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Background
Since the first single cell experiment was published in 2009 [1], single cell RNA sequenc-
ing (scRNA-seq) has become the quasi-standard for transcriptomic profiling of hetero-
geneous data sets. In contrast to bulk RNA-sequencing, scRNA-seq is able to elucidate 
transcriptomic heterogeneity at an unmatched resolution and thus allows downstream 
analyses to be performed in a cell-type-specific manner, easily. This has been proven to 
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be especially important for instance in case-control studies or in studying tumor het-
erogeneity  [2]. Nowadays, due to advances in experimental technologies, more than 1 
million single cell transcriptomes can be profiled with high-throughput microfluidic sys-
tems. Scalable and robust computational frameworks are required to analyse such highly 
complex single cell data sets.

The clustering of single cells for annotation of cell types is a major step in this analy-
sis. There are two methodologies that are commonly applied to cluster and annotate cell 
types: (1) unsupervised clustering followed by cluster annotation using marker genes [3] 
and (2) supervised approaches that use reference data sets to either cluster cells [4] or to 
classify cells into cell types [5].

A wide variety of methods exist to conduct unsupervised clustering, with each method 
using different distance metrics, feature sets and model assumptions. The graph-based 
clustering method Seurat [6] and its Python counterpart Scanpy [7] are the most prev-
alent ones. In addition, numerous methods based on hierarchical [8], density-based [9] 
and k-means clustering  [10] are commonly used in the field. Kiselev et  al. [3] provide 
an extensive overview on unsupervised clustering approaches and discuss different 
methodologies in detail. Importantly, they conclude that there is currently no method 
available that can robustly be applied to any kind of scRNA-seq data set, as method 
performance can be influenced by the size of data sets, the number and the nature of 
sequenced cell types as well as by technical aspects, such as dropouts, sample quality 
and batch effects.

Unsupervised clustering methods have been especially useful for the discovery of 
novel cell types. However, the marker-based annotation is a burden for researchers as it 
is a time-consuming and labour-intensive task. Also, manual, marker-based annotation 
can be prone to noise and dropout effects. Furthermore, different research groups tend 
to use different sets of marker genes to annotate clusters, rendering results to be less 
comparable across different laboratories.

To overcome these limitations, supervised cell type assignment and clustering 
approaches were proposed. The major advantages of supervised clustering over unsu-
pervised clustering are its robustness to batch effects and its reproducibility. This has 
been shown to be beneficial for the integrative analysis of different data sets [4]. A com-
prehensive review and benchmarking of 22 methods for supervised cell type classifica-
tion is provided by [5]. While they found that several methods achieve high accuracy 
in cell type identification, they also point out certain caveats: several sub-populations 
of CD4+ and CD8+ T cells could not be accurately identified in their experiments. [5] 
traced this back to inappropriate and/or missing marker genes for these cell types in 
the reference data sets used by some of the methods tested. This exposes a vulnerability 
of supervised clustering and classification methods—the reference data sets impose a 
constraint on the cell types that can be detected by the method. Aside from this strong 
dependence on reference data, another general observation made was that the accuracy 
of cell type assignments decreases with an increasing number of cells and an increased 
pairwise similarity between them. Furthermore, clustering methods that do not allow 
for cells to be annotated as Unkown, in case they do not match any of the reference cell 
types, are more prone to making erroneous predictions.
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In summary, despite the obvious importance of cell type identification in scRNA-
seq data analysis, the single-cell community has yet to converge on one cell typing 
methodology [3]. Due to the diverse merits and demerits of the numerous clustering 
approaches, this is unlikely to happen in the near future. However, as both unsuper-
vised and supervised approaches have their distinct advantages, it is desirable to lev-
erage the best of both to improve the clustering of single-cell data. As exemplified in 
Additional file  1: Figure S1 using FACS-sorted Peripheral Blood Mononuclear Cells 
(PBMC) scRNA-seq data from [11], both supervised and unsupervised approaches 
deliver unique insights into the cell type composition of the data set. Specifically, the 
supervised RCA​ [4] is able to detect different progenitor sub-types, whereas Seurat 
is better able to determine T-cell sub-types. Therefore, a more informative annotation 
could be achieved by combining the two clustering results.

