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Background
Leukemia is a type of cancer that occurs in the human bone marrow. It causes a large 
number of abnormal white blood cells to proliferate. Patients with blood cancer can 
experience anemia, bleeding, purple spots on the skin, fatigue, and an increased risk 
of infection [1]. The causes of blood cancer are not known, but environmental and 
genetic factors are important. The density of white blood cells (WBCs) is a measure 
of the immune system’s state and potential risks. In particular, significant variations in 
the WBC count relative to observed trends could mean that a patient is currently being 
affected by the antigen due to a malfunctioning immune system. Therefore, WBC counts 
are quantitative evidence of the progress of the disease.

Abstract 

Background:  Differentiating and counting various types of white blood cells (WBC) in 
bone marrow smears allows the detection of infection, anemia, and leukemia or analy‑
sis of a process of treatment. However, manually locating, identifying, and counting the 
different classes of WBC is time-consuming and fatiguing. Classification and counting 
accuracy depends on the capability and experience of operators.

Results:  This paper uses a deep learning method to count cells in color bone mar‑
row microscopic images automatically. The proposed method uses a Faster RCNN and 
a Feature Pyramid Network to construct a system that deals with various illumination 
levels and accounts for color components’ stability. The dataset of The Second Affiliated 
Hospital of Zhejiang University is used to train and test.

Conclusions:  The experiments test the effectiveness of the proposed white blood cell 
classification system using a total of 609 white blood cell images with a resolution of 
2560 × 1920. The highest overall correct recognition rate could reach 98.8% accuracy. 
The experimental results show that the proposed system is comparable to some state-
of-art systems. A user interface allows pathologists to operate the system easily.
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In a cerebrospinal fluid examination, cerebrospinal fluid is obtained by puncturing the 
bone marrow and producing a blood smear. A pathologist manually counts each type of 
cell in each frame under a microscope to check for leukemia and adjust the medication. 
The differences between each cell are not obvious, so it is difficult to classify cells accu-
rately. This study uses deep learning to detect and count different cells in a blood smear 
automatically. The proposed system decreases inspection time, and the effect of human 
factors and the risk of a miscount due to fatigue.

Approach’s for existing applications depend on the paradigmatic structure of a multi-
stage, cascaded CNNs, as a feature extractor when target objects show large inter-patient 
variation in shape and size. The feature extractor extracts a region of interest (ROIs) and 
makes detection on ROIs. The application areas include cardiac, cardiac CT/MRI [2, 3], 
abdominal object CT segmentation [4], and lung nodule detection [5]. This approach 
leads to excessive and redundant computational resources on the complicated model; for 
example, similar features at low-level may be repeatedly extracted by all feature extrac-
tion models. A dedicated but effective model is proposed for the simple tasks but with 
large variations of white blood cells counting in microscopic bone marrow images to 
tackle this general problem.

By incorporating an attention interface into a generic CNN, model parameters and 
feature maps are expected to be utilized more efficiently and functionally while reducing 
the detection model’s necessity to solve detection tasks separately globally. The attention 
interface automatically learns to focus on target objects without additional supervision. 
The proposed method improves model efficiency yet accuracy comparing to methods 
based on global training with dense labeling. That is, the proposed method introduces 
much less significant computational overhead. CNN models with the attention interface 
can be trained from scratch, similar to fully convolutional network (FCN) models. Simi-
lar attention mechanisms have been proposed for natural scene image classification [6] 
to perform adaptive feature pooling, where predictions are restricted only to a subset of 
selected image regions.

This study uses a machine learning approach with an attention mechanism explored 
through the rest of this paper that is a potentially promising advancement over such 
techniques based on the following reasons: It requires cheaper equipment because cap-
tured images are dyed. It provides results almost immediately, unlike conventional image 
processing methods. The performance of the proposed model is demonstrated in real-
time white cell counts in microscopic bone marrow images. The task is challenging due 
to the low-level feature interpretability of the images, and localizing the object of inter-
est is a critical factor in the successful classification of the cells. We choose to evaluate 
our implementation on two commonly used state-of-the-arts methods: Faster RCNN [7] 
and FPN [8]. The results show that the proposed model consistently improves prediction 
accuracy across different datasets and training sizes while achieving state-of-the-art per-
formance without requiring a global search.

