
Guidelines for correlation coefficient 
threshold settings in metabolite correlation 
networks exemplified on a potato association 
panel
David Toubiana and Helena Maruenda* 

Abstract 

Background:  Correlation network analysis has become an integral tool to study 
metabolite datasets. Networks are constructed by omitting correlations between 
metabolites based on two thresholds—namely the r and the associated p-values. While 
p-value threshold settings follow the rules of multiple hypotheses testing correction, 
guidelines for r-value threshold settings have not been defined.

Results:  Here, we introduce a method that allows determining the r-value threshold 
based on an iterative approach, where different networks are constructed and their 
network topology is monitored. Once the network topology changes significantly, the 
threshold is set to the corresponding correlation coefficient value. The approach was 
exemplified on: (i) a metabolite and morphological trait dataset from a potato asso-
ciation panel, which was grown under normal irrigation and water recovery condi-
tions; and validated (ii) on a metabolite dataset of hearts of fed and fasted mice. For 
the potato normal irrigation correlation network a threshold of Pearson’s |r|≥ 0.23 was 
suggested, while for the water recovery correlation network a threshold of Pearson’s 
|r|≥ 0.41 was estimated. For both mice networks the threshold was calculated with 
Pearson’s |r|≥ 0.84.

Conclusions:  Our analysis corrected the previously stated Pearson’s correlation coef-
ficient threshold from 0.4 to 0.41 in the water recovery network and from 0.4 to 0.23 for 
the normal irrigation network. Furthermore, the proposed method suggested a corre-
lation threshold of 0.84 for both mice networks rather than a threshold of 0.7 as applied 
earlier. We demonstrate that the proposed approach is a valuable tool for constructing 
biological meaningful networks.

Keywords:  Metabolite correlation network, Threshold settings, Correlation coefficient, 
Pearson correlation, Potato association panel, Metabolism, Mouse heart metabolism
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Background
Correlation-based network analysis (CNA) has become an integral tool for studying the 
coordinated behavior of metabolite profiles in plant sciences. Metabolite correlation 
networks (CN) are constructed by correlating each two pairs of metabolites across a set 
of different conditions or by exploiting the natural variability of mapping populations or 
collection of varieties, as they provide large sample size stabilizing the correlation and 
reducing the error rate, e.g. in a tomato introgression line mapping population [1, 2], a 
variety collection of sparkling wines [3], a diverse collection of Arabidopsis accessions 
[4], and a maize association panel [5]. The coordinated behavior of metabolites across 
diverse varieties gives insights into their genetic communalities. Each pairwise correla-
tion is represented by a correlation-coefficient r ranging from -1 to 1. In addition, the 
significance of each correlation is evaluated by computing a p-value ranging from 0 to 1. 
In a metabolite CN, nodes represent metabolites and the edges between them represent 
the estimated correlation coefficients.

To construct metabolite CNs, threshold restrictions are applied to the correlation coef-
ficients and their associated p-values to identify spurious correlations between metabo-
lites. Subsequently, the non-significant correlations or edges, respectively, are removed 
from the network. Threshold settings for the associated p-values follow the rules of mul-
tiple hypotheses testing, such as a false discovery rate (FDR) [6]. However, guidelines for 
threshold settings of the correlation coefficient have not been well defined yet.