Inspired by the consensus approach used in the unsupervised clustering method 
SC3, which resulted in improved clustering results for small data sets compared to 
graph-based approaches [3, 10], we propose scConsensus, a computational frame-
work in R to obtain a consensus set of clusters based on at least two different cluster-
ing results.

Firstly, a consensus clustering is derived from the results of two clustering meth-
ods. This consensus clustering represents cell groupings derived from both clustering 
results, thus incorporating information from both inputs. Details on how this consen-
sus clustering is generated are provided in “Workflow of scConsensus” section.

Secondly, the resulting consensus clusters are refined by re-clustering the cells using 
the union of consensus-cluster-specific differentially expressed genes (DEG) (Fig. 1) as 
features. Each initial consensus cluster is compared in a pair-wise manner with every 
other cluster to maximise inter-cluster distance with respect to strong marker genes. 

a b c

Fig. 1  The scConsensus workflow. a The scConsensus workflow considers two independent cell cluster 
annotations obtained from any pair of supervised and unsupervised clustering methods. b A contingency 
table is generated to elucidate the overlap of the annotations on the single cell level. A consensus labeling 
is generated using either an automated method or manual curation by the user. c DE genes are computed 
between all pairs of consensus clusters. Those DE genes are used to re-cluster the data. The refined clusters 
thus obtained can be annotated with cell type labels
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Thereby, the separation of distinct cell types will improve, whereas clusters represent-
ing identical cell types not exhibiting distinct markers, will be merged together. This 
process can be seamlessly applied in an iterative fashion to combine more than two 
clustering results.

Here, we illustrate the applicability of the scConsensus workflow by integrating 
cluster results from the widely used Seurat package [6] and Scran [12], with those 
from the supervised methods RCA​ [4] and SingleR [13].

Methods
Data sets used

In total, we used five 10X CITE-Seq scRNA-seq data sets. Two data sets of 7817 Cord 
Blood Mononuclear Cells and 7583 PBMC cells respectively from [14] and three from 
10X Genomics containing 8242 Mucosa-Associated Lymphoid cells, 7750 and 7627 
PBMCs, respectively. Additionally, we downloaded FACS-sorted PBMC scRNA-seq 
data generated by [11] for CD14+ Monocytes, CD19+ B Cells, CD34+ Cells, CD4+ 
Helper T Cells, CD4+/CD25+ Regulatory T Cells, CD4+/CD45RA+/CD25- Naive 
T cells, CD4+/CD45RO+ Memory T Cells CD56+ Natural Killer Cells, CD8+ Cyto-
toxic T cells and CD8+/CD45RA+ Naive T Cells from the 10X website. Further 
details and download links are provided in Additional file  1: Table  S1. Table  1 pro-
vides acronyms used in the remainder of the paper. Details on processing of the FACS 
sorted PBMC data are provided in Additional file 1: Note 3.

Data pre‑processing and initial clustering

We used RCA​ (version 1.0) for supervised and Seurat (version 3.1.0) for unsuper-
vised clustering (Fig. 1a). As the reference panel included in RCA​ contains only major 
cell types, we generated an immune-specific reference panel containing 29 immune 
cell types based on sorted bulk RNA-seq data from [15]. Details on the generation of 
this reference panel are provided in Additional file 1: Note 1.

All data pre-processing was conducted using the Seurat R-package. After filtering 
cells using a lower and upper bound for the Number of Detected Genes (NODG) and 
an upper bound for mitochondrial rate, we filtered out genes that are not expressed 
in at least 100 cells. Data set specific QC metrics are provided in Additional file  1: 

Table 1  Overview on the number of cells contained in each considered scRNA-seq data set as well 
as on the acronyms used throughout this article

Dataset Acronym # cells

Cord Blood 10X CBMC 7817

Peripheral Blood Drop-Seq PBMC Drop-Seq 7583

Mucosa-Associated Lymphoid Tissue 10X MALT 8242

Peripheral Blood 10X PBMC 7750

Peripheral Blood 10X-VDJ PBMC-VDJ 7627

PBMCs FACS PBMC-FACS 25,389
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Table S2. Note that we did not apply a threshold on the Number of Unique Molecular 
Identifiers. R-code is available in Additional file 1: Note 2.