Methods
In applications of computer vision, pattern recognition, object localization, and object 
detection are significant problems. Pattern recognition is used to classify the input 
image. Object localization identifies the category, position, and size of a single object in 
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the input image. Object detection classifies the location and size of multiple objects. Fig-
ure 1 shows different types of cells in a blood smear. Pathologists use dyes to make these 
cells more distinct for classification. The process identifies the cells’ types and frames the 
cells’ locations so that the pathologists can more easily count the numbers in each class 
in the blood smear.

A variety of deep learning models have been proposed for object detection. These 
models can be classified into two main categories. One-stage approaches, including 
YOLO [9] and SSD [10], simultaneously detect the location and classify the target object. 
Faster RCNN and FPN are two-stage models that first find the region proposal, classify 
and regress the location to place an anchoring box to frame the target. In general, the 
former is faster than the latter but less accurate. However, both have a similar struc-
ture. The one-stage YOLO and the two-stage Faster RCNN both use an anchor box and 
bounding box regression, but YOLO uses classification and bounding box regression.

There is a major difficulty in detecting small or adjacent objects because there are only 
two anchor boxes in a grid, and these predict only one class of object. Faster RCNN 
detects small objects because a variety of sizes of anchors are used in a single grid. How-
ever, real-time detection is not possible using this two-step architecture. Accuracy of 
recognition is more important than computational efficiency in detecting and counting 
cells so that two state-deep learning models are used for the proposed system.

Faster RCNN model

Faster RCNN consists of two parts: a Region Proposal Network (RPN) and Fast R-CNN 
[11]. These two parts share a hidden layer, which is a deep convolutional neural network. 
The proposed system uses ResNet-50 [12] as the shared hidden layer. The RPN input 
is an image, and the output is a set of rectangular region proposals that represent an 
area that contains an object. After inputting the image, the last layer’s feature maps are 
obtained using the deep convolutional network, and then a sliding window sweeps over 
the entire feature map. Each point on the feature maps represents an anchor. There are 
k reference frames in the sliding window. The reference frame is transformed into actual 
region proposals depending on the parameters’ output using the sliding window. During 
model training, the region proposals’ scores are sorted to represent the confidence of 

Fig. 1  Multiple cells dyed on a blood smear of cerebrospinal fluid
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the object. The interval of the region proposals’ scores in the range of 0.7 to 0.3 is used 
to train using the Fast R-CNN in a proportion of 1:1. The test identifies the top N region 
proposals that are output to the Fast R-CNN.

The input of the Fast R-CNN is the region proposals extracted using the RPN, and the 
output is the classification and final location of each region proposal. In the original Fast 
R-CNN, the region proposals are extracted using RoI Pooling to give RoI’s of the same 
size and then imported into the final network for classification and positional regression. 
However, RoI Pooling results in the post-extraction features being misaligned with the 
RoI, so RoI Pooling is replaced with RoIAlign of Mask R-CNN [13]. The architecture of 
the Faster RCNN is shown in Fig. 2.

Feature pyramid network model

A Feature Pyramid Network (FPN) is a deep convolutional neural network. A deep con-
volutional neural network uses top-level single-scale features for prediction. However, in 
deep convolutional neural networks, low-level features have less semantic information, 
but location information is accurate. High-level feature semantic information is plenti-
ful, but information on locations can be eliminated, so some algorithms use multi-scale 
features for prediction. The input of the FPN is an image, and the output is a multi-scale 
feature map. The architecture has two parts, as shown in Fig. 3: (1) bottom-up lines and 
(2) top-down lines and lateral connections.