Ideally, edges between nodes in a CN reflect metabolic fluxes through a metabolic 
pathway. However, the relationship between metabolic pathways and the correlations 
between metabolites is not straight forward. Factors, such as short-term fluctuations 
caused by plant variability or internal noise may render into weak correlations. System-
atic changes of the steady-state as well as aspects of cellular organization also need to be 
taken into account. Furthermore, the involvement of metabolites in multiple pathways 
and their extensive crosstalk within, makes it difficult to clearly affiliate metabolites to 
metabolic pathways in CNs. Thus, the correlation coefficient threshold cannot be uni-
versally set and must be instead adjusted to the system of study in order to extract mean-
ingful biological data [7]. As a result, different studies have applied different selective 
threshold settings, e.g. Hu et al. constructed metabolite CNs for Osteoarthritis and con-
trol patients to identify significantly changing correlations between networks [8]. There 
the authors set a threshold for edges based on the p-value only. Via topological analy-
sis of the difference network, they managed to highlight key metabolites that played an 
important role in governing the connectivity and information flow of the network. In 
[9] the authors used a moderate correlation coefficient threshold of 0.6 which enabled 
them to identify genes affecting free amino acids. In [10] a threshold of 0.7 was applied 
to highlight the differences between metabolite networks of fed and fasted mice. Yet 
again in [11] a rigorous correlation coefficient threshold of 0.8 was employed identifiying 
metabolic patterns for freezing tolerance in two Brachypodium Sylvaticum ecotypes. 
The selection of the correlation coefficient threshold, which allows meaningful biological 
interpretation, depends on the network topology rather than on the strength of the cor-
relation coefficient itself. That being said, network properties associated with node con-
nectivity alter (or better said stop altering) once a certain threshold has been reached. 
In other words, the selection of the correlation coefficient threshold depends on the 
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distribution of the network’s numbers of edges at varying p-values, similar to the idea of 
choosing a p-value threshold based on the p-value distribution in the Benjamini–Hoch-
berg FDR multiple hypotheses testing correction [6].

We have recently profiled the tuber of a potato association panel that was grown 
under normal irrigation (NI) and recovery (REC) treatments for 42 metabolites and also 
measured a set of 45 morphological traits of the plant. [12]. For each treatment, one 
CN was constructed, where the correlation coefficient threshold for both CNs was set 
to Pearson’s |r|≥ 0.4. In addition, the profiles were utilized for a genome wide associa-
tion study (GWAS). Via the application of set theory to networks, a difference network 
was constructed, highlighting the difference set of the REC network over the NI network 
(REC ⊄ NI). In this perspective, the correlation between the metabolite fumaric acid and 
the morphological trait plant vigor was shown to be specific to the REC network. Next, 
we analyzed the single nuclear polymorphisms associated with fumaric acid and identi-
fied a gene coding for a RING domain protein on chromosome 1 in the potato genome 
and a gene coding for a zinc finger protein ZAT2 on chromosome 4. It was demonstrated 
before that both genes are essential for plants to cope with abiotic stresses [13–18].

In the current study, we demonstrate that the estimated correlation coefficient thresh-
old of Pearson’s |r|≥ 0.4 was crucial for the establishment of a connection between 
fumaric acid and plant vigor, and by that for the identification of the aforementioned 
regulating genes. By in silico manipulations of the tuber CN and monitoring its con-
nectivity between nodes, we define guidelines onto how to identify the proper correla-
tion coefficient threshold for metabolite CNs. Last, we apply the proposed method on a 
mouse metabolite dataset to prove its efficacy on a dataset of different origin.

Results
Initial networks

We defined the NI and REC-CNs as weighted networks Gi = (Vi,Ei,w) , where Vi was the 
set of nodes corresponding to metabolites and morphological traits found in the data-
set of treatment i , E was the set of edges between them, and edge weights ( w : E → R ) 
corresponded to the Pearson correlation coefficient. Thresholds for both networks were 
set to Pearson’s |r|≥ 0.4 and a q-value ≤ 0.05, removing spurious correlations. At these 
settings, the NI-CN had |VNI | = 88 nodes and |ENI | = 438 edges connecting them; the 
REC-CN was composed of |VREC | = 90 nodes and |EREC | = 370 edges. The connection 
between fumaric acid and plant vigor was present in the REC-CN but not in the NI-CN, 
as the corresponding correlation coefficients were computed with 0.458 and 0.013, 
respectively.

