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Background
Metagenomic next-generation sequencing (mNGS) has emerged as an unbiased, high 
throughput tool for clinical infectious agent detection and novel pathogen discovery 
[1–6]. Analytical metagenome pipelines are currently undergoing active development 
[7–11]. To identify microbial sequences, millions of NGS reads are compared to publicly 
available databases of reference sequences. In this analysis, the creation of longer con-
tigs from short overlapping reads is accomplished through de novo metagenome assem-
bly. The longer contigs generated by high-quality sequence assembly have two major 
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advantages over short reads: improved detection sensitivity of novel pathogens without 
strong sequence homology to known pathogens; and a reduced need of manual genome 
extension through polymerase chain reaction [12].

De novo assembly has been an essential tool in recent studies in metagenomics viral 
discovery [13–22]. Dedicated metagenome assemblers have emerged recently, as a result 
of very active development in this field. Several metagenome assemblers are summarized 
in a recent review by Ayling et al. [23] and tested in our previous study [12]. Recently, the 
popular assembler SPAdes and its variant, metaSPAdes, specially designed for metagen-
omic applications, have emerged to be the tools of choice for metagenome assembly [24, 
25]. The metaSPAdes algorithm is based on De Bruijn graphs (DBG) and has addressed 
many challenges in metagenome assembly, such as uneven coverage and the existence of 
mixtures of multiple strains. Since metaSPAdes has been adopted by many labs, we will 
use it as our benchmark tool to generate the initial seed contigs to be extended. Other 
DBG-based metagenome assemblers include IDBA-UD [26], MetaVelvet [27], MetaVel-
vet-SL [28], MEGAHIT [29], MegaGTA [30], Ray Meta [31], PRICE [32], and Xander 
[33]. Another type of assembler employs a strategy called Overlap-Layout-Consensus 
(OLC), which is based on joining overlaps to form new contigs. This group includes 
SAVAGE [34], Snowball [35], Genovo[36], BBAP [37], IVA [38], and VICUNA [39].

According to previous data [8, 12], de novo assemblers, when applied to real metagen-
omic samples, are unlikely to produce contigs longer than several kb. Uneven coverage, 
sequencing errors, library construction, and amplification artifacts are among the factors 
causing premature assembly termination. Another challenge is the presence of multiple 
viral, bacterial, and animal/host DNA fragments within metagenomic samples. How-
ever, in practice, it is often possible to find reads that overlap with the edges of the de 
novo assembled contigs, so iterative extension may significantly increase contig length. 
We are motivated by this observation and propose a novel algorithm and a software tool, 
ContigExtender, to automate the contig extension step following de novo assembly.

The basic ContigExtender algorithm is a greedy algorithm based on overlap search, 
with the following steps: (1) find overlapping reads with respect to both ends of the input 
contig; (2) calculate candidate extension paths based on these overlapping reads; (3) 
extend the existing contig; and (4) repeat the process until it can no longer be extended. 
To ensure it works properly under challenging situations, ContigExtender has several 
important unique features. First, the extension path is allowed to branch when multi-
ple extension paths representing multiple strains are present. This is implemented using 
depth-first search (DFS) to explore multiple possible extending paths recursively. The 
benefit of this feature is to avoid the extension becoming trapped in local optima, which 
may cause pre-mature termination. Second, the algorithm focuses on overlapping qual-
ity rather than depth. A hard depth cutoff is avoided to allow contig extension in ultra-
low coverage (1×) but otherwise high-quality overlapping areas. Last, instead of using 
a consensus sequence derived from all covering reads at the overlap, we separate the 
region into genotypes, since the overlapping reads may contain multiple strains. Over-
lapping reads are categorized according to their genotypes and the genotypes are ranked 
based on read concentration and quality. The main benefit of using genotypes instead of 
a single consensus is that it allows for branching for each strain. In addition, untrimmed 
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adapters and sequencing errors are not likely to contribute to significant genotypes since 
these contaminations appear at random positions.

De novo assembler generated contigs are seed contigs that are input into ContigEx-
tender. The outputs of ContigExtender are final contigs. The final contigs were rigorously 
evaluated based on gained length and contig accuracy, which is measured by similarity 
to NCBI viral reference nucleotide sequences using nucleotide BLAST [40]. Our results 
show that in comparison to other approaches to contig extension, ContigExtender is 
effective at extending seed contigs while maintaining high levels of contig accuracy.

