
Sparse data embedding and prediction 
by tropical matrix factorization
Amra Omanović1, Hilal Kazan2, Polona Oblak1 and Tomaž Curk1*

Background
Matrix factorization methods are getting increasingly popular in many research areas 
[1–3]. These methods generate linear models, which cannot model complex relation-
ships. Our work focuses on incorporating non-linearity into matrix factorization models 
by using tropical semiring.

The motivation for using tropical matrix factorization can be seen in the classic exam-
ple of movie rating data, where a users-by-movies matrix contains the rating users 
assigned to movies. In standard matrix factorization methods, it is assumed that a user’s 
final rating is a linear combination of some factors (a person likes some movie because 
of the director, the genre, the lead actor, etc.). But it is also possible that some factor is so 
dominant that all others are irrelevant. An example given for the Latitude algorithm 
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[4], a person likes all Star Wars movies irrespective of actors or directors, shows that 
using the max operator instead of the sum might produce a better model.

We develop a method for the prediction of missing (unknown) values, called Sparse 
Tropical Matrix Factorization (STMF). We evaluate its performance on the prediction 
of gene expression measurements from The Cancer Genome Atlas Research Network 
(TCGA) database. We show that the newly defined operations can discover patterns, 
which cannot be found with standard linear algebra.

Related work
Matrix factorization is a data embedding model which gives us a more compact rep-
resentation of the data and simultaneously finds a latent structure. The most popular 
example is the non-negative matrix factorization (NMF) [5], where the factorization is 
restricted to the matrices with non-negative entries. This non-negativity in resulting fac-
tor matrices makes the results easier to interpret. One of the applications of matrix fac-
torization methods is for recommender systems, where users and items are represented 
in a lower-dimensional latent space [6]. Binary matrix factorization (BMF) [7, 8] is a vari-
ant rooted from NMF where factor matrices are binary, while probabilistic non-negative 
matrix factorization (PMF) [9] models the data as a multinomial distribution. MMDNMF 
[10] is a supervised NMF method, which minimizes the maximum distance within-class 
and maximizes the minimum distance between-class. Integrative approaches, which use 
standard linear algebra to simultaneously factorize multiple data sources and improve 
predictive accuracy, are reviewed in [11]. Multi-omic and multi-view clustering methods 
like MultiNMF [12], Joint NMF [13], PVC [14], DFMF [15], MDNMF [16] and iONMF 
[17] can be used for data fusion of multiple data sources.

Lately, subtropical semiring (max, ·) gained interest in the field of machine learning, 
since it can discover interesting patterns [18, 19]. By taking the logarithm of the subtrop-
ical semiring, we obtain the tropical semiring (max,+) [20]. Although these two semi-
rings are isomorphic, the factorization in tropical semiring works differently than the 
factorization in subtropical semiring. The Cancer algorithm [20] works with continu-
ous data, performing subtropical matrix factorization (SMF) on the input matrix. Two 
main components of the algorithm are: iteratively updating the rank-1 factors one-by-
one and approximate the max-times reconstruction error with a low-degree polynomial. 
Latitude algorithm [4] combines NMF and SMF, where factors are interpreted as NMF 
features, SMF features or as mixtures of both. This approach gives good results in cases 
where the underlying data generation process is a mixture of the two processes. In [21] 
authors used subtropical semiring as part of a recommender system. We can consider 
their method to be a particular kind of neural network. Le Van et al. [22] presented a 
single generic framework that is based on the concept of semiring matrix factorization. 
They applied the framework on two tasks: sparse rank matrix factorization and rank 
matrix tiling.

De Schutter & De Moor [23] presented a heuristic algorithm to compute factoriza-
tion of a matrix in the tropical semiring, which we denote as Tropical Matrix Fac-
torization (TMF). They use it to determine the minimal system order of a discrete 
event system (DES). In the last decades, there has been an increase of interest in 
this research area, and DES is modeled as a max-plus-linear (MPL) system [24, 25]. 
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In contrast to TMF where approximation error is reduced gradually, convergence is 
not guaranteed in the Cancer algorithm. Both Cancer and TMF return factors that 
encode the most dominant components in the data. However, by their construction, 
they cannot be used for prediction tasks in different problem domains, such as pre-
dicting gene expression. In contrast with the NMF method and its variants, which 
require non-negative data, TMF can work with negative values.