Workflow of scConsensus

scConsensus takes the supervised and unsupervised clustering results as input and 
performs the following two major steps: 

1.	 Generation of consensus annotation using a contingency table consolidating the 
results from both clustering inputs,

2.	 Refinement of the consensus cluster labels by re-clustering cells using DE genes.

The entire pipeline is visualized in Fig. 1.

Generating a consensus clustering

First, we use the table function in R to construct a contingency table (Fig. 1b). Each value 
in the contingency table refers to the extent of overlap between the clusters, measured in 
terms of number of cells.

scConsensus provides an automated method to obtain a consensus set of cluster 
labels C . Starting with the clustering that has a larger number of clusters, referred to as 
L , scConsensus determines whether there are any possible sub-clusters that are missed 
by L . To do so, we determine for each cluster l ∈ L the percentage of overlap for the 
clustering with fewer clusters ( F  ) in terms of cell numbers: |l ∩ f | . By default, we con-
sider any cluster f that has an overlap ≥ 10% with cluster l as a sub-cluster of cluster l, 
and then assign a new label to the overlapping cells as a combination of l and f. For cells 
in a cluster l ∈ L with an overlap < 10% to any cluster f ∈ F  , the original label will be 
retained. We note that the overlap threshold can be changed by the user. For instance by 
setting it to 0, each cell will obtain a label based on both considered clustering results F  
and L . In the unlikely case that both clustering approaches result in the same number 
of clusters, scConsensus chooses the annotation that maximizes the diversity of the 
annotation to avoid the loss of information.

In addition to the automated consensus generation and for refinement of the latter, 
scConsensus provides the user with means to perform a manual cluster consolidation. 
This approach is especially well-suited for expert users who have a good understanding 
of cell types that are expected to occur in the analysed data sets.

Refinement by re‑clustering cells on DE genes

Once the consensus clustering C has been obtained, we determine the top 30 DE genes, 
ranked by the absolute value of the fold-change, between every pair of clusters in C and use 
the union set of these DE genes to re-cluster the cells (Fig. 1c). Note that the number of DE 
genes is a user parameter and can be changed. Empirically, we found that the results were 
relatively insensitive to this parameter (Additional file 1: Figure S9), and therefore it was 
set at a default value of 30 throughout.Typically, for UMI data, we use the Wilcoxon test 
to determine the statistical significance (q-value ≤ 0.1 ) of differential expression and cou-
ple that with a fold-change threshold (absolute log fold-change ≥ 0.5 ) to select differentially 
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expressed genes. Upon DE gene selection, Principal Component Analysis (PCA) [16] is per-
formed to reduce the dimensionality of the data using the DE genes as features. The num-
ber of principal components (PCs) to be used can be selected using an elbow plot. For the 
datasets used here, we found 15 PCs to be a conservative estimate that consistently explains 
majority of the variance in the data (Additional file 1: Figure S10). We then construct a cell-
cell distance matrix in PC space to cluster cells using Ward’s agglomerative hierarchical 
clustering approach [17].

Sequential merging of multiple clustering methods

scConsensus can be generalized to merge three or more methods sequentially. The merg-
ing of clustering results is conducted sequentially, with the consensus of 2 clustering results 
used as the input to merge with the third, and the output of this pairwise merge then 
merged with the fourth clustering, and so on. This process is repeated for all the clusterings 
provided by the user. By default, the input clusterings are arranged in decreasing order of 
the number of clusters.

Clustering of antibody tags to derive a ground truth for CITE‑Seq data

We used antibody-derived tags (ADTs) in the CITE-Seq data for cell type identification by 
clustering cells using Seurat. The raw antibody data was normalized using the Centered 
Log Ratio (CLR) [18] transformation method, and the normalized data was centered and 
scaled to mean zero and unit variance. Dimension reduction was performed using PCA. 
The cell clusters were determined using Seurat’s default graph-based clustering. More 
details, along with the source code used to cluster the data, are available in Additional file 1: 
Note 2.