Implementation
Datasets

Four groups of datasets, named “in silico synthetic”, “NIBSC virus standard”, “Animal”, 
and “Human”, were used to evaluate the ContigExtender algorithm. To evaluate perfor-
mance (contig size and accuracy), we compared the output to the reference genome of 
the target pathogen.

A proof of concept “in silico synthetic” dataset was developed to test the efficacy of 
ContigExtender at varying read lengths (100 bp, 250 bp), error rates (1% and 5%), depth 
(10x, 20x, and 50x), and unevenness of coverage. Three target viral genomes include the 
Bas-Congo virus (BASV), a novel rhabdovirus associated with hemorrhagic fever cases 
in central Africa [41]; BK virus (BKV), a human polyomavirus; and human immunode-
ficiency virus type 1 (HIV-1). BKV is an unenveloped double-stranded DNA virus with 
circular genomes of around 5kbp. BASV genome is a negative-sense single-stranded 
RNA virus and HIV-1 is a positive-sense single-stranded RNA virus.

To emulate the unevenness of coverage, peaks of 50× coverage spanning 250 bp were 
spiked-in every 1 kb. Each genomic position has equal probability to be covered, emulat-
ing the ideal shot-gun sequencing process. However, the stochastic nature of this process 
will not result in perfect even coverage across the genome, but rather a binomial cover-
age distribution, especially in a low coverage situation. For example, we have observed 
that some positions can have as low as 1× coverage while the average coverage is 10x.

In addition, we simulated realistic 100 bp paired-end Illumina reads using pIRS ver-
sion111 [42] for the above three reference viruses. This software does not allow longer 
reads, but it considers GC content, derived from real Illumina base calling profiles.

The NIBSC, Animal and Human samples are summarized in Table 1. The NIBSC data-
set [43] (NIBSC sample 26) is assembled from both clinical specimens and cultured 
viruses. The target viral genomes range in length from ~ 6 to ~ 234 kb. Illumina MiSeq 
sequencing created a dataset of approximately 9 million paired-end reads of length 
250 bp. The mosquito datasets [21] (pool20 and pool27) analyzed here originated from 
mosquito control districts throughout California. The resulting libraries were gener-
ated as previously described [43, 44], and sequenced with the HiSeq 4000 Illumina plat-
form, using 2 × 150 cycle HiSeq. The Human metagenomic datasets characterize viral 
nucleic acids in nasal swabs or feces from apparently healthy young children with no 
recorded symptoms living in multiple small and remote Amazonian villages as described 
in our previous studies [13, 45]. The raw 250 bp paired-end reads were generated using 
MiSeq and deposited in Sequence Read Archive (SRA). The SRA project accession 
numbers are PRJNA391715 and PRJNA530270 for the mosquito samples and Amazon 
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nasal swab samples respectively. The Amazon fecal samples are under accession num-
bers SRR6287056 to SRR6287135. We also included additional metagenome samples 
from human stool (47,210-feces) and human blood for a treated HIV positive sample 
(12-110034-veqrpcr), dog diarrhea stool (Dog-pool), and fish tumor tissue (Fish1-pool).

Preprocessing

Raw reads obtained from Illumina sequencing were preprocessed before assembly as 
described in [12]. Human host reads were subtracted by mapping thereads with human 
reference genome hg19 using bowtie2 [46]. Additionally, PRINSEQ version 0.20.4 was 
used to filter low complexity reads using default parameters [47].

De novo assembly

We use SPAdes 3.13.0 with the “-meta” option to enable MetaSPAdes mode. The k-mer 
sizes were set to 21, 33, 55, and 77 while all other parameters were set to the default. 
metaSPAdes first constructs the de Bruijn graph of all reads using SPAdes, transforms it 
into the assembly graph using various graph simplification procedures, and reconstructs 
paths in the assembly graph that correspond to long fragments of individual genomes 
within a metagenome [24, 25]. Responding to the microdiversity challenge, metaSPAdes 

Table 1  Metagenome datasets used to evaluate ContigExtender performance

Genomic sequences from NIBSC, Animal and Human metagenome datasets represent various pathogen types, genome 
sizes, sample backgrounds, and sequencing outputs that were encountered in real world metagenome and clinical 
applications using NGS