Hook [26] reviewed algorithms and applications of linear regression over the max-
plus semiring, while Gärtner and Jaggi [27] constructed a tropical analogue of sup-
port vector machines (SVM), which can be used to classify data into more than just 
two classes compared to the classical SVM. Zhang et al. [28] in their work establish a 
connection between neural networks and tropical geometry. They showed that lin-
ear regions of feedforward neural networks with rectified linear unit activation corre-
spond to vertices of polytopes associated with tropical rational functions. Therefore, 
to understand specific neural networks, we need to understand relevant tropical 
geometry. Since one goal in biology is not just to model the data, but also to under-
stand the underlying mechanisms, the matrix factorization methods can give us a 
more straightforward interpretation than neural networks. The GCN-MF framework 
[29] uses matrix factorization to combine embeddings and Graph Convolutional Net-
work (GCN) using standard linear algebra. The authors state that matrix factorization 
only utilizes the linear relationship between entities. When data is more complex, the 
matrix factorization method  cannot  identify non-linear relationships. Since deep 
learning uses non-linear functions and layer combinations, neural networks can learn 
more complex data patterns. In our work, instead of introducing deep learning, we 
address the issue of non-linearity with tropical semiring.

In our work, we answer the question stated in Cancer: can tropical factorization 
be used, in addition to data analysis, also in other data mining and machine learn-
ing tasks, e.g. matrix completion? We propose a method STMF, which is based on 
TMF, and it can simultaneously predict missing values, i.e. perform matrix comple-
tion. In Table 1 we compare the most relevant methods for our work. To the best of 
our knowledge STMF is the only method which performs prediction tasks in tropi-
cal semiring. STMF introduces non-linearity into matrix factorization models, which 
enables discovering the most dominant patterns, leading to a more straightforward 
visual interpretation compared to other methods for missing value prediction.

Table 1  A comparison between different matrix factorization methods

Arithmetic Data sources Prediction 
tasks

Convergence

NMF [5], BMF [7], PMF [9], MMDNMF [10] Standard Single Yes Yes

DFMF [15], iONMF [17], MDNMF [16] Standard Multiple Yes Yes

Latitude [4] Standard & Subtropical Single No No

Cancer [20] Subtropical Single No No

TMF [23] Tropical Single No Yes

STMF Tropical Single Yes Yes
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Methods
Tropical semiring and factorization

Now, we give some formal definitions regarding the tropical semiring. The (max,+) 
semiring or tropical semiring Rmax , is the set R ∪ {−∞} , equipped with max as addi-
tion ( ⊕ ), and + as multiplication ( ⊗ ). For example, 2⊕ 3 = 3 and 1⊗ 1 = 2 . On the 
other hand, in the subtropical semiring or (max,×) semiring, defined on the same set 
R ∪ {−∞} , addition ( max ) is defined as in the tropical semiring, but the multiplication is 
the standard multiplication ( × ). Throughout the paper, symbols + and − refer to stand-
ard operations of addition and subtraction. Tropical semiring can be used for optimal 
control [30], asymptotics [31], discrete event systems [32] or solving a decision problem 
[33]. Another example is the well-known game Tetris, which can be linearized using the 
(max,+) semiring [34].

Let Rm×n
max  define the set of all m× n matrices over tropical semiring. For A ∈ R

m×n
max  we 

denote by Aij the entry in the i-th row and the j-th column of matrix A. We denote the 
sum of matrices A,B ∈ R

m×n
max  as A⊕ B ∈ R

m×n
max  and define its entries as

i = 1, . . . ,m , j = 1, . . . , n . The product of matrices A ∈ R
m×p
max  , B ∈ R

p×n
max is denoted by 

A⊗ B ∈ R
m×n
max  and its entries are defined as

i = 1, . . . ,m , j = 1, . . . , n.
Matrix factorization over a tropical semiring is a decomposition of a form R = U ⊗ V  , 

where R ∈ R
m×n
max  , U ∈ R

m×r
max  , V ∈ R

r×n
max and r ∈ N0 . Since for small values of r such 

decomposition may not exist, we state tropical matrix factorization problem as: given a 
matrix R and factorization rank r, find matrices U and V such that

To implement a tropical matrix factorization algorithm, we need to know how to solve 
tropical linear systems. Methods for solving linear systems over tropical semiring differ 
substantially from methods that use standard linear algebra [34].

