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Abstract 

Background:  Knowledge on the molecular targets of diseases and drugs is crucial for 
elucidating disease pathogenesis and mechanism of action of drugs, and for driving 
drug discovery and treatment formulation. In this regard, high-throughput gene tran-
scriptional profiling has become a leading technology, generating whole-genome data 
on the transcriptional alterations caused by diseases or drug compounds. However, 
identifying direct gene targets, especially in the background of indirect (downstream) 
effects, based on differential gene expressions is difficult due to the complexity of gene 
regulatory network governing the gene transcriptional processes.

Results:  In this work, we developed a network analysis method, called DeltaNeTS+, 
for inferring direct gene targets of drugs and diseases from gene transcriptional 
profiles. DeltaNeTS+ uses a gene regulatory network model to identify direct pertur-
bations to the transcription of genes using gene expression data. Importantly, Del-
taNeTS+ is able to combine both steady-state and time-course expression profiles, 
as well as leverage information on the gene network structure. We demonstrated 
the power of DeltaNeTS+ in predicting gene targets using gene expression data in 
complex organisms, including Caenorhabditis elegans and human cell lines (T-cell and 
Calu-3). More specifically, in an application to time-course gene expression profiles 
of influenza A H1N1 (swine flu) and H5N1 (avian flu) infection, DeltaNeTS+ shed light 
on the key differences of dynamic cellular perturbations caused by the two influenza 
strains.

Conclusion:  DeltaNeTS+ is a powerful network analysis tool for inferring gene targets 
from gene expression profiles. As demonstrated in the case studies, by incorporat-
ing available information on gene network structure, DeltaNeTS+ produces accurate 
predictions of direct gene targets from a small sample size (~ 10 s). Integrating static 
and dynamic expression data with transcriptional network structure extracted from 
genomic information, as enabled by DeltaNeTS+, is crucial toward personalized medi-
cine, where treatments can be tailored to individual patients. DeltaNeTS+ can be freely 
downloaded from http://www.githu​b.com/cabse​l/delta​netsp​lus.
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Background
Analyzing the molecular mechanism of drugs and diseases is a central task in drug dis-
covery. For drugs, this task involves identifying the molecular targets whose interaction 
with the compound is associated with its pharmacological activity. The knowledge of 
the molecular mechanism of action (MOA) of a drug is important in ascertaining not 
only the therapeutic efficacy of this drug, but also any potential toxicity and side effects. 
On the other hand, insights into the molecular mechanism of a disease may lead to a 
better understanding of its pathogenesis and possible to new and better treatment for-
mulations. In this regard, gene transcriptional profiling has emerged as a viable high-
throughput platform for drug discovery and drug target identification [1, 2] and for 
studying disease mechanism [3]. However, determining the direct molecular targets 
through which a drug or a disease exert its effects using gene transcriptional profiles 
remains a major bioinformatics challenge. Changes in the gene expression caused by a 
drug or a disease may arise directly from the action of the drug or disease, or indirectly 
as downstream or secondary effects. Delineating direct and indirect gene targets from 
gene transcriptional profiles is further complicated by the fact that gene expression is 
a highly regulated process that involves a complex and context-specific gene regulatory 
network (GRN).

Many strategies have been proposed for inferring gene targets from gene transcrip-
tional data [4]. In general, these strategies fall in two main categories: comparative 
analysis and network analysis methods. The former involves comparing the transcrip-
tional profiles of interest with a library of reference profiles with known targets [1, 2, 
5, 6], under the assumption that a likeness in the transcriptional profiles is indicative 
of similarity in the molecular targets. The latter class of methods uses a model of GRN 
to account for gene transcriptional regulations when analyzing gene expression data. A 
number of network analysis methods, notably causal analysis [7, 8] and DeMAND [9], 
employs graph models of the GRNs with nodes representing the genes and edges repre-
senting gene–gene interactions. Here, gene target identification is typically formulated 
as a statistical hypothesis test using the gene transcriptional profiles. Another group of 
network analysis methods, including network identification by multiple regression (NIR) 
[10], mode of action by network identification (MNI) [11], sparse simultaneous equa-
tion model (SSEM) [12], and DeltaNet [13], relies on a mechanistic model of the gene 
transcriptional regulatory network. By invoking a pseudo-steady-state assumption, the 
inference of gene targets from gene expression data is recasted as a regression problem. 
Generally speaking, a gene is scored highly as a potential target when its expression 
deviates significantly from what the GRN model predicts based on the expression of its 
transcription factors (TFs).

Here, we present a much-improved network analysis method of our previous algo-
rithm DeltaNet [13] to address two shortcomings: analysis of time-series data and 
incorporation of prior information on the GRN structure. As we have demonstrated 
earlier [14], DeltaNet performed poorly when using time-series transcriptional data 
due to the invalidity of the underlying steady-state assumption. Such an issue likely 
applies to similar algorithms employing pseudo steady-state assumption, such as NIR, 
MNI and SSEM. There is a clear need to accommodate time-series expression data, 
as they constitute an important class of gene expression datasets. A notable example 
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is the Connectivity Map (CMap), which includes over 1.5 million time-series gene 
expression profiles from 9 different cell types across roughly 5000 small-molecule 
compounds and 3000 genetic reagents.