Data set Sample Read length #reads Genome type Sequencing 
platform

Description

NIBSC NIBSC-26 250 8.55 M 25 different 
human RNA 
and DNA viral 
pathogens

MiSeq Multiplexed viral 
standards

Animal Mosquito Pool20 150 0.81 M Culex Iflavi-like 
virus Mesoni-
viridae

HiSeq4000 Mosquito pool

Animal Mosquito Pool27 150 1.54 M Culex Iflavi-like 
virus Mesoni-
viridae

HiSeq4000 Mosquito pool

Animal Fish1-pool 250 2.30 M Enterococcus 
virus

MiSeq Fish tumor mass

Animal Dog-pool 250 1.31 M Uncultured 
crAssphage

MiSeq Dog stool sample

Human 12-110034-veqr-
pcr

250 0.53 M Hepacivirus C Miseq Human blood 
sample

Human 47210-feces 250 1.90 M Escherichia virus Miseq Human stool 
sample

Human Amazon-4B 250 0.81 M Norwalk Virus Miseq Human stool 
sample

Human Amazon-3D 250 0.38 M Husavirus Miseq Human stool 
sample

Human Amazon-17D 250 1.61 M Husavirus Miseq Human stool 
sample

Human Amazon-6D 250 0.47 M Human Cosavirus Miseq Human stool 
sample

Human Amazon-
S10-CNI-055

250 0.95 M Betapapilloma-
virus

Miseq Human nasal swab 
sample
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focuses on reconstructing a consensus backbone of a strain-mixture and thus sometimes 
ignores some strain-specific features (often corresponding to rare strains) to improve the 
contiguity of assemblies.

Algorithm

The outline of the algorithm is illustrated in Figs. 1 and 2. The efficacy of the extension 
results from individual optimization of each individual contig, instead of the simultane-
ous process used by de novo assembly. The extension process occurs iteratively. During 
each iteration, alignments between the set of reads and the two ends of the input contig 
are computed using an external tool such as Bowtie 2. After these alignments are fil-
tered for quality and length, they are aggregated and regions with high disagreement are 
recorded. Then, each potential solution is scored and becomes one of multiple possible 
consensuses. Each then becomes the input contig of the upcoming extension iteration. 
These steps are repeated until a cycle is detected or insufficient alignments are available 
to extend the contig further. The final output of the algorithm consists of a collection of 
potential contigs.

Alignment

The algorithm utilizes an existing alignment tool to find overlaps between the reads 
and the contig. To preserve only partially overlapping reads, and not reads that lie 
completely within the contig, only the prefix and suffix of the contig with length 

Itera�vely extend con�gs 
un�l no more reads can 
be recruited 

Variant reads may form 
alterna�ve genotypes 

Repeated extension 
indicates circular genome

Contamina�ons will not 
align to seed con�gs 

Con�g
Reads
Variant Reads
Repeats
Contamina�on

Main Genotype Alt. Genotype

a

b

c

d

e

Seed Con�g
Intermediate Con�g

Final Extended Con�g

Fig. 1  Schematic views of the ContigExtender assembly algorithm. (a) Iteratively recruit reads which overlap 
the edges of input contigs, then generate consensus sequence from the overlaps for form extended contigs. 
(b) Multiple strains may form alternative consensus contigs. Create branches when variant reads were 
detected. (c) A more detailed demonstration of the overlapping-consensus-branching algorithm, showing 
the two branches formed by depth first search (DFS). Two aligned reads have a three base disagreement 
region, so two different paths are formed for alternative extension. (d) Reads containing untrimmed adapters 
or other sequencing errors will not align well with contig and other reads. (e) Circular genome detection and 
extension termination
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equal to the length of the longest read are considered. The bowtie2 parameters are 
chosen to not penalize ambiguous characters when running end-to-end alignment. 
For paired data, we provide an option to constrain the orientation and distance of 
each read pair. When the constraints are enabled, reads whose mates are aligned dis-
cordantly are discarded.

Computation of consensus

For each overlap k, a quality score qk is computed, equal to the number of bases that 
the read and contig are in agreement on. Portions of the read that lie outside the 
original contig are not considered in this quality score. Each read must have a qual-
ity score above a certain user-defined threshold to be considered in the consensus, 
effectively ignoring short alignments of very few bases.

Let Rk[i] be the nucleotide of read k that would be at position i in the new con-
sensus. At each position in the extended contig, define Q[i][j] =

∑
Rk [i]=jRk [i]=j q

2
k . 

To create the new consensus c, set ci to be the base j that maximizes Q[i][j] if this 
value is greater than a threshold. This threshold can be computed from the following 
expression:

where t is a dimensionless tolerance value that represents the acceptable amount of 
evidence required for extension, l is the length of the reads, and c is an estimate of the 
coverage.

threshold = 10−t l2c,

Fig. 2  Pseudo code of ContigExtender algorithm
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If this threshold is not reached, then leave this position in the consensus unde-
fined. This process computes the main consensus, which is supported by the most 
evidence.