We define the ordering in tropical semiring as z � w if and only if z ⊕ w = w for 
z,w ∈ Rmax , and it induces the ordering on vectors and matrices over tropical semir-
ing entry-wise. For A ∈ R

m×n
max  and c = [ck ] ∈ R

m
max the system of linear inequalities 

A⊗ x � c always has solutions and we call the solutions of A⊗ x � c the subsolutions of 
the linear system A⊗ x = c . The greatest subsolution x = [x1 x2 . . . xn]

T of Ax = c can 
be computed by

for i = 1, 2, . . . , n . We will use (2) in a column-wise form to solve the matrix equations.
TMF starts with an initial guess for the matrix U in (1), denoted by U0 and then computes 

V as the greatest subsolution of U0 ⊗ X = R . Then authors use the iterative procedure by 
selecting and adapting an entry of U or V and recomputing it as the greatest subsolution of 

(A⊕ B)ij = Aij ⊕ Bij = max{Aij ,Bij},

(A⊗ B)ij =

p
⊕

k=1

Aik ⊗ Bkj = max
1≤k≤p

{Aik + Bkj},

(1)R ∼= U ⊗ V .

(2)xi = min
1≤j≤m

(cj − Aji)
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Y ⊗ V = R and U ⊗ X = R , respectively. The b-norm of matrix W, defined as the objective 
function ||W ||b =

∑

i,j |Wij| is used to minimize the approximation error �R−U ⊗ V �b.

Our contribution

In our work, we implement and modify TMF so that it can be applied in data mining tasks. 
We propose a sparse version of TMF, which can work with missing values.

In Sparse Tropical Matrix Factorization (STMF), which is available on https​://githu​b.com/
Ejmri​c/STMF, we update the factor matrices U and V based on the selected given entry of 
the input data matrix R to predict the missing values in R. In Algorithm 1, we present the 
pseudocode of STMF in which for each given entry (i, j) of R we first update U and V based 
on the element from the ith row of the left factor U (ULF, see Algorithm 2). If the update of 
the factors does not improve the approximation of R, then we update U and V based on the 
element from the jth column of the right factor V (URF, see Algorithm 3). 

Algorithms ULF and URF differ from the corresponding TMF’s versions in the way they 
solve linear systems. Since some of the entries of matrix A are not given, we define (min,+) 
matrix multiplication ⊗∗ as

for matrices A ∈ R
m×p
max  and B ∈ R

p×n
max , i = 1, . . . ,m , j = 1, . . . , n . Newly-defined operator 

⊗∗ can be seen as a generalization of Eq. (2), and it is used for solving linear systems by 
skipping unknown values. We assume that at least one element in each row/column is 
known. 

(A⊗∗ B)ij = min
Aik ,Bkjare given

{Aik + Bkj}

https://github.com/Ejmric/STMF
https://github.com/Ejmric/STMF
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Among the different matrix initialization strategies, we obtained the best perfor-
mance with Random Acol strategy [15, 35]. Random Acol computes each column of 
the initialized matrix U as an element-wise average of a random subset of columns of 
the data matrix R. It is a widely used method for initializations in matrix factorization 
methods since it gives better insight into the original data matrix than simple random 
initialization.

In contrast to Cancer, where convergence is not guaranteed, the update rules of 
STMF, similar to TMF, gradually reduce the approximation error. This is ensured by 
the fact that factor matrices U and V are only updated in the case when �R−U ⊗ V �b 
monotonously decreases.

Distance correlation

It is well known that Pearson and Spearman correlation coefficients can misrepresent 
non-linear relationships [36]. Since in real data, we often deal with non-linearity, our 
choice is to use so-called distance correlation. Distance correlation [37] is a straightfor-
ward measure of association that uses the distances between observations as part of its 
calculation. It is a better alternative for detecting a wide range of relationships between 
variables.
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Let X and Y be the matrices each with n rows and A and B their matrices of Euclidean 
distances with the row/column means subtracted, and grand mean added. After matrix 
centering the distance covariance Vxy is defined as

and distance correlation dcor as

where VX and VY  represent distance variances of matrices X and Y. Distance correlation 
is 0 only if the two corresponding variables are independent.