Since these cluster labels were derived solely using ADTs, they provide an unbiased 
ground truth to benchmark the performance of scConsensus on scRNA-seq data. For 
each antibody-derived cluster, we identified the top 30 DE genes (in scRNA-seq data) that 
are positively up-regulated in each ADT cluster when compared to all other cells using the 
Seurat FindAllMarkers function. The union set of these DE genes was used for dimen-
sionality reduction using PCA to 15 PCs for each data set and a cell-cell distance matrix 
was constructed using the Euclidean distance between cells in this PC space. This distance 
matrix was used for Silhouette Index computation to measure cluster separation.

Metrics for assessment of clustering quality

Normalized Mutual Information (NMI) to compare cluster labels

The Normalized Mutual Information (NMI) determines the agreement between any two 
sets of cluster labels C and C′ . We compute NMI(C, C′) between C and C′ as

where H(C) is the entropy of the clustering C (see Chapter 5 of [19] for more information 
on entropy as a measure of clustering quality). The closer the NMI is to 1.0, the better is 
the agreement between the two clustering results.

(1)NMI(C, C′) =
[H(C)+H(C′)−H(CC′)]

max(H(C),H(C′))
,



Page 7 of 15Ranjan et al. BMC Bioinformatics          (2021) 22:186 	

Assessment of cluster quality using bootstrapping

We used both (1) Cosine Similarity csx,y [20] and (2) Pearson correlation rx,y to compute 
pairwise cell-cell similarities for any pair of single cells (x, y) within a cluster c according 
to:

To avoid biases introduced by the feature spaces of the different clustering approaches, 
both metrics are calculated in the original gene-expression space G where xg represents 
the expression of gene g in cell x and yg represents the expression of gene g in cell y, 
respectively. We apply two cut-offs on G with respect to the variance of gene-expression 
(0.5 and 1), thereby neglecting genes that are not likely able to distinguish different clus-
ters from each other. Using bootstrapping, we select 100 genes 100 times from the con-
sidered gene-expression space G and compute the mean cosine similarity csic as well as 
the the mean Pearson correlation ric for each cluster c ∈ C in each iteration i:

The scores csc and rc are computed for all considered data sets and all three clustering 
approaches, scConsensus, Seurat and RCA​. The closer csc and rc are to 1.0, the more 
similar are the cells within their respective clusters. Statistical significance is assessed 
using a one-sided Wilcoxon–Mann–Whitney test.

Testing accuracy of cell type assignment on FACS‑sorted data

Using the FACS labels as our ground truth cell type assignment, we computed the 
F1-score of cell type identification to demonstrate the improvement scConsensus 
achieves over its input clustering results by Seurat and RCA​. The F1-score for each cell 
type t is defined as the harmonic mean of precision (Pre(t)) and recall (Rec(t)) computed 
for cell type t. In other words,

(2)csx,y =

∑

g∈G

xgyg

√

∑

g∈G

x2g

√

∑

g∈G

y2g

,

(3)rx,y =

∑

g∈G

(xg − x̂)(yg − ŷ)

√

∑

g∈G

(xg − x̂)2
√

∑

g∈G

(yg − ŷ)2
.

(4)csic =
1

|c|

∑

(x,y)∈c

csx,y,

(5)ric =
1

|c|

∑

(x,y)∈c

rx,y.

(6)F1(t) = 2
Pre(t)Rec(t)

Pre(t)+ Rec(t)
,

(7)Pre(t) =
TP(t)

TP(t)+ FP(t)
,
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Here, a TP is defined as correct cell type assignment, a FP refers to a mislabelling of a 
cell as being cell type t and a FN is a cell whose true identity is t according to the FACS 
data but the cell was labelled differently.