Alternate consensuses

The second most highly scoring base for each position I is found, and if its score is 
greater than some threshold, and a sufficiently large number of reads agree on this, 
then position I is marked as an ambiguous base. For each read, a string is created 
by taking the subset of the read such that the chosen positions correspond with 
the ambiguous bases. These strings represent each individual read’s solution to the 
ambiguous positions. The frequencies of these strings are sorted and those meet a 
certain threshold of matching reads are retained as alternate consensuses.

To prevent the number of alternates from growing exponentially with the length of 
the contig, a limit may be set on the quantity of alternates that may be considered at 
each iteration, in addition to adjustment of the threshold required for designating a 
position as ambiguous.

The algorithm terminates when a sufficiently large prefix or suffix of the extended 
contig is identical to one that has occurred earlier in the extension process, as this 
would create an infinite loop of the exact alignments and consensuses that occurred 
in between. This also handles circular chromosomes, which would otherwise experi-
ence the same behavior. Additionally, an upper limit to the length of the extended 
contig can also be set, to save processing time when a consensus that diverges from 
the reference is chosen.

Results
Software parameters

The performance of ContigExtender on simulated and real datasets is benchmarked 
against the existing contig extension tools PRICE [32], Kollector [48] and GenSeed-
HMM [49]. PRICE V 1.2 is executed using the recommended parameters: 30 cycles, 
500 bp insert size, and 90% identity to the initial contig. Kollector is executed with the 
recommended alignment thresholds, assembly K-mer size 32, and overlap K-mer size 
25. We ran GenSeed-HMM with the ABySS assembler, 30 bp extension seeds, and a 
90% alignment threshold. ContigExtender is run with the default tolerance of 2.5.

Simulated data

The performance of ContigExtender on the in silico synthetic BASV dataset is demon-
strated in Table 2. From randomly chosen 1 kb seed contigs, ContigExtender was able 
to reconstruct nearly perfect genomes for all three viral genomes in all cases except 
for two challenging situations: (1) low sequencing depth 10 × coupled with short reads 
(100 bp) and (2) low depth 10 × coupled with high error rates (0.05). Results from the 
BKV and HIV1 datasets show similar trends (Additional file  1: Table S1). Although 
sequencing depth is a major factor for ContigExtender, longer reads of 250 bp cou-
pled with low error rates (0.01) can compensate for low sequencing depth. ContigEx-
tender can detect the circular nature of the BKV genome, avoiding over-extension.
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MetaSPAdes is not directly comparable with ContigExtender since the former is 
a de novo assembler, whereas the latter is a seeded assembler. Nevertheless, MetaS-
PAdes results provide a benchmark to measure the difficulty of each dataset. Like 
ContigExtender, MetaSPAdes is sensitive to very low depth at 10x, but MetaSPAdes is 
less tolerant of sequencing errors and the existence of viral mixtures.

ContigExtender generally performed better than PRICE in low depth (10×) and high 
error rate datasets (Table 2 and Additional file  1: Table S1). Both reconstructed nearly 
the entire reference genome when given higher depth sequencing data. GenSeed-HMM 
and Kollector both reconstructed portions of the reference genome from low error rate 
reads but generally did not accomplish any extension in the high error rate datasets.

We also benchmarked ContigExtender on realistic paired-end simulated datasets gen-
erated by pIRS (Additional file  1: Table  S2). The results suggest that ContigExtender 
outperforms PRICE at low coverage (10×). Additionally, while GenSeed-HMM and 
Kollector produced no output in some cases, ContigExtender produced extension in all 
trials. Also, we observed a clear advantage when ignoring the insert size constraint for 
paired-end extension. This allows the algorithm to overcome some difficult regions.

NIBSC data

Among 58 MetaSPAdes seed viral contigs that are at least 1.5  kb in length and are at 
least 95% aligned to one of the reference viral genomes, 26 contigs were extended by 
at least 200 bp (Table 3). The quality of extended contigs was measured by final length, 
gained length (final length of ContigExtender output minus length of metaSPAdes seed 
contig), and the percentage of the output contig that is aligned to target viral genomes. 
The depth for each contig varies from 7× to 267×, the final contig lengths range from 1.7 
to 10 kb, and the largest extension is 5.8 kb.