Distance correlation cannot be used to compare specific rows between X and Y, 
because it requires the entire matrix to be centered first. In such cases we use Euclidean 
norm between rows of centered original and rows of centered approximated data.

Synthetic data

We create two types of synthetic datasets of rank 3: one smaller of size 200× 100 and 
five larger of size 500× 300 . We use the (max,+) multiplication of two random non-
negative matrices sampled from a uniform distribution over [0, 1) to generate each syn-
thetic dataset.

Real data

We download the preprocessed TCGA data [11] for nine cancer types, where for each 
cancer type three types of omic data are present: gene expression, methylation and 
miRNA data. We transpose the data sources, so that in each data source, the rows rep-
resent patients and columns represent features. The first step of data preprocessing is to 
take the subset of patients for which we have all three data sources. In our experiments 
we use only gene expression data. After filtering the patients, we substitute each gene 
expression value x in the original data with the log2(x + 1) . With log-transformation, we 
make the gene expression data conform more closely to the normal distribution, and by 
adding one, we reduce the bias of zeros. We also perform polo clustering, which is an 
optimal linear leaf ordering [38], to re-order rows and columns on the preprocessed data 
matrix. Polo clustering results in a more interpretative visualization of factor matrices.

Next, we use feature agglomeration to merge similar genes by performing clustering 
[39]. We use Ward linkage and split genes into 100 clusters (see Additional file 1: Figure 
S 24), the center of each cluster representing a meta-gene. With this approach, we mini-
mize the influence of non-informative, low variance genes on distance calculations and 
reduce the computational requirements.

For Breast Invasive Carcinoma (BIC), we do not perform feature agglomeration since 
a list of 50 genes, called PAM50 [40], classify breast cancers into one of five subtypes: 
LumA, LumB, Basal, Her2, and Normal [41, 42], resulting in our BIC data matrix of size 
541× 50 . These five subtypes differ significantly in the expression of only a few genes in 

V 2
XY =

1

n2

n
∑

i,j=1

AijBij ,

dcor(X ,Y ) =

√

V 2
XY

VXVY
,
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BIC data, which leads to the value close to zero for silhouette score [43] (see Additional 
file 1: Figure S 22). The sizes of the final nine datasets are listed in Table 2.

Performance evaluation

Since STMF is the first work in tropical semiring, which performs matrix completion, we 
choose NMF as a baseline method because it represents the original matrix factorization 
method using standard linear algebra. In contrast, other methods from Table 1, which 
use standard linear algebra, are extensions of NMF. Additionally, we provide running 
time (Table 3) and distance correlation (Table 4) results for PMF because it represents 
the advanced version of NMF that is suitable for performing prediction task on a single 
dataset.

Experiments were performed for varying values of the factorization rank. The smaller 
synthetic dataset experiments were run 10 times, with 500 iterations each, and on larger 
synthetic datasets, experiments were run 50 times, with 500 iterations each. Experi-
ments for real data were run five times, with 500 iterations. For both datasets, we mask 
randomly and uniformly 20% of data as missing, which we then use as a test set to evalu-
ate the tested methods. We assume that in a typical dataset, data will be missing uni-
formly at random. The remaining 80% represent the training set. We choose a rank based 
on the approximation error on training data, which represents a fair/optimal choice for 
both methods, STMF and NMF so that we can compare them, knowing both of them to 
have the same number of parameters.

We compute the distance correlation and Euclidean norm between the original and 
approximated data matrix to evaluate the predictive performance.

Results
First, we use synthetic data to show the correctness of the STMF algorithm. We use the 
smaller dataset to show that STMF can discover the tropical structure. The larger data-
sets are needed to show how the order of rows and columns affects the result. We then 
apply it to real data to compare the performance and interpretability of models obtained 
with STMF and NMF.

