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Abstract 

Background: An increasing number of clinical trials require biomarker-driven patient 
stratification, especially for revolutionary immune checkpoint blockade therapy. Due 
to the complicated interaction between a tumor and its microenvironment, single 
biomarkers, such as PDL1 protein level, tumor mutational burden (TMB), single gene 
mutation and expression, are far from satisfactory for response prediction or patient 
stratification. Recently, combinatorial biomarkers were reported to be more precise and 
powerful for predicting therapy response and identifying potential target populations 
with superior survival. However, there is a lack of dedicated tools for such combinato-
rial biomarker analysis.

Results: Here, we present dualmarker, an R package designed to facilitate the data 
exploration for dual biomarker combinations. Given two biomarkers, dualmarker 
comprehensively visualizes their association with drug response and patient survival 
through 14 types of plots, such as boxplots, scatterplots, ROCs, and Kaplan–Meier 
plots. Using logistic regression and Cox regression models, dualmarker evaluated the 
superiority of dual markers over single markers by comparing the data fitness of dual-
marker versus single-marker models, which was utilized for de novo searching for new 
biomarker pairs. We demonstrated this straightforward workflow and comprehensive 
capability by using public biomarker data from one bladder cancer patient cohort 
(IMvigor210 study); we confirmed the previously reported biomarker pair TMB/TGF-
beta signature and CXCL13 expression/ARID1A mutation for response and survival 
analyses, respectively. In addition, dualmarker de novo identified new biomarker 
partners, for example, in overall survival modelling, the model with combination of 
HMGB1 expression and ARID1A mutation had statistically better goodness-of-fit than 
the model with either HMGB1 or ARID1A as single marker.

Conclusions: The dualmarker package is an open-source tool for the visualization 
and identification of combinatorial dual biomarkers. It streamlines the dual marker 
analysis flow into user-friendly functions and can be used for data exploration and 
hypothesis generation. Its code is freely available at GitHub at https ://githu b.com/
maxia openg /dualm arker  under MIT license.
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Background
With the rapid development of the biomarker detection technology, an increasing num-
ber of single predictive or diagnostic biomarkers have been identified and validated in 
retrospective studies or perspective trials. For example, in the revolutionary field of 
immune checkpoint blockade (ICB) [1–3], such biomarkers include PDL1 protein level, 
gene expression profiling (GEP), gene mutation, and tumor mutation burden (TMB). 
However, cancer development is associated with a complicated tumor microenviron-
ment (TME) and tumor/TME interactions involving multiple biological processes [1], 
such as tumor proliferation, apoptosis, and angiogenesis. Indeed, each single biomarker 
can only reflect a small aspect of these intricate tumor and immune characteristics. So 
far, no single perfect marker has been developed for patient stratification for ICB ther-
apy [2].

In general, a combinatorial biomarker strategy that takes different TME-affecting 
components into account is needed [3]. Several combinatorial biomarkers have been 
identified in recent years. For example, in one pan-cancer study, the combination of 
TMB and the T cell–inflamed gene expression profile (TIS) was able to predict response 
to pembrolizumab [4]. In the Imvigor210 trial, TMB plus the TGF-beta gene signature 
predicted response to atezolizumab in urothelium carcinoma (UC) [5]. A third study 
using the same dataset found that AIRD1A mutation in combination with CXCL13 gene 
expression predicted overall survival (OS) [6]. In all these studies, combinatorial dual 
markers outperformed single markers in the prediction of response and survival.

The R language and its powerful packages for statistics and data visualization are 
widely used in biomarker data analysis, including the survival and survminer [7] package 
for survival analysis and gClinBiomarker [8] for univariate biomarker analysis. However, 
tools for dual biomarker analysis are not available to our knowledge.

Here, we describe dualmarker, a flexible toolset for combinatorial dual marker visu-
alization and identification. dualmarker performs dual marker analysis via two distinct 
modules, one for in-depth evaluation of one specific biomarker pair and a second for de 
novo identification of biomarker pairs. Both modules are applicable for both categorical 
and continuous biomarkers using logistic regression and Cox survival models. We herein 
demonstrate its application using public biomarker data from the IMvigor210 clinical 
study [5] by validation of reported biomarker pairs and the identification of novel pairs.

Implementation
Overview

Dualmarker assesses the correlation between biomarkers and clinical efficacy, includ-
ing binary outcome (e.g. drug response) and survival data. It can evaluate a specific 
biomarker pair by comprehensive visualization and statistical analysis and searches for 
novel pairs from all dual marker combinations; It can also search for a second marker 
partner, namely, marker2 (M2) in combination with the chosen marker1 (M1) via logis-
tic regression and the Cox regression model (Fig.  1). The response status should be 
dichotomous to fit the logistic regression model, and marker1 or marker2 can be either 
a continuous variable (e.g., TMB, gene expression) or a dichotomous variable (e.g., gene 
mutation, mutated or wild-type). Ordinal variables with more than 2 levels are not 
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supported in the current version. Continuous variables are used directly in the logistic/
Cox regression model, and they are dichotomized to high and low levels, using the pop-
ulation median as a cutoff or user-specified value, to facilitate visualization. The dichoto-
mization and combination of two markers produces four subgroups, each located in a 
quadrant, labeled as R1-R4 with dedicated colors throughout all plots (Fig. 1).