Determining the correlation coefficient by testing the number of edges

As described above, the integration of a correlation into a CN depends on two thresh-
old settings, namely the correlation coefficient and the associated p-value. In this and in 
other studies it was observed that the number of edges in a CN remains stable despite 
gradually increasing the p-value stringency settings until a certain correlation coefficient 
has been reached. In other words, the proposed method quantifies the number of edges 
that would be integrated into the CN dependent on the absolute correlation coefficient 
and its associated p-value. It does so in descending order at decrements of 0.1 of the 
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correlation coefficient and ranging p-values of 0.05 to 0.01. Once the number of edges 
starts dropping at a certain correlation coefficient, the threshold is set to this value. We 
tested for significant changes in edge number by estimating the confidence intervals (CI) 
at 95% employing the modified Cox method [19] assuming non-normal distributions, 
such that:

where the term corcoef corresponds to the initial correlation coefficient, edge.number.
changed is a Boolean variable, edge.number is an array variable of function correlation_
network, computing the number of edges of different CNs at parameters corcoef and 
p.values, and the error term is defined as CI / 2.

To demonstrate this approach, we constructed a series of NI and REC networks at var-
ying correlation coefficient and p-value settings and quantified the number of edges pre-
sent (Fig. 1). The figure shows that the number of edges remained unchanged at varying 
p-values until the Pearson’s correlation coefficient dropped to 0.2 in the NI-CN (Fig. 1a 
and b), suggesting that the correlation coefficient threshold ought to be located some-
where in-between 0.2 and 0.3. At a correlation coefficient of 0.2 the edge number ranged 
between 923 and 948, the mean was estimated with 938.8, the upper limit of the 95% CI 
was calculated with 951.34, the lower limit with 926.45. For the REC-CN a significant 
drop was registered at a correlation coefficient of 0.4, suggesting that the threshold was 
supposed to be located somewhere in-between 0.4 and 0.5 (Fig. 1c and d). The associ-
ated values were estimated with mean = 373.4, the upper limit of the CI = 376.66, the 
lower limit of the CI = 370.18, the minimum = 370, and the maximum = 376.

Fine‑tuning computes the correlation coefficient thresholds with 0.23 and 0.41

Next, we investigated CNs at different r-values in the range of 0.2 to 0.3 for the NI-CN 
and in the range of 0.4 to 0.5 for the REC-CN (Fig. 2). As before, the r threshold value 
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was defined as the r-value when the minimum or maximum edge number was located 
outside the confines of the corresponding CI. This behavior occurred for the NI-CN at 
a correlation coefficient threshold Pearson’s |r|≥ 0.23. Here, the edge number ranged 
between 850 and 853, the mean was calculated with 851.8, the CI lower limit was com-
puted with 850.18 and the CI upper limit with 853.42 (Fig.  2). For the REC-CN this 
behavior was observed at Pearson’s |r|≥ 0.41. At this r-value the edge number ranged 
between 354 and 359, the mean was computed with 357, the CI upper limit with 359.65 
and the CI lower limit with 354.37. Consequently, the r-value threshold for the NI-CN 
was proposed with 0.23 and for the REC-CN with 0.41.