Table 2  Size of  gene expression data in  the  form of  patients×meta-genes for  eight cancer 
subtypes, and for the subset of PAM50 genes in BIC 

Cancer subtype Size

Acute Myeloid Leukemia (AML) 171× 100

Colon Adenocarcinoma (COLON) 221× 100

Glioblastoma Multiforme (GBM) 274× 100

Liver Hepatocellular Carcinoma (LIHC) 410× 100

Lung Squamous Cell Carcinoma (LUSC) 344× 100

Ovarian serous cystadenocarcinoma (OV) 291× 100

Skim Cutaneous Melanoma (SKCM) 450× 100

Sarcoma (SARC​) 261× 100

Breast Invasive Carcinoma (BIC) 541× 50
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Synthetic data

The objective of synthetic experiments is to show that STMF can identify the (max,+) 
structure when it exists. Even on a relatively small 200× 100 matrix results show that 
NMF cannot successfully recover extreme values compared to STMF, see Fig. 1. NMF and 
PMF tend towards zero values, which results in a blurry visualization of the approxima-
tion matrices (Additional file 1, Subsection 1.1.1). The values of the matrices predicted 
by NMF and PMF that arise from missing values are much smaller that the values on the 
same positions in the matrix predicted by STMF. This implies that STMF is more efficient 
when predicting extreme values. This effect is even more pronounced when the missing 
values are not missing at random (Additional file 1, Subsection 1.1.2), supporting previ-
ous reports by Lin and Boutros [44]. STMF demonstrates to be more robust to the choice 
of sampling strategy of missing values. As the results show STMF achieves a smaller pre-
diction root-mean-square-error (RMSE) and higher distance correlation (Fig. 2).

Experiments on synthetic data show that changing the execution order of URF and 
ULF in the computation of STMF does not affect the result of the algorithm.

The result of STMF depends on the order of matrix entries. We perform different types 
of permutation techniques to order columns and rows on five large synthetic datasets 

Fig. 1  A comparison between STMF’s and NMF’s predictions of best rank 4 approximations on 200× 100 
synthetic (max,+) matrix with 20% missing values

Fig. 2  Comparison of STMF (blue) and NMF (orange) on synthetic (max,+) matrix of size 200× 100 and rank 
3
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(see Additional file 1: Figure S 19). Top three strategies are to sort columns by increasing 
values of their minimum, maximum, and mean value (Fig. 3). Moreover, in four out of 
five datasets, the best results were obtained by ordering columns in increasing order by 
their minimum value (see Additional file 1: Figure S 20). This strategy represents the first 
step of STMF method (Algorithm 1).

Real data

Figure 4 shows the results on BIC matrix, with PAM50 genes and 541 patients. Our find-
ings confirm that STMF expresses some extreme values. We see that STMF successfully 
recovers large values, while NMF has the largest error where gene expression values are 
high. Note that NMF tends towards the mean value. Half of the original data is close to 
zero (plotted in dark blue), which is a reason that NMF cannot successfully predict high 
(yellow) values. For all other datasets approximation matrices are available in Additional 
file 1, Section 2.

Fig. 3  Effect of ordering strategy on achieved distance correlation by STMF, on 500× 300 synthetic (max,+) 
matrix. Top three performing strategies order columns by increasing values

Fig. 4  Best rank 3 approximation matrices RSTMF and RNMF from STMF and NMF on the prediction of the 
gene expression signal on Breast Invasive Carcinoma (BIC) tumor
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In Fig. 5a we see that NMF has smaller approximation error than STMF, but larger 
prediction error. So, NMF better approximates/fits the data, but STMF is not prone to 
overfitting, since its prediction error is smaller. On the other hand, in Fig. 5b, STMF 
has better distance correlation and silhouette score values; silhouette score for PMF is 
shown in Additional file 1: Figure S 23. Thus, STMF can find clusters of patients with 
the same subtype better than NMF, which tends to describe every patient by the mean 
values in data. For all other datasets similar graphs are available in Additional file 1, 
Section 2.

The rank three factor matrices of the BIC matrix (see Fig. 4) are illustrated in Fig. 6, 
where we denote STMF’s factor matrices by USTMF,VSTMF , and NMF’s factor matrices by 
UNMF,VNMF . We see that these factor matrices are substantially different. Basis factor 
VSTMF (first and third row) is visually the most similar to the original matrix than any 
other factor alone. Factor VSTMF detects low and high values of gene expression, while 
factor VNMF detects high values in the first two columns (second and third row, respec-
tively) and low values in remaining columns (first row). Coefficient factors USTMF and 
UNMF contribute to a good approximation of the original matrix. For all other datasets 
factor matrices are available in Additional file 1, Section 2.