The second shortcoming of any network analysis methods is the uncertainty in the 
gene network model employed in the analysis. In DeltaNet, as well as in NIR, MNI 
and SSEM, the GRN is reconstructed from the gene expression data as an inter-
mediate step or implicitly in the inference. But, as we and many others have shown 
[15, 16], such GRN reconstructions constitute an undetermined problem and thus 
the reconstructed GRN often has high uncertainty. In parallel, we have seen a tre-
mendous progress over the past decade in the mapping of transcriptional regulatory 
elements [17], the measurements of promoter/enhancer activity [18], and the iden-
tification of TF binding motifs and binding sites [19]. Such information has enabled 
the reconstruction of GRN graphs for ~ 300 cell types in human [20]. Thus, there is an 
obvious opportunity and necessity to combine diverse datasets on the GRN structure 
with the gene transcriptional data within the network analysis paradigm for gene tar-
get inference.

In this work, we developed DeltaNeTS+. DeltaNeTS+ is capable of combining 
steady-state and time-series gene transcriptional data for gene target scoring. Delta-
NeTS+ is further able to incorporate prior information of the structure of the GRN 
for the target inference. We demonstrated the superiority of DeltaNeTS+ over well-
established procedures, including TSNI (Time Series Network Identification) [21], 
DeMAND [9], and differential expression analysis, using gene transcriptional datasets 
of complex organisms, including C. elegans and human. Notably, the application of 
DeltaNeTS+  to gene expression datasets from human lung Calu-3 cells infected by 
influenza strains H5N1 (avian flu) and H1N1 (swine flu) reveals key differences in the 
cellular responses to the two strains.

Methods
DeltaNeTS+
DeltaNeTS+ is a network analysis method for inferring causal gene targets from time 
series gene expression data. DeltaNeTS+ relies on an ordinary differential equation 
(ODE) model of gene transcriptional process, as follows [22]:

where rk denotes the concentration of gene k transcripts (mRNA), uk and dk denote the 
transcription and degradation rate constants of gene k, respectively, akj denotes the regu-
latory control of gene j on gene k, and n is the number of genes. The magnitude and sign 
of akj indicate the strength and mode of the regulatory interaction, respectively. A posi-
tive akj indicates activation, while a negative akj indicates repression. As commonly done, 
ajj’s are assumed to be zero (i.e., no self-regulatory loops). Taking pseudo steady-state 
assumption and logarithm transformation, Eq. (1) can be simplified into,

(1)

drk

dt
= uk

n
∏

j = 1
j �= k

r
akj
j − dkrk
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where cki = log2(rki/rkb) denotes the log-twofold change (log2FC) of mRNA levels of 
gene k between treatment sample i and corresponding control b, and pki = log((uki/dki) 
/ (ukb / dkb)) denotes the effects of treatment in sample i on gene k. The variable pki is 
the unknown variable of interest. The formulation in Eq. (2) shows that the expression 
change of gene k by the treatment arises from the indirect effects through its transcrip-
tional regulators (the summation in Eq. (2)) and the direct effect (the last term in Eq. (2)). 
More specifically, the variable pki gives the amount of fold-change expression of gene k 
that cannot be explained by the fold-change expression of its transcriptional regulators. 
Here, we use pki as a measure of the direct perturbations on gene k by the treatment. A 
positive (negative) pki indicates that the treatment causes a higher (lower) level of gene 
k transcription than what is expected from the changes in the transcription factors or 
regulators of the gene. In general, the larger the magnitude of pki, the stronger is the per-
turbations to gene k in the sample i.

As we often have more than one samples for a given treatment (e.g., technical 
repeats, multiple time points), we may assign the same perturbations to all of the 
related samples. For M different treatments among m samples (M < m), the following 
equation in a matrix–vector format can be considered:

where C is the n × m matrix of log2FCs of n genes in m samples, A is the n × n matrix 
of akj’s describing the GRN, P is the n × M matrix of perturbation coefficients, and Z is 
an M × m {0, 1} mapping matrix that assigns the specific perturbation variable p to the 
appropriate sample. Note that Z becomes an m × m identity matrix when the perturba-
tions are treated as distinct among the entire m samples.

For time-series data, we assume that mRNA concentrations vary between sampling 
time points such that

where tl denotes the l-th time point, rlk  is the mRNA concentration of gene k at the l-th 
time point, and slk is the slope between the two time points. Using Eq. (1), the first order 
derivative of the logarithm of rk can be rewritten as the following:

By substituting Eq.  (4) for rk in Eq.  (5), the following equation can be derived for 
tl ≤ t ≤ tl+1:

(2)cki =

n
∑

j=1

akjcji + pki
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The derivative of Eq. (6) (i.e. the second derivative of log(rk)) is zero under the pseudo 
steady-state assumption made in Eq. (4).