Visualizing scRNA‑seq data using UMAP

To visually inspect the scConsensus results, we compute DE genes between every pair 
of ground-truth clusters and use the union set of those DE genes as the features for PCA. 
Next, we use the Uniform Manifold Approximation and Projection (UMAP) dimension 
reduction technique  [21] to visualize the embedding of the cells in PCA space in two 
dimensions.

Results
scConsensus: a hybrid approach for clustering single cell data

scConsensus is a general R framework offering a workflow to combine results of two 
different clustering approaches. Briefly, scConsensus is a two-step approach. First, 
scConsensus creates a consensus clustering using the Cartesian product of two input 
clustering results. Next, scConsensus computes the DE genes between all pairs of con-
sensus clusters. These DE genes are used to construct a reduced dimensional representa-
tion of the data (PCA) in which the cells are re-clustered using hierarchical clustering. 
The scConsensus pipeline is depicted in Fig. 1.

scConsensus produces clusters that are more consistent with antibody‑derived clusters

We used the Antibody-derived Tag (ADT) signal of the five considered CITE-seq data 
sets to generate a ground truth clustering for all considered samples (Fig.  2a). Next, 
we compute all differentially expressed (DE) genes between the antibody based clus-
ters using the scRNA-seq component of the data. As shown in Fig.  2b (Additional 
file 1: Fig. S2), the expression of DE genes is cluster-specific, thereby showing that the 

(8)Rec(t) =
TP(t)

TP(t)+ FN (t)
.

a b c d e

f g h i j

Fig. 2  Antibody-derived ground truth for CITE-Seq data. a–e Cluster-specific antibody signal per cell across 
five CITE-Seq data sets. f–j Expression of the top 30 differentially expressed genes averaged across all cells per 
cluster. (a, f ) CBMC, (b, g) PBMC Drop-Seq, (c, h) MALT, (d, i) PBMC, (e, j) PBMC-VDJ
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antibody-derived clusters are separable in gene expression space. Therefore, these DE 
genes are used as a feature set to evaluate the different clustering strategies.

Here, we assessed the agreement of the Scran, SingleR, Seurat and RCA​, and their 
pairwise scConsensus results with the antibody-based single-cell clusters in terms 
of Normalized Mutual Information (NMI), a score quantifying similarity with respect 
to the cluster labels. In most cases, we observed that using scConsensus to combine a 
clustering result with one other method improved its NMI score. Further, in 4 out of 
5 datasets, we observed a greater performance improvement when one supervised and 
one unsupervised method were combined, as compared to when two supervised or two 
unsupervised methods were combined (Fig. 3).

For a visual inspection of these clusters, we provide UMAPs visualizing the cluster-
ing results in the ground truth feature space based on DE genes computed between 
ADT clusters, with cells being colored according to the cluster labels provided by one of 
the tested clustering methods (Additional file 1: Figs. S5–S8). We compared the PBMC 
data set clustering results from Seurat, RCA​, and scConsensus using the combina-
tion of Seurat and RCA​ (which was most frequently the best performing combination 
in Fig.  3). By visually comparing the UMAPs, we find for instance that Seurat cluster 
3 (Fig.  4b), corresponds to the two antibody clusters 4 and 7 (Fig.  4a). In contrast to 
the unsupervised results, this separation can be seen in the supervised RCA clustering 
(Fig. 4c) and is correctly reflected in the unified clustering by scConsensus (Fig. 4d). 
Another illustration for the performance of scConsensus can be found in the super-
vised clusters 3, 4, 9, and 12 (Fig. 4c), which are largely overlapping. In the ADT cluster 
space, the corresponding cells should form only one cluster (Fig. 4a). Here scConsen-
sus picks up the cluster information provided by Seurat (Fig.  4b), which reflects the 
ADT labels more accurately (Fig.  4d). These visual examples indicate the capability of 
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Fig. 3  Normalized Mutual Information (NMI) of antibody-derived ground truth with pairwise combinations 
of Scran, SingleR, Seurat and RCA clustering results. a–e Pair-wise combinations on the five CITE-Seq datasets: 
(a) CBMC, (b) PBMC Drop-Seq, (c) MALT, (d) PBMC, (e) PBMC-VDJ. “None” refers to no combination i.e. the 
clustering method’s output was directly used to compute NMI
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scConsensus to adequately merge supervised and unsupervised clustering results lead-
ing to a more appropriate clustering. Similar examples can be found for the other data 
sets (CBMC, PBMC Drop-Seq, MALT and PBMC-VDJ) in Additional file 1: Figs. S5–S8.