To see which part of data is explained by which factorization rank, we define a latent 
matrix R(i) as a reconstruction using only one latent component from the approximation 
matrix, where i ∈ {1, . . . , r} , and r is the factorization rank. R(i) can be seen as a projec-
tion on the direction of the i-th factor. For example, R(1)

STMF
 matrix in Fig. 7a is a result of 

the (max, +) product, which represent sums of each pair of elements, of the first column 
of USTMF and the first row of VSTMF (Fig. 6). In the case of NMF, instead of sum, there is 
multiplication (see Fig. 7b). If we compute an element-wise maximum of all R(i)

STMF
 we get 

the RSTMF , while element-wise sum of all R(i)
NMF results in RNMF . In this way, we see which 

latent matrix R(i) explains which part of the data. On the BIC matrix, we see that both 
methods, STMF, and NMF, describe most of the data with the first latent matrix (Fig. 7). 
For all other datasets latent matrices are available in Additional file 1, Section 2.

Fig. 5  Comparison of performance of STMF (blue) and NMF (orange) on BIC matrix
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In Table 4 we present the results of experiments on nine datasets listed in Table 2. 
We see that STMF outperforms NMF on six out of nine datasets, while NMF achieves 
better results on the LUSC, SKCM and SARC​ datasets. When we add to the compari-
son the PMF method, which is the probabilistic version of NMF, it outperforms STMF 
and NMF on five datasets, but there is no statistically significant difference between 
the three methods according to the critical difference (CD) method by Demšar [45] 
(see Additional file 1: Figure S 21).

Solving linear systems using ⊗∗ emphasizes the low (blue) and high (yellow) gene 
expression values of patients in Fig. 4. In this way, STMF can, in some cases, recover 
better the original data, while NMF’s results are diluted. However, a limitation of STMF 
compared to NMF is in its computational efficiency (Table 3).

In Fig. 8 we plot the distribution of Euclidean norm of difference between centered 
original data and centered approximations of rank r (chosen in Table 4) for different 
datasets. We see that even if we use another metric like Euclidean norm, computed 
for each row (patient) separately, results still show that STMF outperforms NMF, as it 
is shown in Table 4 using distance correlation.

In Fig. 9 we explore the difference between the original, approximated and centered 
BIC dataset. For every row (patient) we present the Euclidean norm of the differ-
ence between the rows in the original and the approximated matrix on x-axis, which 

Fig. 6  Factor matrices USTMF , VSTMF and UNMF , VNMF obtained by STMF and NMF algorithms, respectively, on 
BIC matrix
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can be interpreted as the accuracy of the approximated values. In contrast, on y-axis 
we present the Euclidean norm of the difference between the corresponding rows in 
the centered original and centered approximated matrix, which can be interpreted 
as the average error of the reconstruction of the original pattern. We see that for 
each row (patient) the STMF’s value on y-axis is smaller than the NMF’s value, indi-
cating that STMF better approximates the original patterns. The rows in the STMF’s 

Fig. 7  STMF’s and NMF’s latent matrices on BIC matrix

Table 3  Average running times  in  seconds with  the  best choice of  rank r for  different 
matrix factorization methods on nine datasets

Dataset Rank r STMF [s] NMF [s] PMF [s]

AML 3 117.953 0.336 0.028

COLON 3 153.398 0.312 0.864

GBM 3 191.204 0.353 1.996

LIHC 2 236.655 0.467 1.794

LUSC 3 239.329 0.456 3.538

OV 4 251.328 0.336 2.159

SKCM 3 310.401 0.395 6.309

SARC​ 3 186.475 0.398 0.215

BIC 3 221.669 0.526 0.248
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approximation in Fig.  4 with predominantly low values have large approximation 
errors (y-axis) in Fig. 9 while having a comparable approximation of the original pat-
tern as NMF’s approximation of the original pattern.