Visualizations

Dualmarker provides comprehensive visualizations of dual markers and reveals their 
association with response and survival. For response analysis, boxplots illustrate the 
correlation between response and a single marker (Fig. 2a), and a scatterplot shows the 
inter-marker correlation (Fig. 2b). In turn, the ROC curve, AUC and confidence inter-
val demonstrate the performance of response prediction for single markers and logistic 
regression model of dual markers (Fig. 2c). In addition, a series of four-quadrant plots 
reveals the group/quadrant size and the response rate of each group/quadrant, includ-
ing an area proportion chart (Fig. 2d), a quadrant statistic matrix (Fig. 2e), a doughnut 
plot (Fig. 2f ) and a line chart (Fig. 2g, see the legend for a detailed description). For sur-
vival analysis, a Kaplan–Meier plot (KMplot) depicts the survival of a single marker and 
dual markers in four groups/quadrants, with a p value determined by the log-rank test 
(Fig. 3a–c). Conditional KMplots represent the survival curve of marker1 on the condi-
tion of marker2 levels (positive/high or negative/low) and the survival curve of marker2 
on the condition of marker1 levels (Fig. 3g), revealing the association between survival 
and marker1 in the context of marker2 levels and vice versa. In addition, similar four-
quadrant plots show the group/quadrant size, median survival time and 95% confidence 
interval by an area proportion chart (Fig. 3d), a quadrant statistic matrix (Fig. 3e) and 
a line chart (Fig. 3f, the Fig. 3 legend contains detailed description of each chart). Both 
the response and survival visualizations are easily performed by the dm_pair function, 
which will generate over 14 plots simultaneously. In addition, there are flexible options 
in dm_pair to adjust labels, titles as well as the color schemes from palettes requested 
by the leading scientific journals (via R package ggsci [9]) or by customer specification. 
Taken together, this panel of charts reveals the potential association between two mark-
ers, response and survival, in an intuitive and comprehensive manner.

Logistic regression model

The logistic regression method was applied to predict the binary outcome of response. 
Different modeling strategies were considered to include one biomarker at a time, two 
biomarkers at the same time and the modeling interaction of the two biomarkers using 
the following four logistic regression models: model1, Resp ~ M1; model2, Resp ~ M2; 
model3, Resp ~ M1 + M2; and model4, Resp ~ M1 + M2 + M1:M2 (interaction term). 
Covariates can also be added in the models (Fig.  1). Model comparisons were per-
formed to evaluate the superiority of the dual-marker to single-marker model using the 
likelihood ratio test (LRT) with the R anova function. The performance of responder/
non-responder classification of the biomarker(s) was evaluated using ROC/AUC by R 
package pROC [10].
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Cox survival model

The Cox regression method was applied to predict survival. Four Cox regression 
models were produced, similar to the logistic regression models. The parametric part 
of the Cox model design is as follows: Model1, Surv ~ M1; Model 2, Surv ~ M2; Model 
3, Surv ~ M1 + M2; Model 4, Surv ~ M1 + M2 + M1:M2 (interaction). Covariates can 
also be added in the models (Fig. 1). As above, model comparisons were performed 
using the likelihood ratio test (LRT) implemented in R. The performance of event risk 
classification was evaluated using concordant probability by R package CPE [11].

Search for biomarker pairs

Based on the characterization of a single pair of biomarkers, we expanded the scope 
to biomarker partner searches. Using the models above, we searched for marker M2 
to combine with marker M1 through the dm_searchM2_logit and dm_searchM2_cox 
functions, prioritizing marker2s with significant improvement in model fit in the 
dual-marker model versus the single-marker model. Candidate marker2s with signifi-
cant LRT test p values are shown in a dot chart, which displays the signed -log10 p 
values, whereby the sign is the direction of the marker2 effect on response or survival 
as a single marker (Fig.  4b). The models can also take covariates into consideration 
(Fig. 1) and adjust the p value for multiple comparisons. Furthermore, we expanded 
the scope to search all biomarker pairs, using dm_combM_logit and dm_combM_cox 
functions. Users can filter and get interesting dual-marker pairs using plenty of statis-
tics and model performance metrics, for example, AUC for binary response analysis 
(logistic regression), concordant probability estimate (CPE) for survival analysis (Cox 
regression), p value of dual-vs-single model comparison and statistical interaction of 
two markers, et  al. In summary, dualmarker package can search dual-marker pairs 
with or without given marker.