The bottom-up line is the forward-transferred deep convolutional neural network. 
Deep convolutional neural networks have many convolutional layers for which the out-
put of feature maps are the same size. These convolutional layers are viewed as the same 
stage throughout the network, and there can be several steps in the deep convolutional 
neural network. For a feature pyramid, a pyramid level is defined for each stage. The 

Fig. 2  The basic structure of the adjusted Faster R-CNN
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deep convolutional neural network for the proposed system is ResNet-50. This uses five 
steps, and the outputs are four feature maps with four different resolutions for layers 
{C2, C3, C4, C5}, as shown in Fig.  3. High-resolution features in the upper layers are 
sampled twice from top to bottom, and feature maps of the same size are combined from 
the bottom up using a 1 × 1 convolution layer. Finally, a 3 × 3 convolution layer is used 
to eliminate aliasing effects and form a feature pyramid. FPN detects objects similarly to 
the Faster RCNN. FPN is used for the shared network of RPN and Fast R-CNN. In the 
RPN part, the output of the FPN is a set of feature maps, so there is a sliding window of 
RPN on the feature maps of each stage during training. Each sliding window generates 
the region proposals, and then the Faster RCNN uses the same process of training. In 
the Fast R-CNN part, the different scales of the pyramid’s levels use an RoI of different 
sizes to extract features for classification and regress the location.

Attention model

Attention mechanisms are motivated by how humans pay visual attention to different 
regions of an image. Human visual attention focuses on a specific area with high resolu-
tion and perceives the surrounding image as clues in low resolution and then adjusts the 
focal point or makes an inference. On the other hand, trained attention is enforced by 
design and categorized as hard- and soft- attention.

In hard attention [14], only a subset of features is selected from a sequence of limited-
sight sensing. Therefore, hard attention concentrates on the critical sets and excludes 
others that are less significant. Hard attention is well suited to these tasks, which rely on 
very sparse worth-to-be sets over an ample targeting space to mitigate the weaknesses 
associated with soft attention.

Whereas, hard attention, for instance, iterative region proposal and cropping, is often 
non-differentiable and relies on reinforcement learning (RL)for parameter updates, 
which makes model training more difficult. Soft attention is a probabilistic, end-to-end 
differentiable function.

Fig. 3  The architecture of a Feature Pyramid Network
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It utilizes standard back-propagation without the need for posterior sampling. It cal-
culates the distribution of attention using a sequence of sensing over entire images. The 
resulting probabilities reflect the importance of the resultant attention distribution and 
produce a weighted encoding feature set. The green dots represent the focus. A soft 
attention mechanism is fully differentiable and can be easily trained by back-propaga-
tion. After the attention process, the softmax function always assigns small values to 
many insignificant features in the context vector.

In computer vision, attention mechanisms are applied to various problems, including 
image classification, segmentation, action recognition, and so on. Similarly, non-local 
self-attention was used to capture long-range dependencies [15]. In medical image anal-
ysis, attention models have been exploited for medical report generation [16]. However, 
although the information to be classified is extremely localized for standard medical 
image classification, only a handful of works use attention mechanisms [17]. In these 
methods, either bounding box labels are available to guide the attention, or local context 
is extracted by a hard-attention model (i.e., region proposal followed by hard- cropping).

Proposed model for white cell counts

Learning linear transforms for bounding box regression, a reinforcement learning agent 
with a soft attention mechanism regresses the boxes more broadly. For a specific image, 
the detection process firstly applies a deep convolutional neural network with an FPN to 
the entire image to produce a feature map set.

The traditional FPN structure has two parts: a top-down pathway and a lateral connec-
tion. However, there is a problem that the feature map is not fully utilized. The location 
information on the lower level has accuracy, and the higher-level part is rich in feature 
semantic information. Therefore, a bottom-up structure, a generic CNN, is fully-added 
to the bottom-up pathway. The top-down pathway and horizontal connections can com-
bine high-level features through upsampling and merge with bottom-up lines through 
horizontal connections. The bottom-up architecture is the calculation of the feedforward 
neural network. Each convolutional layer outputs three actions: a prediction operation, an 
upsampling operation, and a fusion operation with the output of the previous block. After 
the above operations, the upper and lower layers can be merged, which is compatible with 
the two’s advantages and reduces the output dimension. The overall network structure is 
shown in Fig. 3. The black dotted frame in the middle is the top-down line and horizontal 
connection.

The learning of the attention model occurs along the pathway of reinforcement learn-
ing. The model takes the feature map as the inputs of keys (K), values (V). the hid-
den state of the GRU as a query (Q). The Scaled dot product attention for similarity is 
adopted in the model. The dot product of Q and K divide by a scaling factor 

√

dk  , where 
dk is the dimension of Q and K, to prevent the result becoming too accumulatively large 
as the dimensions of operands are too high.