The accuracy of the final contigs is measured by the quality of alignment of these con-
tigs to their respective reference viral genomes. Out of the 26 final contigs, all but two 
have nearly perfect alignments to reference genomes with greater than 98% single seg-
ment alignment. The other 2 contigs, Contig 10 (89%) and Contig 14 (78%) do not have 
a single alignment covering the whole contig, indicating possible chimeric contig forma-
tion during the contig extension process. Note that the performance reported here is 
achieved using ContigExtender’s default scoring parameters which can be adjusted to be 
more aggressive or more conservative. Aggressive extension produces longer contigs but 
risks higher chances of chimeric contig formation, while conservative extension results 
in shorter but possibly more accurate contigs.

PRICE, GenSeed-HMM, and Kollector did not produce any extension of most of the 
seed contigs tested (Table 3).

Figure 3 shows the wiggle plot of the top 6 longest final contigs for the NIBSC dataset. 
Contig2 and Contig3 wiggle plots are highly similar; they are variants of the same con-
tig that aligned to the same region of Human Mastadenovirus C. The coverage is very 
uneven within the regions of each contig and across different contigs. Not surprisingly, 
the low coverage valleys are one of the main reasons that the assembly terminates pre-
maturely. A sudden dip in the coverage will likely end the contig assembly or extension.
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Human and animal data

Ten contigs achieved significant extensions of greater than 0.2  kb from the viral seed 
contigs that are longer than 1.5  kb in the “Animal” dataset. Contig 5 is the only con-
tig that has a significant chimeric extension of ~ 3 kb, but it still gained a ~ 4 kb correct 
extension (Table 4). For the “Human” dataset, 13 contigs achieved significant extension 
and were successfully aligned to a wide variety of reference viruses. The only contig that 
has a possible chimeric extension is Contig 1 (Table 5) which gained a ~ 2.4 kb extension 
that does not align to the Norwalk virus reference genome. All other contigs are suc-
cessful extensions and some gained significant length, as much as 6 kb, such as Contig 3 
from sample Amazon-17D.

Fig. 3  ContigExtender output shown alongside metaSPAdes seed contig and sequencing depth. Reads 
mapped to the final contig shown as wiggle plots (in blue), seed contigs generated by MetaSPAdes (dark 
brown line), and final contig regions that are aligned to reference viral genome (black line). The y axis is 
the depth in log scale and x axis is the contig length. This figure were generated from native Scalable 
Vector Graphics (SVG) images plotted using Python 3 scripts based on reads mapping to the viral reference 
genomes with blastn
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For the combined 49 contigs from the three human and animal datasets, 45 are of high 
quality without chimeric extensions. For these 45 contigs, the average seed contig length 
generated by MetaSPAdes is 2.8 kb. ContigExtender increased these lengths by ~ 2 kb on 
average, resulting in a final average length of 4.8 kb. The median gained length, however, 
is ~ 1.5 kb and the median seed and output lengths are 2.4 kb and 3.9 kb, respectively. 
These results, shown in Tables 3, 4, and 5, demonstrate a significant improvement over 
de novo assembly in a wide variety of datasets. In comparison, PRICE and Kollector suc-
cessfully extended only one contig each, while GenSeed-HMM extended zero contigs.

Discussions
Genome sizes of bacteriophages and viruses range from a few kb to several hundred kb. 
State-of-the-art de novo assemblers can only achieve contigs that are a few kb long; these 
contigs can often be further extended by iteratively mapping reads to the contig ends, 
which is currently a time consuming, manual process. The proposed method effectively 
turns the sequence assembly process into a two-step process: de novo assembly followed 
by contig extension. Our results demonstrated that contig extension can be an effec-
tive step in improving metagenomic sequence analysis. Compatible with any de novo 
assembler, ContigExtender can be built into most viral metagenomics analysis pipelines. 
A wide range of metagenomic applications such as pathogen detection, microbiological 
surveillance and viral discovery, can benefit from contig extension, which significantly 
reduces the time and effort required for manual contig extension.

A feature to combat the microdiversity challenge is the novel branching feature pro-
posed by ContigExtender. The proposed DFS branching mechanism allows multiple 
branching paths, defined by different genotypes representing multiple strains. Each 
overlapping region is evaluated for homogeneity of read alignments. Potential branch 
points are created at the overlapping region when sufficient heterogeneity, representing 
multiple genotypes (strains) is observed. Intro- and inter-genomic repeats can also be 
genotyped and resolved during this branching, which allows the exploration of multiple 
extension paths to gain maximum extension.