Bootstrapping analysis confirms correlation coefficient thresholds

To verify the proposed correlation coefficient threshold settings, we employed boot-
strapping with replacement; such that 100 NI and REC-CNs were generated with 80% 
of the samples randomly selected, where one sample could be part of the sample sub-
set more than once. Performing this analysis, we wanted to validate whether the esti-
mated threshold was due to chance or indeed the result of the network topology at 
the proposed threshold even at a reduced set of samples (80%). As before, the analysis 
was divided into two cycles. For the first cycle the edge numbers of all networks were 
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Fig. 1  Edge number distribution of NI and REC networks, r = 1 to 0. Graphs on the left-hand side of the figure 
illustrate histograms of edge number in the NI and REC-CNs at different r-value to p-value combinations, at 
r = 1 to 0 at decrements of 0.1. Graphs on the right-hand side of the figure depict corresponding boxplots, 
where the centerlines represent the mean; box limits represent upper and lower standard error; whiskers 
represent 95% confidence intervals calculated by the modified Cox test. Grey vertical lines separate 
correlation coefficients, red dashed vertical lines represent proposed correlation coefficient threshold interval, 
blue horizontal lines represent the mean edge number at which threshold is set; a NI-CNs edge number 
histogram, b NI-CNs edge number boxplot, c REC-CN edge number histogram, d REC-CN edge number 
boxplot
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quantified at r-values from 1 to 0 at decrements of 0.1 with varying p-values (Fig. 3a 
and c). For the second cycle the edge numbers for the NI-CN were quantified at r-val-
ues ranging from 0.3 to 0.2 and for the REC-CN at at r-values ranging from 0.5 to 0.4 
with varying p-values (Fig. 3b and d). For both latter analyses decrements of 0.01 were 
used. The boxplot of the NI-CNs illustrates an increased range of edge number the 
lower the r-value became, revealing an increased range from values 0.4 downwards 
(Fig. 3a). At an r-value of 0.3 the complete range for all 100 NI-CNs was calculated 
with 620 to 730 (range = 110) edges present in the networks. At an r-value of 0.2 the 
minimum edge number was estimated with 858, while the maximum edge number 
was 1,010, showing an increased range (152). At an r-value of 0.23 the complete range 
for all 100 NI-CNs was calculated with 797 to 905 (range 108) edges present in the 
networks (Fig. 3b). For the REC-CN an increased range was specifically visible after 
the correlation coefficient dropped beneath 0.5, i.e. at Pearson’s r = 0.5 the range of 
edge numbers in all 100 REC-CNs was 58 (min = 217, max = 275), while at r = 0.4 the 
range increased to 98 (min = 355, max = 453 – Fig. 3c). We further investigated r-val-
ues in-between 0.5 to 0.4 (Fig. 3d), demonstrating a steady increase of median edge 
numbers the lower the correlation coefficient became. At the targeted r-value of 0.41 
the minimum edge numbers was estimated with 337 and the maximum edge number 
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Fig. 2  Edge number distribution of NI and REC networks, r = 0.3 to 0.2 and 0.5 to 0.4. Graphs on the left-hand 
side of the figure illustrate histograms of edge number in the NI and REC-CNs at different r-value to p-value 
combinations, at r = 0.3 to 0.2 and 0.5 to 0.4 at decrements of 0.01, respectively. Graphs on the right-hand 
side of the figure depict corresponding boxplots, where the centerlines represent the mean; box limits 
represent upper and lower standard error; whiskers represent 95% confidence intervals calculated by the 
modified Cox test. Grey vertical lines separate correlation coefficients, red dashed vertical lines represent 
proposed correlation coefficient threshold interval, blue horizontal lines represent the mean edge number 
at which threshold is set; a NI-CNs edge number histogram, b NI-CNs edge number boxplot, c REC-CN edge 
number histogram, d REC-CN edge number boxplot
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with 421 (range 84). Furthermore, the boxplot revealed increased CIs, indicative for 
greater standard errors attributed to the increased edge numbers at lower correla-
tion coefficients. These findings underscored the original presupposition of a correla-
tion coefficient threshold setting of Pearson’s |r|≥ 0.23 in the NI-CN and Pearson’s 
|r|≥ 0.41 in the REC-CN.

