want to track a specific gene, transcript 
or a group of transcripts, such as coexpressed transcripts or ultraconserved lncRNAs, 
we have implemented Athena with AWS, thus providing a relatively straightforward way 
to manipulate the data using SQL syntax, without the requirement to build the actual 
relational database. Athena is also fully integrated with AWS QuickSight for data visu-
alizations. On the other hand, for those wishing to obtain insight into the overall data 
statistics, including advanced plotting, SweetViz reports are a feasible option.

Conclusions
Here, we present the first fully automated toolbox for the discovery and conservation 
study of mammalian noncoding transcripts based on raw RNA-Seq data. We made the 
process reproducible by using a stable software stack with tuned and predefined settings. 
We believe that the prepossessing and generation of the noncoding transcriptomes is an 
essential step for studies involving more than one species. We provide options to opti-
mize the trade-off between speed and sensitivity as well as the freedom to choose the 

Fig. 7  a Identified conserved counterparts of human lncRNA transcripts in four species classified 
according to the type of sequence conservation. Positional identity—the transcripts display only positional 
conservation; locus identity—significant sequence similarity in transcript-gene alignment detected; exonic 
identity—besides locus identity, there is also detectable sequence similarity in a transcript-transcript 
alignment. b The extent of the overlap with conserved human lncRNAs in the four analyzed species. c The 
color of the dots represents the species in which a given human transcript is conserved. The exonic identity is 
represented by the X axis, while locus identity is shown on the Y axis



Page 13 of 14Bryzghalov et al. BMC Bioinformatics           (2021) 22:59 	

computational infrastructure. Additionally, we focused on extensive quality control and 
provided options for downstream analysis, such as AWS Athena. For brief and conveni-
ent comparisons of the obtained results, SweetViz reports are generated.

Availability and requirements

Project name: lncEvo: automated identification and conservation study of long noncod-
ing RNAs

Project home page: https​://gitla​b.com/spiri​t678/lncrn​a_conse​rvati​on_nf
Operating system(s): platform independent
Programming language: Nextflow DSL
Other requirements: >= Java 8, >= Nextflow 2.20, >= Docker 19.03
License: MIT
Any restrictions to use by non-academics: none

Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-021-03991​-2.

Additional file 1. An example of exploratory data analysis performed using lncEvo. It contains four sections: i) char-
acteristics of used datasets, ii) a summary for lncRNA conservation analyses, iii) comparison of results obtained with 
different lncEvo settings, iv) case studies.
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