Here, uk and dk are assumed to be the same between the l-th and l + 1-th time points, 
i.e. the perturbations are constant in this time window. Since uk and the exponential term 
in Eq. (7) are always positive, the remaining term should be zero. Therefore, the follow-
ing relationship between the variable slk and the network coefficient akj can be obtained:

The matrix form of Eq. (8) for n genes and m samples is the same as following:

where S is the n × m matrix of the slopes calculated from time series log2FCs data. In 
DeltaNeTS+, the slopes of the time series gene expression profiles were calculated using 
2nd-order accurate finite difference approximations at each sampling time point [23]. 
For the first and last time points, forward and backward finite difference were used, 
respectively, while for middle time points, a centered difference approximation was 
used. At the minimum, only two time points are needed to compute the time slopes, but 
having more time points enables implementing finite differencing with a higher order of 
accuracy.

Combining Eq. (3) and Eq. (9), DeltaNeTS+ calculates the unknown variables A and P 
row by row using the following equation:

where Ck , Sk , Ak, and Pk are the row vectors of the matrices C , S , A, and P for gene k and 
0 is the m × M zero matrix. The matrices C and S are the normalized log2FC and slope 
matrices C and S such that each of the matrices has a 2-norm equal to the square root 
of the number of samples in the matrix (i.e. the number of columns in the matrix). The 
normalization is set to balance the contributions from the two matrices in determining 
A and P.
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In DeltaNeTS+, when information on the structure of the GRN is available—for 
each gene k, we have information on its transcription factors—we can reduce the 
dimension of the problem stated in Eq. (10) by restricting the inference of A only for 
the subset of genes related to the TFs of gene k:

where the subscript TFk refers to the subset of genes corresponding to the TFs of gene 
k. Equation  (11) is solved using ridge regression to give ATFk

 and Pk matrices for the 
entire GRN [24]. When GRN structure is not provided or not available, DeltaNeTS+ 
solves Eq. (10) by using LASSO regularization to predict a sparse matrix Ak and Pk [14]. 
We implemented LASSO [25] and ridge regression in DeltaNeTS+ using the GLMNET 
algorithm with k-fold cross-validation (default k = 10) [26]. Consequently, the smallest 
number of samples that DeltaNeTS+ can handle is k samples.

Gene expression data

We applied DeltaNeTS+ to time-series gene expression data of C. elegans embryo 
[27], human cord blood CD4+T cells [28], and human lung cancer Calu-3 cells 
[29–31]. For C. elegans embryo, log2 intensity data which were normalized by robust 
multi-array average (RMA) method were obtained from Gene Expression Omnibus 
(GEO) [32] (accession number: GSE2180 and GSE51162). Log2FC of gene expressions 
and its statistical significance (Benjamini–Hochberg adjusted p value) between gene 
knockout and wild-type conditions at each time point were calculated using a linear 
fit model and empirical Bayes method in the limma package of Bioconductor. The 
probe sets were mapped to the official gene symbols in celegans.db. In the case of 
multiple probe sets mapping to a gene symbol, we take the log2FC from the probe set 
with the smallest average adjusted p value over the samples.

For human T cells, log2 intensity data by quantile normalization were obtained 
from GEO (accession number: GSE17851). In the same way as C. elegans, log2FC val-
ues were calculated between gene knockout and wild-type conditions at each time 
point using limma. The probe sets were mapped to the gene symbols from the Illu-
mina human-6 v2.0 expression beadchip data in GEO (accession number: GPL6102), 
and for the multiple probe sets mapping to the same gene, the probe set with the 
smallest average adjusted p value across all samples was chosen.

For Calu-3 data, we compiled the raw Agilent Whole Human Genome 4 × 44  K 
microarray data from GSE33264 for IFN-α and IFN-γ experiments [31] and from 
GSE37571 and GSE33142 for H1N1 and H5N1 experiments [29, 30]. The raw data 
were background-corrected and normalized using normexp and quantile methods in 
limma package of Bioconductor. The log2FCs between virus (or interferon) and mock 
samples at each time point were calculated using limma, with their statistical p value 
adjusted by Benjamini-Hockberg method. The probe sets were mapped to the official 
gene symbols in hgug4112a.db package. For a gene with multiple probe sets, we chose 
the data from the probe set with the smallest average adjusted p value.
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During preprocessing of time-series data, we substituted any time-series log2FC gene 
expression data that were not statistically significant with linearly interpolated values 
using adjacent time points with statistically significant log2FCs. Note that the computa-
tion of statistical significance (p value) requires at least three repeats, and thus, the linear 
interpolation using adjacent time points above is done only when 3 or more repeats are 
available. Unless mentioned differently, we used Benjamini–Hochberg adjusted p value 
< 0.05 to establish statistical significance. If the log2FC values of a gene were not statisti-
cally significant at any time point, we set the log2FCs to zero.