Next, we used the bootstrapped CNs and computed the CI for each correlation coef-
ficient at varying p-values employing the modified Cox test (Fig. 4). For the first cycle, 
1% (empirical p = 0.99) of all NI-CNs at an r-value of 0.4 (Fig. 5a) revealed minimum 
or maximum edge numbers beyond their estimated CI (Fig. 4a); at r = 0.3, the num-
ber rose to 54%, equivalent to an empirical p-value of 0.46. At r = 0.2, all networks 
showed to have minimum or maximum edge numbers beyond their estimated CI 
(empirical p < 0.01). During the second cycle we inspected in particular the targeted 
r-value of 0.23, revealing that 98% (empirical p-value 0.02) of all networks had mini-
mum or maximum edge numbers beyond their estimated CI (Fig. 4b) For the boot-
strapped REC-CNs, significant changing edge numbers as suggested by the CI started 
to occur at r = 0.5 (Fig. 4c). Here, 21% of the CNs showed significant changes (empir-
ical p = 0.79); at r = 0.4, 93% of all REC-CNs exerted significant changes (empirical 
p = 0.07), and at r = 0.3, all networks (empirical p < 0.01) had significantly changing 
edge numbers. For the second cycle we investigated the number of bootstrapped CNs 
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Fig. 3  Edge number distribution of bootstrapped NI and REC networks, r = 1 to 0. a NI-CNs edge number 
boxplot from bootstrapping analysis at different r-values, at r = 1 to 0 at decrements of 0.1. b NI-CNs edge 
number boxplot from bootstrapping analysis at different r-values, at r = 0.3 to 0.2 at decrements of 0.01. c 
REC-CNs edge number boxplot from bootstrapping analysis at different r-values, at r = 1 to 0 at decrements 
of 0.1. d REC-CNs edge number boxplot from bootstrapping analysis at different r-values, at r = 0.5 to 0.4 at 
decrements of 0.01. In the boxplots, centerlines represent the median; box limits represent upper and lower 
quartiles; whiskers represent 1.5 × interquartile range. Bootstrapping was run 100 times with 80% of the 
samples allowing replacement. Grey vertical lines separate correlation coefficients, red dashed vertical lines 
represent proposed correlation coefficient threshold interval
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associated with the proposed cutoff r-value of 0.41. At this value, 90% of all networks 
revealed to have significantly changing edge numbers, which equated to an empirical 
p-value of 0.1. By setting the p-value cutoff threshold to ≤ 0.1 the bootstrapping anal-
ysis confirmed the proposed NI-CN and REC-CN correlation coefficient threshold.

Method validation on mouse metabolite dataset

To validate the proposed method on a dataset of different biological background, we 
utilized the mouse metabolite datasets from Batushansky et al. [10]. There the authors 
tested the effect of fasting in the hearts of mice. For one of the analyses used in the study, 
the authors constructed CNs for two conditions, i.e. fed and fasted mice. To highlight 
the differences between networks intersection edges were identified. Networks were 
constructed at an absolute r-value threshold of ≥ 0.7. Here, we used the datasets for fed 
and fasted mice and ran it through our correlation-coefficient threshold pipeline. For 
the first cycle, our method suggested that the correlation coefficient threshold ought to 
be located in between r-values 0.8 and 0.9 for both networks (Fig.  5). For the second 
cycle, the r-value for which the edge number was located within the lower and upper CI 
was determined with 0.84 for both networks (Fig. 6). At these settings, the MouseFed-CN 
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The confidence interval was estimated by the modified Cox test at different r-value to p-value combinations 
(see main text for details). Bootstrapping was run 100 times with 80% of the samples allowing replacement. 
Grey vertical lines separate correlation coefficients, red dashed vertical lines represent proposed correlation 
coefficient threshold interval. a Bootstrapped NI-CNs at r = 1 to 0 at decrements of 0.1; b Bootstrapped 
REC-CNs at r = 1 to 0 at decrements of 0.1; c Bootstrapped REC-CNs at r = 0.5 to 0.4 at decrements of 0.01
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had |VFed | = 42 nodes and |EFed | = 105 edges connecting them; the MouseFasted-CN was 
composed of |VFasted | = 42 nodes and |EFasted | = 112 edges. In the original study the 
authors identified eight edges intersecting both networks. Here, we identified 17 inter-
secting edges, containing all edges of the original study (Additional file 1: Supplementary 
Data S1).