In addition to the NMI, we assessed the performance of scConsensus in yet another 
complementary fashion. We quantified the quality of clusters in terms of within-cluster 
similarity in gene-expression space using both Cosine similarity and Pearson correla-
tion. Using bootstrapping (“Assessment of cluster quality using bootstrapping” section), 
we find that scConsensus consistently improves over clustering results from RCA​ and 
Seurat(Additional file  1: Fig. S3 and Additional file  1: Fig S4) supporting the bench-
marking using NMI. While the advantage of this comparisons is that it is free from biases 
introduced through antibodies and cluster method specific feature spaces, one can argue 
that using all genes as a basis for comparison is not ideal either. However, paired with 
bootstrapping, it is one of the fairest and most unbiased comparisons possible. A similar 
approach has been taken previously by [22] to compare the expression profiles of CD4+ 
T-cells using bulk RNA-seq data. Analogously to the NMI comparison, the number of 
resulting clusters also does not correlated to our performance estimates using Cosine 
similarity and Pearson correlation.

a b

c d

Fig. 4  ADT-based clustering of the PBMC data set. a–d UMAPs anchored in DE gene space colored by cluster 
IDs obtained from a ADT data, b Seurat clusters, c RCA and d scConsensus
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Merging more than two clustering methods is not beneficial

Using Scran, SingleR, Seurat and RCA​, we demonstrated scConsensus’ ability to 
sequentially merge up-to 3 clustering results. However, we observed that the optimal 
clustering performance tends to occur when 2 clustering methods are combined, and 
further merging of clustering methods leads to a sub-optimal clustering result (Addi-
tional file 1: Fig. S11).

scConsensus accurately reproduces FACS‑sorted PBMC cell type labels

Using data from [11], we clustered cells using Seurat and RCA​, as the combination of 
these methods performed well in the benchmarking presented above. After annotating 
the clusters, we provided scConsensus with the two clustering results as inputs and 
computed the F1-score (“Testing accuracy of cell type assignment on FACS-sorted data” 
section) of cell type assignment using the FACS labels as ground truth.

Figure 5a shows the mean F1-score for cell type assignment using scConsensus, Seu-
rat and RCA​, with scConsensus achieving the highest score. Fig. 5b depicts the F1 
score in a cell type specific fashion. Figure 5 shows the visualization of the various clus-
tering results using the FACS labels, Seurat, RCA​ and scConsensus. A striking obser-
vation is that CD4 T Helper cells could neither be captured by RCA​ nor by Seurat, 
and hence also not by scConsensus. Fig.  5b also illustrates that scConsensus does 
not hamper with and can even slightly further improve the already reliable detection 
of B cells, CD14+ Monocytes, CD34+ cells (Progenitors) and Natural Killer (NK) cells 
even compared to RCA​ and Seurat. Importantly, scConsensus is able to isolate a clus-
ter of Regulatory T cells (T Regs) that was not detected by Seurat but was pinpointed 
through RCA​ (Fig. 5b). The scConsensus approach extended that cluster leading to an 
F1-score of 0.6 for T Regs. However, the cluster refinement using DE genes lead not only 
to an improved result for T Regs and CD4 T-Memory cells, but it also resulted in a slight 
drop in performance of scConsensus compared to the best performing method for 
CD4+ and CD8+ T-Naive as well as CD8+ T-Cytotoxic cells. As indicated by a UMAP 
representation colored by the FACS labels (Fig. 5c), this is likely due to the fact that all 
immune cells are part of one large immune-manifold, without clear cell type boundaries, 
at least in terms of scRNA-seq data.