Gene regulatory networks

The GRN for C. elegans embryo data set was obtained from TF-gene interactions for C. 
elegans in TF2DNA database [33], where TF binding motifs and their regulated genes 
were identified by calculating the binding affinity based on the known 3D structure of 
TF-DNA complexes. The GRN for C. elegans was composed of 355,080 edges from 48 
TFs to 15,738 genes.

Meanwhile, the GRNs for human T-cell and Calu-3 data sets were obtained from TF-
gene interactions specific for human cord blood-derived cells and human epithelium 
lung cancer cells, respectively, available in Regulatory Circuit database [20]. We only 
used TF-gene interactions with a confidence score greater than 0.1 in the Regulatory 
Circuit database. The GRNs for human T-cells and Calu-3 consisted of 11,955 edges 
pointing from 438 TFs to 2,385 genes and 42,145 edges pointing from 515 TFs to 7,125 
genes, respectively.

TSNI and DeMAND implementation

For TSNI [21], we downloaded the MATLAB subroutine from https​://diber​nardo​.tigem​
.it/softw​ares/time-serie​s-netwo​rk-ident​ifica​tion-tsni and applied it to C. elegans, human 
T-cell, and Calu-3 interferon data. The parameter of the number of principle compo-
nents in TSNI was optimized to nPC = 1—i.e. using only the first principal component. 
For DeMAND [9], we installed the DeMAND R-package from Bioconductor [34] (https​
://www.bioco​nduct​or.org) and applied the method using the same GRNs used in Delta-
NeTS+ analysis.

Enrichment analysis of Calu‑3 data

For interferon case study, the top 50 genes ranked by each method (DeltaNeTS+, TSNI, 
and log2FC) were used for Gene Ontology (GO) and Reactome pathway enrichment 
analysis using Enrichr [35]. For influenza A viral infection case study, the averaged P 
values of DeltaNeTS+ for each phase (phase 1: 0 to 7  h, phase 2: 7 to 18  h, phase 3: 
> 18 h) were used for the gene set enrichment analysis (GSEA) of Reactome pathways 
[36] using ReactomePA package [37] in R. Before the enrichment analysis, genes were 
sorted based on the average P for each time phase, and genes with no perturbation score 
were excluded during the GSEA. Afterwards, the significance score (− log10 p value) of 
the enriched pathways was calculated among the pathways with positive enrichment 
score from GSEA. The illustration of the results in Fig. 2 only shows the highest level 
of pathway information in the Reactome hierarchy (https​://react​ome.org/Pathw​ayBro​

https://dibernardo.tigem.it/softwares/time-series-network-identification-tsni
https://dibernardo.tigem.it/softwares/time-series-network-identification-tsni
https://www.bioconductor.org
https://www.bioconductor.org
https://reactome.org/PathwayBrowser
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wser), while the significance score is the best significance score (highest − log10 p value) 
of the sub-pathways.

Weighted gene co‑expression network analysis (WGCNA)

WGCNA [38] was applied to the DeltaNeTS+ score of both H1N1 (influenza A/
CA/04/09) and H5N1 (influenza A/VN/1203/04) samples. The H1N1 data were from 9 
time points (0, 3, 7, 12, 18, 24, 30, 36, and 48 h) and the H5N1 data were from 6 time 
points (0, 3, 7, 12, 18, and 24  h). In WGCNA analysis, we computed modules with a 
minimum of 200 genes using the signed network option (soft-thresholding power = 18). 
Afterwards, GO and Reactome enrichment analysis were also performed for each mod-
ule using ReactomePA and clusterProfiler packages in R.

Results
Predicting genetic perturbations

We tested the performance of DeltaNeTS+ by inferring gene perturbations from time 
series C. elegans and human T-cell gene expression profiles from RNA interference 
(RNAi) experiments. DeltaNeTS+ generates gene perturbation scores pki for all genes 
using the entire GRN. pki indicates the strength of perturbations to the expression of 
gene k in sample i. In the following, we used the magnitude of the perturbation scores to 
rank the gene targets predicted by DeltaNeTS+. The C. elegans dataset comprises three 
genetic perturbation experiments [27], each of which provides gene expression data 
across 10 time points after skn-1 and pal-1 knockdowns by shRNA on mex-3 or pie-1 
mutated cells. The human T-cell dataset includes time-series gene expression data meas-
ured over 4 time points after STAT6 knockdown by shRNA [28] (see Table  1). When 
applying DeltaNeTS+ on these data, gene regulatory network graphs for C. elegans and 
human T-cells were used as prior information (see Methods).

For comparison purposes, we generated gene target predictions using TSNI [21] and 
DeMAND [9] and those based on the magnitudes of log2FC values. For log2FC analysis, 
the gene target candidates were ranked in decreasing order of the absolute value of the 
log2FCs, while for DeMAND, the genes were ranked in increasing order of the statistical 
p value of dysregulation [9]. For TSNI, we used the first principal component to generate 
the gene target predictions as this setting gave the best accuracy among the trials using 
principle components between 1 and 3. We also compared the accuracy of the gene tar-
get predictions under two different scenarios; the first is where the gene perturbations 
are time invariant, and the other is where the gene perturbations are allowed to vary 
over time. Because of the small number of samples in the above datasets, when the GRN 
structure is not used, the application of DeltaNeTS+ using LASSO (see Methods) and a 
previous algorithm DeltaNet resulted in an empty target prediction, where the perturba-
tion scores P were 0.