Discussion
The construction of metabolite CNs is a non-trivial undertaking. In contrast to 
weighted gene co-expression networks [20], where all edges are kept within the net-
work, the aim of metabolite CNs is to eliminate some of the correlations [21]. As 
such, if the correlation coefficient threshold is set too high, valuable biological data 
may be lost, while if the correlation coefficient threshold is set too low the plethora of 
edges may have a confounding effect, rendering it difficult to identify the most viable 
biological information associated with the data at hand. It is therefore highly impor-
tant to set the correlation coefficient threshold appropriately so that meaningful bio-
logical conclusions can be derived. However, the correlation coefficient threshold for 
metabolite CNs cannot be universally set. Instead, it must be determined dynamically 
in accordance to the studied system. Although different studies have already applied 
different correlation coefficient thresholds to construct metabolite CNs, e.g. [1, 4, 
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Fig. 5  Edge number distribution of Mousefed and Mousefasted networks, r = 1 to 0. Graphs on the left-hand 
side of the figure illustrate histograms of edge number in the of Mousefed and Mousefasted at different r-value 
to p-value combinations, at r = 1 to 0 at decrements of 0.1. Graphs on the right-hand side of the figure 
depict corresponding boxplots, where the centerlines represent the mean; box limits represent upper and 
lower standard error; whiskers represent 95% confidence intervals calculated by the modified Cox test. 
Grey vertical lines separate correlation coefficients, red dashed vertical lines represent proposed correlation 
coefficient threshold interval, blue horizontal lines represent the mean edge number at which threshold is 
set; a Mousefed-CNs edge number histogram, b Mousefed-CNs edge number boxplot, c Mousefasted-CN edge 
number histogram, d Mousefasted-CN edge number boxplot
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8–11, 22–24], a set of rules on how to determine them has not been established, yet. 
Here we introduced an approach that allows researchers to select a correlation coef-
ficient threshold suitable to their studied system.

In our recent study on a potato association panel we constructed a CN on tuber 
metabolites and plant morphological traits, where we applied a correlation coefficient 
threshold of 0.4 [12]. At this setting we identified a critical connection between fuma-
ric acid and plant vigor, which enabled us to identify essential genes aiding the plant 
to cope with abiotic stresses. Using the same potato dataset, in the current study, we 
demonstrated how to select the adequate correlation coefficient threshold based on 
an iterative approach, during which the network topology and specifically its associ-
ated edge number was monitored. A series of CNs were constructed, where different 
absolute correlation coefficients (from 0 to 1) were combined with a set of different 
p-values. To determine the r-value threshold a significant change had to be detected. 
We defined a significant change as the excess of the range of edge numbers beyond 
the confines of the corresponding CI of a CN. Once this criterion was fulfilled, the 
r-value threshold was set.

The initial analysis with increments of 0.1 between r-values from 0 to 1 suggested a 
threshold 0.2 for the NI-CN and a threshold 0.4 for the REC-CN (Fig. 1). The second 
cycle of our proposed method suggested an r-value threshold of 0.23 for the NI-CN 
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Fig. 6  Edge number distribution of Mousefed and Mousefasted networks, r = 0.9 to 0.8. Graphs on the left-hand 
side of the figure illustrate histograms of edge number in the Mousefed and Mousefasted at different r-value 
to p-value combinations, at r = 0.9 to 0.8 at decrements of 0.01. Graphs on the right-hand side of the figure 
depict corresponding boxplots, where the centerlines represent the mean; box limits represent upper and 
lower standard error; whiskers represent 95% confidence intervals calculated by the modified Cox test. 
Grey vertical lines separate correlation coefficients, red dashed vertical lines represent proposed correlation 
coefficient threshold interval, blue horizontal lines represent the mean edge number at which threshold is 
set; a Mousefed-CNs edge number histogram, b Mousefed-CNs edge number boxplot, c Mousefasted-CN edge 
number histogram, d Mousefasted-CN edge number boxplot
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and 0.41 for the REC-CN (Figs. 1 and 2). Bootstrapping analysis with 100 CNs based 
on 80% of the samples confirmed the proposed thresholds (Figs.  3 and 4). At these 
threshold settings the crucial connection between fumaric acid and plant vigor was 
still present in the REC-CN but not in the NI-CN as suggested in [12]. To validate the 
proposed method, it was also applied to heart metabolite datasets of fed and fasted 
mice [10]. The original study proposed a threshold of 0.7 for both CNs. To compare 
the CNs a network intersection was generated. Our analysis suggested a threshold 
0.84 for both CNs. Although our proposed threshold was significantly higher than in 
the original study, we showed a similar edge intersection.