(1)β_α = β ∗ softmax

(

QKT

√

dk

)



Page 7 of 13Wang et al. BMC Bioinformatics           (2021) 22:94 	

All feature vectors for the entire image from the convolution network are assigned 
attention weighs and used to decide the regression parameters: coordinates, width, and 
height, as shown in Fig. 4. A Long-Tern-Short-Term Memory (LSTM) is attached to the 
weighted features stream. A proposal generator also produces a set of proposal bound-
ing boxes on the region pinpointed by the feature with the highest attention score.

Therefore, the process of the proposed local search method is divided into two stages. 
In the first stage, the local region proposal network (RPN) proposes candidate ROIs from 
a pinpointing region located in sequence by the attention mechanism. After bounding 
boxes are generated, the process forks into two branches for classification and position-
ing regression, respectively. After the RoIs are generated, the local search is conducted 
by the ranks of IoUs (Interaction of Union) between the gound truths and predictions 
for classification and bounding box regression.

The classification neural network processes each proposal box separately by extracting 
the feature maps’ features within the box. An actor-critic RL agent executes the clas-
sification and bounding box regression. The terminated condition is when the correct 
classification and the regressing box is close to the ground truth (within a threshold). 
The result of the classification is used only at the terminal step. Table 2 in the “Appendix” 
shows the pseudocode for the embedded soft attention mechanism.

Results
Since there is no labeled public dateset available as needed by this work, the data set (MS 
dataset) is collected from the affiliated hospital of Zhejiang University, China. It is shown in 
Fig. 5. It contains 609 pictures of 2560 × 1920 pixels, and cells are divided into seven classes: 
Granulocyte, Erythrocyte, Lymphocyte, Megakaryocyte, Plasma cell, Monocyte, and Others. 
Each class is shown in Fig. 5a–d. During training, the category of background is added.

(2)α = softmax(β_α ×M)

(3)context vector = Attention(Q,K ,V ) = αV

Fig. 4  The soft attention mechanism for bounding box regression
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In these images, the specific location of the cells is not marked. A VGG Image Annotator 
[18] is used for digitizing cells’ classifications and the annotation for the location. Their for-
mats are then converted to the form of an MS dataset, COCO [19]. The framework is created 
using PyTorch, which is open source and is provided by Facebook (Francisco et al., 2018), 
and the hardware GPU, Nvidia GeForce GTX1060. During training for these two models, all 
images are compressed to 800 × 800 pixels, and the long edge is compressed by the reduction 
ratio for the short edge. All data is divided into 90% training data and 10% test data.

Cells do not have a specific orientation, so operations, such as reflection, rotation, and 
shearing the cells’ images, are used to increase the training set’s size. The training data 
set’s size is increased from 609 to 1218 images by a reflection (flip) operation, as shown 
in Fig.  6. Augmentation does not increase the number of samples for each blood cell 
class so that the dataset remains balanced.

The metrics used to characterize an object detector’s performance for the MS dataset are 
Average Precision (AP) and Average Recall (AR). AP is averaged overall categories. This is 
known as "mean average precision" (mAP). AR is the maximum recall for a fixed number 
of detections per image, averaged over categories and IoUs. AR is related to the same name 
metric, which is used in proposal evaluation but is computed on a per-category basis.

The model uses end-to-end training with back-propagation and stochastic gradi-
ent descent. Each mini-batch includes two images and 30,000 training iterations. 
Table  1 shows the comparison results between the improved model, the Faster-
RCNN, and the FPN substituting to the Faster-RCNN (called the FPN method in the 
following) as the feature extractor. The comparisons used the evaluation indicators 

Fig. 5  Six types of cells are labeled. "A": Granulocyte; "B": Erythrocyte; "C": Lymphocyte; "D": Megakaryocyte; 
"E": Plasma cell, "F": Monocyte; for example. (a) Containing "A": Granulocyte; "B": Erythrocyte and "F": Monocyte
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for the MS dataset. FPN uses pyramids to improve performance and performs better 
than the Faster RCNN using the MS dataset. The improved model performs better 
than FPN in this study, explaining why cells’ sizes are not variable as the MS data-
set targets. The experimental results demonstrate that the Faster RCNN performs 