Results
We applied dualmarker to analyze the biomarker data of the IMvigor210 trial [5], 
including the baseline characterization of PDL1 IHC, gene expression profiling (GEP), 
tumor mutation burden (TMB) and gene mutations in 348 patients with advanced 
UC. To simplify the demonstration, for GEP, we focused on the tumor microenviron-
ment-related genes (1392) listed in the HTG Precision immune-oncology panel [12].

(See figure on previous page.) 
Fig. 3 Demonstration of survival analysis for one pair of markers, ARID1A mutation (marker1) and CXCL13 
gene expression (marker2). KM plot of a single marker for mut_ARID1A (a) and CXCL13 expression (cut by 
median, b) and the dual markers (c). Four group sizes and independence tests using Fisher’s exact test (d), the 
median survival time and confidence interval in each group/quadrant are shown in a matrix (e) and line chart 
(f). Conditional KM plots show the survival curves of marker2 stratified by the marker1 level (g, upper panel) as 
well as marker1 within the context of the marker2 level (g, lower 2 panel) with the p values of log-rank test and 
adjusted p values by ‘Bonferroni’ method. All figures were generated by dualmarker (v0.1.0)
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Response analysis of one biomarker pair

We explored one previously reported biomarker pair, TMB and the TGF-beta gene 
expression signature [5]. TMB was significantly higher in the responders than in the 
non-responders (Wilcoxon test, p value = 1.1e-7), whereas the TGF-beta gene signa-
ture score showed the opposite trend (Wilcoxon test, p value = 0.016, Fig. 2a). There 
was a weak negative correlation between TMB and the TGF-beta signature (Fig. 2b, 
Spearman correlation R = − 0.16, p value = 0.007). Using the population median as 
the cutoff point, patients were stratified into 4 groups/quadrants, and a comparison of 
the 4 group sizes showed weak dependence between TMB and the TGF-beta signature 
(p value = 0.06, Fisher exact test, Fig. 2d). The TMB-high/TGF-beta-low group (quad-
rant R4) had the highest response rate (43%, 95% CI 0.3–0.56); the TMB-low/TGF-
beta-high group (quadrant R2) had the lowest response rate (4%, 95% CI 0.01–0.12, 
Fig.  2e–g). This indicated that the R2 group was most refractory to PDL1 therapy 
among the four groups. In addition, logistic regression models were applied to predict 
response, and the two biomarker combinations yielded higher AUC values than the 

Fig. 4 De-novo identification of marker2 from gene expression to combine with marker1 (mut_ARID1A). 
The dual marker Cox regression model was compared with the single marker model using marker1 and 
marker2 separately. The -log10 p values of the LRT test between models are shown on the x-axis and y-axis, 
and the dashed line indicates the p value = 0.01 (a). Top significant marker2s to combine with mut_ARID1A 
according to the significance of LRT in model comparison of the dual-marker model versus the mut_ARID1A 
single-marker model; dashed lines show p value = 0.01 and 0.05(b). The signed -log10-p value is provided, 
and the sign is the direction of the effect of marker2 on OS as a single marker. The arrow points to the known 
biomarker partners, CXCL13, IFNG and the novel gene HMGB1, which showed a statistical interaction with 
mut_ARID1A (c-e). Four quadrants/groups divided by mut_ARID1A and HMGB1 expression levels (high vs 
low, cut by population median) had significantly different OS values (c, p value = 0.0019, log-rank test for all 
group comparisons). ARID1A-mutated patients had longer OS under the condition of high HMGB1 but not 
low HMGB1 (d). Median survival time and confidence interval for each quadrant/group (e)
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single TMB marker (AUC = 0.754, 95% CI 0.686–0.821 for the TMB*TGF-beta model 
with the biomarker interaction versus 0.728, 95% CI 0.652–0.804 for the single TMB 
marker model, Fig. 2c). Besides, the dual marker model (with marker interaction) had 
statistically better goodness-of-fit than the TMB single marker model using LRT test 
(p value = 0.0098).