We see that NMF has two clusters of patients with large values on y-axis, denoted by 
red stars and red circles. These are the rows (patients) where the NMF’s predicted pat-
tern differs significantly from the original pattern, more than the STMF’s predictions, 
but at the same time NMF is achieving smaller approximation error than STMF. In 
Fig. 10 we plot the patients corresponding to these two clusters and compare approxi-
mations with original data. It can be seen that NMF cannot model high (yellow) values 
in a few first columns, while low (blue) values are larger (light blue) compared to the 
original matrix, which has around half of the data plotted with dark blue. Compari-
son with Pearson and Spearman correlation is shown in Additional file 1: Figure S 25, 
where STMF achieves higher Pearson correlation, but lower Spearman correlation. 
Clusters of patients are also visible in both figures using these two correlations con-
firming results in Fig. 9. For all other datasets plots are available in Additional file 1, 
Section 2.

Table 4  Distance correlations with  the  best choice of  rank r for  different matrix 
factorization methods on nine datasets

Result of best method in the comparison between STMF and NMF shown in bold. Best result among all three methods 
(STMF, NMF, PMF) indicated by asterisk

Dataset Rank r STMF NMF PMF

Min. Median Max.

AML 3 0.650 0.831* 0.845 0.636 0.623

COLON 3 0.585 0.647 0.688 0.586 0.707*

GBM 3 0.684 0.702* 0.762 0.325 0.330

LIHC 2 0.493 0.515 0.588 0.311 0.649*

LUSC 3 0.498 0.562 0.731 0.697 0.799*

OV 4 0.420 0.569* 0.601 0.347 0.563

SKCM 3 0.480 0.521 0.605 0.633 0.808*

SARC​ 3 0.493 0.584 0.610 0.649* 0.588

BIC 3 0.350 0.392 0.531 0.227 0.427*

Fig. 8  Euclidean norm of difference between centered original data and centered approximations of rank r 
(chosen in Table 4) for different datasets
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Conclusion
Standard linear algebra is used in the majority of data mining and machine learn-
ing tasks. Utilizing different types of semirings has the potential to reveal previously 
undiscovered patterns. The motivation for using tropical semiring in matrix factori-
zation methods is that resulting factors should give us the most dominant features 
that are specific and essential for each factor. In that way, factors are likely easier to 
interpret.

We propose a method called STMF, which can work with missing values. We imple-
ment STMF by extending TMF algorithm to be able to handle unknown values. Results 
show that NMF could not successfully recover the patterns on specific synthetic data, 
while the approximation with STMF achieves a higher correlation value. Results on 
TCGA data show that STMF outperforms NMF in the prediction task. Also, the results 
obtained by NMF tend toward the mean value, while the approximations obtained by 
STMF better express extreme values. Our proposed approach identifies strong pat-
terns that aid the visual interpretation of results. In this way, we can discover sharp, 
high-variance components in the data. To the best of our knowledge, STMF is the first 
work using tropical semiring in sparse (biomedical) data.

A limitation of our STMF method is its apparent inability to embed and predict truly 
novel examples (i.e., new incomplete rows or columns in the data matrix). Developing 
an approach similar to the one we have shown for NMF [17] deserves further research 
to address this important task.

Fig. 9  Euclidean norm of difference between original BIC data and approximations (x-axis) and Euclidean 
norm of difference between centered original data and centered approximations (y-axis)
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Another limitation of STMF method is the fact that can be used only on single data 
source. Integrative data fusion methods are based on co-factorization of multiple data 
matrices. Using standard linear algebra, DFMF is a variant of penalized matrix tri-
factorization, which simultaneously factorizes data matrices to reveal hidden associa-
tions. It can model multiple relations between multiple object types, while relations 
between some object types can be completely missing. In our future work, we will 
investigate ways to modify the STMF method for data fusion of multiple data sources 
focusing on the fusion of methylation, miRNA, and gene expression data.

We believe that future research will show that semirings are useful in many scenar-
ios and that they find the structure that is different and easier to interpret than with 
standard linear algebra.

Supplementary Information
The online version contains supplementary material available at https​://doi.org/10.1186/s1285​9-021-04023​-9.

Additional file 1: Supplementary materials (Supplementary Figures S1–S72).

Fig. 10  Comparison of STMF’s and NMF’s approximations of specific patients from two clusters generated by 
NMF, shown in Fig. 9. First cluster has a center positioned around (17, 141), while second cluster is positioned 
around (15, 109)

https://doi.org/10.1186/s12859-021-04023-9
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