Another example for the applicability of scConsensus is the accurate annotation of 
a small cluster to the left of the CD14 Monocytes cluster (Fig. 5c). Using Seurat, the 
majority of those cells are annotated as stem cells, while a minority are annotated as 
CD14 Monocytes (Fig. 5d). RCA​ annotates these cells exclusively as CD14+ Monocytes 
(Fig. 5e). However, according to FACS data (Fig. 5c) these cells are actually CD34+ (Pro-
genitor) cells, which is well reflected by scConsensus (Fig. 5f ).

Overall, these examples demonstrate the power of combining reference-based clus-
tering with unsupervised clustering and showcase the applicability of scConsensus to 
identify and cluster even closely-related sub-types in scRNA-seq data.

Discussion
Many different approaches have been proposed to solve the single-cell clustering prob-
lem, in both unsupervised  [3] and supervised  [5] ways. However, all approaches have 
their own advantages and disadvantages and do not necessarily lead to similar results, 
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as exemplified in Additional file 1: Fig. 1. While benchmarking scConsensus we also 
found that there is no consistent ranking between the tested supervised and unsuper-
vised approaches. On some data sets, e.g. the FACS sorted PBMC data shown in Fig. 5, 
the unsupervised Seurat performs better than the supervised RCA​, while the latter 
achieves better performance than Seurat on the CITE-seq data sets (Fig.  3). In fact, 
this observation stresses that there is no ideal approach for clustering and therefore also 
motivates the development of a consensus clustering approach. With scConsensus we 
propose a computational strategy to find a consensus clustering that provides the best 
possible cell type separation for a single-cell data set.

a b

c d

e f

Fig. 5  Performance assessment of cell type assignment on FACS sorted PBMC data. a Mean F1-score across 
all cell types. b F1-score per cell type. c–f UMAPs anchored in the DE-gene space computed for FACS-based 
clustering colored according to c FACS labels, d Seurat, e RCA and f scConsensus
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scConsensus builds on known intuition about single-cell RNA sequencing data, i.e. 
homogeneous cell types will have consistent differentially expressed marker genes when 
compared with other cell types. scConsensus computes DE gene calls in a pairwise 
fashion, that is comparing a distinct cluster against all others. Together with a constant 
number of DE genes considered per cluster, scConsensus gives equal weight to rare 
sub-types, which may otherwise get absorbed into larger clusters in other clustering 
approaches. We have demonstrated this using a FACS sorted PBMC data set and the loss 
of a cluster containing regulatory T-cells in Seurat compared to scConsensus.

A major feature of the scConsensus workflow is its flexibility - it can help lever-
age information from any two clustering results. Here, we focus on Seurat and RCA​
, two complementary methods for clustering and cell type identification in scRNA-seq 
data. However, the intuition behind scConsensus can be extended to any two clus-
tering approaches. For example, even using the same data, unsupervised graph-based 
clustering and unsupervised hierarchical clustering can lead to very different cell group-
ings. Upon encountering this issue, users typically tend to pick the clustering result that 
agrees best with their domain knowledge, while completely ignoring the information 
provided by the other clustering. Thus, we propose scConsensus as a valuable, easy 
and robust solution to the problem of integrating different clustering results to achieve a 
more informative clustering.

Conclusions
We have shown that by combining the merits of unsupervised and supervised clustering 
together, scConsensus detects more clusters with better separation and homogeneity, 
thereby increasing our confidence in detecting distinct cell types. As scConsensus is 
a general strategy to combine clustering methods, it is apparent that scConsensus is 
not restricted to scRNA-seq data alone. Any multidimensional single-cell assay whose 
cell clusters can be separated by differential features can leverage the functionality of 
our approach. For instance, for single-cell ATAC sequencing data, there are various clus-
tering approaches available that lead to different clustering results [23]. scConsensus 
could be used out of the box to consolidate these clustering results and provide a single, 
unified clustering result. Therefore, we believe that the clustering strategy proposed by 
scConsensus is a valuable contribution to the computational biologist’s toolbox for the 
analysis of single-cell data.

Availability and requirements
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