Table 1 shows the ranking of the genes targeted by shRNA or mutation in C. elegans 
and human T-cell data with the gene perturbations set to be time-invariant, i.e. the gene 
perturbations are the same for all samples from the same treatment/condition. Except 
for skn-1, DeltaNeTS+ placed the known targets (mex-3, pal-1, pie-1, and STAT6) 
among the top 10 of the candidate gene targets. Notably, in almost all instances, Del-
taNeTS+ ranked the known targets higher than TSNI, DeMAND, and log2FC analysis. 

https://reactome.org/PathwayBrowser
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The transcription factor skn-1 regulates critical biological pathways related to oxidative 
stress responses and lifespan of C. elegans [39]. Silencing skn-1 alters the transcription 
of a large number of genes (> 10,000), which complicates the identification of the true 
gene perturbation in these samples. Here, a significant fraction of gene targets predicted 
by DeltaNeTS+ with higher ranks than skn-1 were genes regulated by skn-1 (see Addi-
tional file  1). Nevertheless, DeltaNeTS+ was able to put skn-1 at a much higher rank 
than TSNI, DeMAND, and log2FC.

When using time-varying perturbation (i.e. the targets can vary across different time 
samples of the same treatment/condition), DeltaNeTS+ again performed better than 
the three methods TSNI, DeMAND, and log2FC, as illustrated in Fig. 1. The log2FC of 
samples from the early time points actually gave a reasonably accurate indication of the 
direct gene perturbations (see Additional file 2: Tables S1–S2). But, log2FC magnitude 
became drastically a less accurate indicator for the direct gene targets for the later time 
points. This trend is expected because the downstream effects of a gene perturbation will 
progressively mask the true gene target identity over time. In comparison, DeltaNeTS+ 
prediction accuracy degraded much more mildly over the sampling times, demonstrat-
ing its higher robustness with respect to the choice of time samples (see Additional file 2: 
Tables S1–S2). Note that TSNI and DeMAND only provide an overall target prediction, 
and not for different time points.

Predicting the mechanism of interferon‑α and interferon‑γ actions

Next, we tested the ability of DeltaNeTS+ in differentiating the specific activity of 
two related compounds from the same family of proteins: interferon-α (IFN-α) and 
interferon- γ (IFN-γ). This task is challenging as these two signalling proteins trigger 
a common response of the immune system but through different signalling pathways. 
IFN-α and IFN-γ are cytokines that induce innate immune response against viral 

Table 1  Rank prediction of  gene targets in  C. elegans and  human T-cell data sets 
by DeltaNeTS+, TSNI, DeMAND, and log2FC magnitudes. The ranking is computed based 
on  the  magnitude of  target scores for  all genes in  the  GRN from  each algorithm (see 
Methods)

Experiment 1 Experiment 2 Experiment 3

C. elegans data set

 Methods mex-3 skn-1 pie-1 pal-1 pie-1

 DeltaNeTS+ 9 44 9 2 2

 TSNI 11 5086 13 7 13

 DeMAND 38 15,150 23 3 38

 log2FC 3 8623 4 304 3

Experiment 1 Experiment 2

Human T-cell data set

 Methods STAT6 STAT6

 DeltaNeTS+ 1 1

 TSNI 1 22

 DeMAND 1 2

 log2FC 1 4
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infection through separate signalling pathways, called type I and type II signalling, 
respectively. The IFN-α signal goes through type I IFN receptor and is followed by the 
formation of the complex IRF9, STAT1 and STAT2 that activates the transcription 
of IFN-α/β stimulated genes (ISG). Meanwhile, the IFN-γ signal is received by type 
II IFN receptor which leads to the transcription of genes containing gamma inter-
feron activation sites (GAS) [40, 41]. The gene expression data came from a previous 
study using human lung cancer cells Calu-3 [31]. We employed the human epithelial 
lung cancer cell GRN structure as prior information for DeltaNeTS+ (see Methods). 
To examine cellular pathways that are perturbed by each of the two interferon treat-
ments, we performed GO (Biological Processes) and Reactome pathway enrichment 
analysis for the 50 highest ranked genes from each method [35].