Two major factors causing premature assembly termination are abrupt dips in cov-
erage and excessive sequencing errors and contaminations. The former is observed in 
Fig. 3, which shows that many contigs failed at coverage valleys. The latter is observed 
in Table 2 where excessive sequencing error (5%) causes poor de novo contig formation 
on many of the silico synthesized datasets. ContigExtender addresses these challenges 
by utilizing a novel extension scoring function prioritizing overlapping over depth. It 
focuses on overlap quality rather than using a hard depth cutoff for extension on low 
coverage regions. To avoid chimeric contig extension as much as possible, our scoring 
function requires increased overlap lengths for low coverage regions. By using alignment 
rather than the kmer search utilized in most de novo assemblers, ContigExtender trades 
speed for accuracy, allowing for better performance in high sequencing error regions.

These features may explain the favorable performance of ContigExtender relative to 
other contig extension tools. PRICE iteratively assembles proximal reads and fills gaps 
between contigs using paired-end relationships. Kollector recruits reads using pro-
gressive Bloom filters instead of alignment. GenSeed-HMM, in a similar process to 
ContigExtender, iteratively finds similar reads and extends contigs through assembly 
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software. These tools have a common element in that they all utilize de Bruijn assem-
blers to generate a consensus sequence. When the input contig is the final output of a 
de novo assembly tool such as metaSPAdes, further assembly based on de Bruijn graphs 
is unlikely to succeed, as the factors which caused metaSPAdes to terminate extension 
remain in the data. Thus, computing the consensus sequence using the scoring function 
employed by ContigExtender is more likely to overcome these challenging regions.

The viral reference genome database is by no means a gold standard for evaluating 
contigs because there are still many unknown viral species and strains not represented 
in the database. Therefore, some extended contigs cannot be aligned either to their origi-
nating genome or to a distant genome, and thus are designated as false chimeric contigs 
in our analysis. The NIBSC data, however, can be evaluated more accurately, because the 
samples only include known virus standards.

As we have shown in Tables 3, 4, and 5, there are several extensions that are the results 
of over-assembly or mis-assembly, as indicated by less than 100% alignment to reference 
genomes. We also observed multiple assemblies covering the same genomic regions, due 
to either sequencing errors or the mixtures of multiple strains in metagenomic samples. 
Mis-assembly can happen quite often in the initial de-novo assembly for generating seed 
contigs and it is even more likely in contig extension because contig extension pushes 
the limit of contig lengths by accepting a higher risk for mistakes. Our algorithm’s scor-
ing system favors the most probable extensions and the balance between extension 
length and the probability of mis-assembly is adjustable. In practice, contig extension 
mis-assemblies or chimeric contigs can be identified when aligning extended contigs 
against known viral genomes, as we show in the results (Fig. 3 and Tables 3, 4, 5). For 
novel viruses, the identification of chimeric contigs cannot be achieved computation-
ally but it can be accomplished through PCR extension. All the mis-assemblies in our 
tests (Tables 3, 4, 5) are segments from the same genome. After careful examinations of 
these mis-assemblies against reference genomes, we found that these mis-assemblies are 
caused by extending contig ends with incorrect reads from a different region of the same 
genome.

The current software is only optimized and tested on viral metagenomes, not for bac-
terial or eukaryotic genomes. We speculate that our current version may not work well 
for other genomes for two reasons: 1) Viral genomes contain considerably fewer repeats 
than other genomes; and 2) the sequencing dataset sizes for non-viral genomes are usu-
ally considerably larger, so the running time may require further optimization.

Conclusions
We have presented a new approach for enhancing the performance of de novo metagen-
omics assemblers. The proposed DFS branching algorithm allows multiple branching 
paths defined by different genotypes representing multiple strains. Our strategy auto-
mates the labor-intensive process of manually constructing viral genomes from the frag-
ments produced by de novo assembly. With simulated and real-world animal and human 
metagenomics datasets, ContigExtender is demonstrated to be effective in improving 
upon both de novo assembly alone and de novo assembly combined with other exten-
sion tools. For contigs that are extendable, ContigExtender can accurately increase the 
contig length by several kb, which is significant for viral genomes. The software may also 
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be incorporated into viral metagenomics analysis pipelines, with a variety of applications 
such as pathogen detection, viral discovery, clinical microbiology and environmental 
metagenomics. Thus, we believe that the use of our software will be of broad interest to 
researchers, epidemiologists, clinicians, and environmental biologists.
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