Fig. 6  An example of data augmentation using an original image

Table 1  The performance of  two models are compared using the  metrics, MS COCO’s 
Average Precision (AP) and PASCAL’s APx0 (IoU over a threshold of 0.x), and AP (APS, APM, 
APL) for different object sizes (Small,, Medium, Large)

Models AP AP50 AP75 APS APM APL

Improved model 0.744 0.853 0.863 0.988 0.831 0.755

Faster RCNN 0.715 0.844 0.838 0.988 0.830 0.725

FPN 0.678 0.800 0.795 0.950 0.826 0.689

Fig. 7  A comparisons of the loss and average precision for the improved model and Faster-RCNN
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better than FPN in terms of Average Precision (AP) and Average Recall (AR), but 
more training time and testing time are required for FPN. Figure 7 shows the com-
parisons of the loss and average precision for the improved model and its original.

The values for AP and AR are higher for Faster RCNN, so the models’ computational 
efficiency is verified. Faster RCNN is used as the core algorithm for an auxiliary diag-
nosis system for leukemia. Practically, the confidence threshold for the detection frame 
is set to a greater than 0.7 of the output, and multi-class non-maximum suppression 
is used to allow more reliable final detection. After analysis, the statistical results for 
each type of cell are output, and the analyzed images are available for comparison. Fig-
ure 8 shows the visualized results in the experiments. To allow user-friendly operation, 
PyQt5 [20] is used to construct a convenient user interface for the pathologists who 
are not familiar with the deep learning model shown in Fig. 9.

Discussion and conclusions
This study uses a deep learning model to detect and count white blood cells. The 
experimental results show that the proposed system is comparable to state-of-art 
systems. The proposed model uses an improved Faster-RCNN model to classify the 

Fig. 8  The visualized results in the experiments; the first column is from Faster-RCNN, the second is the one 
of substituting FPN into Vgg of the Faster-RCNN; the third one is the result from the proposed model
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white blood cells in the dataset more accurately at 74.4%, 85.3%, 86.3%, 98.8%, 83.1%, 
and 75.5% different IoU levels with image-level data. The proposed method is suitable 
for datasets of WBCs and a wide variety of other cells and tumor cells. The method 
allows faster iteration cycles, lower labor costs, and better patient outcomes and 
allows machine learning to be meaningfully applied in healthcare.

There remained problems with cell detection, such as multiple classes, more varied 
lighting conditions, and new cell types. The following limitations apply to this study. 
A dataset with more varied cell images of interest is required to produce more confi-
dent predictions and counts. Most of the images are acquired under the same lighting 
and microscopy conditions. Images that involve more varied ambient conditions are 
required to verify the generalizability of the proposed model.
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Appendix
See Table 2.

Table 2  Pseudocode of  the  embedded Soft Attention Mechanism; tmax  the maximum 
number of  the  training episodes of  each regression, Tmax  is the  number of  training 
termination

Pseudocode of the embedded Soft Attention Mechanism

Initialize

Global variables, model parameters θ , θv and counter T = 0

Parameters of RL agents: θ ′ , θ ′v , t ← 1

Repeat

Initialize the gradients dθ ← 0, dθv ← 0

Synchronize the RL agents θ ′ = θ , θ ′v = θv

Initialize the initial states of LSTM c0, h0

tstart = t

Take the entire image xt

Repeat

FPN extracting the feature vectors vt of xt

Using vt , the previous state of LSTM ht−1

to obtain an attentive state Zt

Input Zt , ct−1, ht−1 to LSTM

LSTM output ht

st ← ht

Take regression action at by π(at |st; θ
′)

Obtain reward Rt and a new image xt+1

t ← t + 1

T ← T + 1

Until reaching the terminal state st or t − tstart = tmax

G =

{

0 terminal statest

V
(

st; θ
′

v

)

, non− terminal statest

for i ∈ {t − 1, . . . , tstart}do

G ← Rt + γG

Calculate the gradients θ ′v : 
dθv ← dθv +

∂(Gt−v(st ;θ ′v))
2

∂θ ′v

θ ′ : dθ ← dθ +∇θ ′ logπ(at |st; θ
′)
(

Gt−V
(

st; θ
′

v

))

+ β∇θ ′H
(

π
(

st; θ
′

))

End for Until T > Tmax
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