Table  2 summarizes the enriched GO terms and Reactome pathways of the top 
gene target predictions from DeltaNeTS+, DeMAND and log2FC analysis (adjusted 
p value < 0.01; detailed results in Additional file 3). The top 50 gene targets predicted 
by TSNI did not show any statistically significant enrichment for neither GO nor 
Reactome pathways. The enriched GO and Reactome terms of the DeltaNeTS+ per-
turbation analysis correctly point to the distinct signalling pathways through which 
the two interferons act. Besides interferon-specific signalling, pathways related to 
major histocompatibility complex (MHC) class II antigen, which is induced by an 

a

b

Fig. 1  Ranks predictions for knock-out targets. The distribution of box plot indicates the ranks from all the 
time points from the same experiment. The ranks of gene targets by DeltaNeTS+ are colored in red and 
those by TSNI, DeMAND, and log2FC analysis are colored in blue, green, and grey, respectively. *p value < 0.1 
and **p value < 0.01 by Wilcox signed rank test between DeltaNeTS and other methods
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IFN-γ stimulated gene CIITA [42], are also enriched in the DeltaNeTS+ analysis for 
IFN-γ data, but not for IFN-α data. On the other hand, the enrichment analysis of top 
log2FC genes shows more diverse over-represented pathways, which is expected as 
the log2FC expressions reflect both direct and indirect effects of the two interferons. 
While the distinct signalling pathways related to IFN-α and IFN-γ are among the top 
enriched GO and Reactome pathways for log2FC, the signalling pathways specific to 
each interferon are cross-listed in the enrichment results for the two interferons. For 
DeMAND, no interferon signalling was detected for IFN-γ data although type I and 
II interferon signalling pathways were enriched from the DeMAND prediction for 
IFN-α data. In comparison to DeltaNeTS+, log2FC and DeMAND were less capable 
in differentiating the specific signalling pathways through which IFN-α and IFN-γ act.

Network perturbation analysis during influenza viral infections

Finally, we applied DeltaNeTS+ to analyze gene expression data from H1N1 and H5N1 
influenza virus infected Calu-3 cells with the goal of elucidating the similarities and dif-
ferences between the two important influenza viral strains. H1N1 strain is the cause of 
the 2009 swine flu outbreak and is known for its high transmissibility among humans. 
On the other hand, H5N1 strain is an avian influenza subtype that is known for its severe 
virulence with a high mortality rate of 60%. This high pathogenicity results in growing 
attention to understand the causal molecular mechanism [43]. Following DeltaNeTS+ 
analysis, we performed a GSEA to find over-represented Reactome pathways [37] and 

Table 2  Reactome pathway enrichment analysis for Interferon-α and -γ treatments

Interferon-α enrichment analysis

DeltaNeTS+ GO terms Log2FC Reactome pathways DeMAND GO terms

Type I interferon signal-
ing pathway

Interferon alpha/beta 
signaling

Defense response to 
virus

Negative regulation of 
viral genome replica-
tion

Interferon Signaling_
Homo sapiens

Type I interferon signal-
ing pathway

Negative regulation of 
viral life cycle

Cytokine Signaling in 
Immune system

Cellular response to type 
I interferon

Cellular response to 
type I interferon

Immune System_Homo 
sapiens

Interferon-gamma-
mediated signaling 
pathway

Regulation of viral 
genome replication

Antiviral mechanism by 
IFN-stimulated genes

Response to type I 
interferon

Reactome pathways ISG15 antiviral mecha-
nism

Reactome pathways

Interferon signaling Interferon gamma 
signaling

Interferon alpha/beta 
signaling

Interferon alpha/beta 
signaling

RIG-I/MDA5 mediated 
induction of IFN-
alpha/beta pathways

Interferon gamma 
signaling

TRAF3-dependent IRF 
activation pathway

Interferon signaling

Regulation of IFNA 
signaling

TRAF6 mediated IRF7 
activation

Negative regulators of 
RIG-I/MDA5 signaling
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WGCNA [38] analysis to identify gene modules with similar dynamic perturbations, 
using the gene perturbation scores produced by DeltaNeTS+.

Figure  2 depicts the Reactome pathways enriched (adjusted p value < 0.01, see 
Methods) across the three phases of the infection: early (phase 1: 0–7  h), middle 
(phase 2: 7–18  h) and late (phase 3: > 18  h) (full results in Additional file  4). H1N1 
and H5N1 trigger many of the same cellular pathways but often in different phases. 
Expectedly, immune response, such as cytokine signaling and innate immune system, 
is triggered by both viral infections with roughly the same trend over time. Other 
pathways however are modulated with different timings. Among the pathways signifi-
cantly enriched only in H5N1 infection are those associated with G-protein coupled 
receptor (GPCR) signaling and actin cytoskeleton (muscle contraction), both of which 
are known to be hijacked for viral entry processes (Fig. 2) [18, 44, 45]. On the other 
hand, programmed cell death and DNA damage (chromatin organization and DNA 
repair) are significantly enriched only in H1N1 data from the early through mid-
phase of the infection. A previous study reported that death signaling molecules are 
downregulated in Calu-3 cells infected by H5N1 [46], a finding that is consistent with 
the absence of enrichment for programmed cell death in the result of DeltaNeTS+ 

Table 2  (continued)

Interferon-α enrichment analysis

Interferon-γ enrichment analysis
DeltaNeTS+ GO terms Log2FC GO terms DeMAND No enriched term

Antigen processing 
and presentation of 
exogenous peptide 
antigen via MHC 
class II