The proposed thresholds for the four different CNs stretched over a wide range of 
r-values, starting at a correlation coefficient as low as 0.23 for the NI-CN and reaching a 
correlation coefficient as high as 0.84 for the two mouse CNs. To identify a property that 
could potentially be key to this finding, we computed a number of network properties 
for each CN. Network properties derived from node degree (e.g. average degree, edge 
to node ratio, density, clustering coefficient) varied as much as the proposed correla-
tion coefficient thresholds themselves. However, two other network properties provided 
interesting results that could potentially be the key elements for correlation coefficient 
threshold detection, namely: i) the network diameter, which is the maximum geodesic 
distance between any pair of nodes in a graph; and ii) the network assortativity coef-
ficient, which is the correlation coefficient of degree between pairs of connected nodes 
[25]. It tells in a concise fashion how nodes are preferentially connected to each other. 
The diameter for the NI-CN was computed with 6 and its assortativity coefficient with 
0.45, for the REC-CN the diameter was 9 and its assortativity coefficient = 0.36, for the 
MouseFed-CN the diameter was 9 and its assortativity coefficient = 0.47, and for the 
MouseFasted-CN the diameter was calculated with 8 and its assortativity coefficient with 
0.52. Despite the different topologies of the four CNs these two network properties 
revealed comparable values. We believe that this finding should be further investigated.

Conclusions
We demonstrated that the approach developed in this study is a valuable tool for the 
determination of the correlation coefficient threshold for the construction of metabolite 
CNs. We applied our method to metabolite datasets of different biological background 
and the thresholds suggested varied from 0.23 over 0.41 to 0.84. Although the newly 
proposed r-values differed from the values utilized in the original studies, it still allowed 
us to obtain the same biological conclusions. It is therefore that the network topology of 
CN determines the biological interpretation, rather than the strength of the correlation 
coefficient itself. For this reason, we suggest treating CNs as unweighted graphs once the 
correlation coefficient has been established and non-significant correlations have been 
removed.

Methods
Datasets acquisition and processing

Datasets for metabolites and morphological traits were adopted from [12]. Preproc-
essing and quantification of metabolites and morphological traits were performed as 
described therein.
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CN settings

The generation of the network was based on the correlation analysis of all metabolites 
and morphological traits. The Pearson correlation was chosen to estimate correlation 
coefficients. To construct the initial NI and REC networks, the correlation coefficient 
threshold was set to 0.4 as previously described. The corresponding p-value 0.05  was 
adjusted via multiple hypotheses testing correction. The mice CNs were constructed 
as described in [10].

Confidence Interval estimation

The estimation of the CI is based on a normal distribution. As the data in this study 
violated this assumption we employed the CI estimation based on the modified Cox 
method, which log-transforms the data prior to estimation [19]. It also applies t-val-
ues rather than z-values.

Bootstrapping

To statistically verify the approach presented in the current study for correlation coef-
ficient threshold settings, we employed bootstrapping with random sample replace-
ment. Bootstrapping was performed 100 times with 80% of the samples available in 
the NI and REC datasets.
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