Interferon-gamma-
mediated signaling 
pathway

Cellular response to 
interferon-gamma

Antigen processing 
and presentation of 
exogenous peptide 
antigen

Cytokine-mediated 
signaling pathway

Reactome pathways

Antigen processing 
and presentation of 
peptide antigen via 
MHC class II

Interferon signaling

Interferon gamma 
signaling

Cellular response to 
interferon-gamma

Cytokine signaling in 
immune system

Interferon-gamma-
mediated signaling 
pathway

Immune system

Reactome pathways Interferon alpha/beta 
signaling

Interferon signaling Translocation of ZAP-70 
to immunological 
synapse

Interferon gamma 
signaling

Phosphorylation of CD3 
and TCR zeta chains

MHC class II antigen 
presentation

PD-1 signaling

Cytokine signaling in 
immune system

MHC class II antigen 
presentation

Generation of second 
messenger molecules
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analysis for H5N1. Other pathways enriched in the late phase of H1N1 infection are 
NOTCH, WNT, and RHO GTPase signaling, pathways that are relevant to cellular 
proliferation [47, 48]. These pathways are related to Histone cluster 1 families, and 
based on DeltaNeTS+ perturbation scores, are predicted to have been negatively per-
turbed (see Additional file 5). The negative perturbations signify a repression of cel-
lular proliferation in H1N1 infection.

In addition to enrichment analysis, we applied WGCNA to the DeltaNeTS+ gene 
perturbation predictions to group the genes based on the pattern of perturbations 
over time. In this case, WGCNA finds clusters of genes whose perturbation scores 
given by the P matrix are highly similar based on a topological overlap derived from 
the gene–gene correlations. In the WGCNA results, the time-course perturbation 
values in each group can be represented by the first principal component in that 
group, called eigengene. Figure 3 shows the eigengene perturbation profiles of seven 
groups identified by WGCNA, and Table 3 provides the summary of GO and Reac-
tome pathways enriched in each group (see details in Additional files 6 and 7). For the 
smallest group M7, no pathway was found to be significantly enriched.

Groups M1, M4, and M5 are related to cell cycle arrest, viral entry, and cellular matrix 
barrier respectively. For these groups, the signs of the perturbations are the same for 
H1N1 and H5N1, but the magnitudes of the perturbations are larger for H5N1. For both 

Fig. 2  Summary of key Reactome pathways from gene set enrichment analysis of DeltaNeTS+ predictions. 
The size and color of dots indicate the score (negative logarithm-10 of p values) for the enriched Reactome 
terms. The influenza infection period is divided into three time phases: Phase1 = 0–7 h, phase 2 = 7–18 h, and 
phase 3 ≥ 18 h post-infection
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strains, the infection acts to repress cell cycle arrest and cellular matrix barrier (negative 
perturbations) and to activate viral entry pathways (positive perturbations). For groups 
M2 and M3, the signs of the perturbations for the two influenza A strains are the oppo-
site of each other. In H5N1 infection, viral RNA transcription, translation and replication 
(group M2) are induced, whereas viral defense and immune mechanisms (group M3) are 
strongly inhibited. In contrast, in H1N1 infection, viral RNA replication processes are 
repressed, but genes for antiviral mechanisms are moderately induced. Taken together, 
GSEA and WGCNA of DeltaNeTS+ for H1N1 and H5N1 infection in Calu3 indicates 
that in comparison to H1N1, the more virulent H5N1 infection shows increased activity 

Fig. 3  Eigengene profiles from WGCNA applied to DeltaNeTS+ perturbation scores of H1N1 and H5N1 
influenza A infections (red: H1N1, blue: H5N1)

Table 3  WGCNA modules of DeltaNeTS+ perturbation scores

RP reactome pathway database, GO gene ontology
a  The number of genes clustered in each module
b  Summary of enriched pathways (q-value < 0.10) in each module
c  Pathway databases used for enrichment analysis

Module Sizea Summary of enriched pathwaysc DBd

M1 2863 DNA replication, cell cycle GO & RP

M2 2803 Influenza Viral RNA Transcription and Replication, viral mRNA Translation GO & RP

M3 2645 Defense response to virus, immune response, interferon signaling GO & RP

M4 1427 Viral entry (GPCR binding, amine transport) GO & RP

M5 888 Crosslinking of collagen fibrils RP

M6 762 Apoptosis (TNFR2 non-canonical NF-kB pathway) RP

M7 397 N/A –
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of viral entry process and increased repression of cell cycle arrest, as well as inhibition of 
the immune system and programmed cell death.

Discussion
DeltaNeTS+ is a network perturbation analysis tool for the analysis of gene expression 
data, which generates predictions on the direct gene expression perturbation in a given 
treatment or sample. DeltaNeTS+ builds on our previous algorithm DeltaNeTS which 
is able to utilize time-series datasets of gene expression, and adds the capability to take 
advantage of information on the GRN structure. The incorporation of GRN structure 
information enables accurate gene target predictions from a small number of samples, 
an advantage over our previous methods DeltaNet and DeltaNeTS. The direct gene per-
turbation of a gene is computed based on the difference between the measured differen-
tial expression of the gene and the differential expression predicted by the GRN model 
based on the expression of its transcription factors. We compared DeltaNeTS+ to three 
strategies, including (1) differential expression analysis, (2) a target inference method 
TSNI which relies on a model of the GRN [21], and (3) a network perturbation analy-
sis method DeMAND which relies on statistical hypothesis testing via Kullback–Leibler 
divergence [9]. The comparative methods were selected since they are among the most 
commonly used and well-cited methods for gene target inference and are able to handle 
time-series data. DeltaNeTS+ is most similar to TSNI [21], as both methods rely on a 
linear regression formulation and time-series data. While TSNI uses principal compo-
nent analysis (PCA) to reduce the dimension of the unknown GRN matrix A and per-
turbation matrix P, DeltaNeTS+ employs a regularization strategy (ridge regression or 
LASSO, depending on the availability of the GRN structure). TSNI is unable to accom-
modate information on GRN structure.

Adding GRN structural information to DeltaNeTS+ is highly beneficial and improves 
the gene target predictions, especially when the dataset contains only a few samples. 
The application of DeltaNeTS+ and a previous algorithm DeltaNet to C. elegans, T 
cell, and Calu-3 datasets without incorporating the GRN structure returned a null gene 
target prediction (P is 0; data not shown). Here, by using the available GRN structure, 
DeltaNeTS+ is implemented using ridge regression in which the dimensionality of the 
unknown GRN matrix A is reduced to known TF-gene regulations. As shown in C. 
elegans and human T-cell case study, DeltaNeTS+ was able to use the GRN structure 
to predict genetic perturbations with high accuracy more reliably than the comparative 
methods. Besides, gene targets highly ranked by DeltaNeTS+ were closely associated 
with the true gene targets – for example, genes that are directly regulated by the true 
gene targets (see Additional file 1). The ability to utilize GRN structure information is 
important high-quality cell type specific gene regulatory networks become more avail-
able in recent times, thanks to the success of large-scale projects such as ENCODE [17] 
and FANTOM5 [49]. Besides, advanced network inference tools such as ARACNE [50] 
and MINDy [51] allow us to reverse-engineer a context-specific network from the gene 
expression data for a cell of our interest.

Note that DeltaNeTS+ is able to combine time-series and steady-state transcriptomic 
datasets for improving the accuracy of gene target predictions. For example, when we 
added a steady-state transcriptomic dataset (GSE51162) to the training of C. elegans 
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GRN model in DeltaNeTS+, we were able to improve the rank of the predicted gene tar-
gets for pie-1 mutation (see Additional file 2: Table S3). Vice versa, the gene target pre-
dictions for the C. elegans steady-state dataset were better upon using the GRN model 
from the combination of time-series and steady-state data than using that from steady-
state data alone (see Additional file 2: Figure S1). While incorporating the GRN structure 
information enables DeltaNeTS+ to predict gene targets using a small set of samples, 
the result above demonstrates that a larger number of samples improves accuracy. The 
capability of DeltaNeTS+ to integrate both time-series and steady-state data seamlessly 
in the gene target prediction means that DeltaNeTS+ will be able to take advantage of 
a larger library of available transcriptomic datasets and avoid running separate analyses 
for each kind of datasets.

The application of DeltaNeTS+ to the analysis of gene perturbation targets associ-
ated with H1N1 and H5N1 infection led to insights on the differences in the mechanism 
of actions between the two influenza A strains. In general, the more pathogenic strain 
H5N1 induces stronger and swifter perturbations than the less pathogenic but more 
infectious H1N1 (Figs. 2, 3). Notably, H5N1 infection shows a strong induction of viral 
entry process and viral replication and a repression of cell cycle arrest, all of which are 
strategies that would ensure a successful proliferation of the virus. The pathogenic H5N1 
infection also demonstrates inhibition of viral defense mechanism. Furthermore, the less 
severity of H1N1 infection is also associated with a successful activation of cell death and 
repression of cell proliferation, pathways that are crucial in curtailing viral progression.

Conclusions
DeltaNeTS+ is an effective network analysis method for inferring gene transcriptional 
perturbations from gene expression dataset. The ability of DeltaNeTS+ to integrate both 
steady-state and time-course gene expression data and available information of gene 
regulatory network structure enables accurate prediction of gene targets from limited 
number of samples (~ 10  s). The application of DeltaNeTS+ to influenza A infection 
datasets in human Calu-3 give insights into the key functional perturbations that dif-
fer between highly virulent H5N1 avian flu and highly transmissible H1N1 swine flu. 
Insights on the molecular mechanisms of drugs and diseases from gene target predic-
tions provide important information for drug discovery and treatment formulations. The 
ability to marry gene expression profiles with transcriptional network structures derived 
from genomic information, as done in DeltaNeTS+, is crucial for understanding dis-
eases and for formulating individualized treatments in the era of personalized medicine.
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