Survival analysis of one biomarker pair

Dual marker survival analysis was carried out using the pair of ARID1A mutations and 
CXCL13 gene expression as an example. This biomarker pair was reported to be associ-
ated with OS [6]. We confirmed that patients with ARID1A mutations (marker1) had 
a longer OS (p value = 0.045, log-rank test, Fig.  3a; patients with higher expression of 
CXCL13 (marker2, population median as cutoff) also had a longer OS (p value = 0.0016, 
log-rank test, Fig. 3b). We then stratified the population into four groups/quadrants and 
observed a significant difference in survival (p value = 0.0085, log-rank test for com-
parison of all groups, Fig. 3c), with the R1 group (ARID1A-mut/CXCL13-high) showing 
the longest OS (median 17.7, CI 9.23-NA) and the R3 group (ARID1A-wt/CXCL13-
low) the shortest OS (median 7.89, CI 5.52–9.86, Fig.  3e). Conditional KM plots fur-
ther revealed a longer OS for the CXCL13-high group compared to the CXCL13-low 
group in ARID1A-mut (p value = 0.012, adjusted p value (Bonferroni) = 0.048, log-rank 
test) (Fig.  3g, upper 2 panels). Meanwhile, the ARID1A-mut group showed a trend of 
longer OS than the ARID1A-wildtype group in both CXCL13-high and CXCL13-low 
subgroups (Fig. 3g, lower 2 panels). No significant statistical interaction was observed 
between the two markers (Fig.  3f, p value = 0.4, Wald test of interaction term in the 
dual marker Cox model). Besides the descriptive statistic, visualization and comparison 
between subgroups of dual biomarkers, Cox model comparison showed that CXCL13/
ARID1A dual marker model had significantly better fitness to the survival data than 
ARID1A single marker model (p value = 0.00047, likelihood ratio test) and CXCL13 sin-
gle marker model (p value = 0.1, likelihood ratio test). The combination of these two bio-
markers achieved a higher power of risk discrimination as suggested by the bigger CPE 
value of the dual marker (CPE is 0.583, 0.535 and 0.576 for dual-marker, ARID1A and 
CXCL13 single marker, respectively). Therefore, the combination of these two biomark-
ers might suggest improved patient characterization and stratification. All plots, statistic 
result of LRT, CPEs were generated by running single function dm_pair.

De novo identification of marker pairs

In dualmarker, given one specific marker (M1), another biomarker (M2) can be de 
novo identified using logistic regression for response status analysis and Cox mod-
els for survival analysis. An ideal dual marker model should be superior to either M1 
alone or M2 alone. Therefore, we compared dual-marker models with M1 and M2 sin-
gle marker models. Dual-marker models with and without interaction terms were both 
considered, and the model with smaller p value based on the LRT test was taken. The 
significance level (-log10 p value) for the dual-vs-M1 and dual-vs-M2 model compari-
sons is shown in the scatterplot in Fig. 4a. Goswami S et al. reported the combination of 
ARID1A mutation and CXCL13 expression predicts OS in three independent cohorts 
based on biological hypotheses [6]. We searched among all gene expression biomarkers 
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for combination with the ARID1A mutation (mut_ARID1A) in a data-driven manner. 
Using the dm_searchM2_cox function, we identified 97 genes (p value < 0.01, LRT test) as 
dual-biomarker partner candidates to combined with mut_ARID1A, including CXCL13 
and other important immune modulators such as IFNG and CXCL9/10 (Fig. 4b). These 
genes represent the inflamed immune signature that contributes to the association 
between ARID1A and overall survival. We also found some markers, such as HMGB1, 
when combined with the ARID1A mutation, outperformed either ARID1A or HMGB1 
single marker model (p value = 0.0012, p value = 0.0003, likelihood ratio test, Fig.  4a); 
Meanwhile, HMGB1 expression showed an interesting statistical interaction with the 
ARID1A mutation. Under HMGB1-high conditions, patients with ARID1A mutation 
had significantly longer OS (Quadrant R1 vs R2, p value = 0.0015, log-rank test); How-
ever, this association disappeared in the HMGB1-low population (Quadrant R3 vs R4, 
Fig. 4d, p value = 0.48, log-rank test). The interaction term in the Cox model was also 
significant (p value = 0.001, Wald test), indicating that HMGB1 may have an important 
role in predicting OS with the ARID1A mutation. The relationship between HMGB1 
and ARID1A needs further validation and exploration. We showed the nominal p values 
here, and no dual marker pairs were significant (FDR < 0.05) after p value adjustment 
using “BH” method, which may owe to the data set or the power of detection. However, 
such p value based prioritization strategy might identify interesting biomarker pairs 
before intensive study and validation.

Discussion
Biomarker combination may increase the accuracy of efficacy prediction for cancer 
therapy via precise characterization and further stratification of patients. Such analysis 
might also reveal novel insight into the complicated cancer-TME interaction and help 
inform treatment strategy. Thus, an exploratory analysis tool for dual marker combina-
tion is valuable for streamlining the workflows.

To our knowledge, dualmarker is the first comprehensive R package for dual marker 
analysis. dualmarker involves various flexible and easy-to-use functions for dual marker 
characterization with two modules, generating over 14 types of plots to evaluate and 
visualize one biomarker pair. Here, we demonstrated its application in the well-studied 
Imvigor210 dataset and benchmarked the results with the original trial paper for the 
biomarker-pair example of the TMB/TGF-beta signature and ARID1A-mut/CXCL13 
expression. Furthermore, powerful dual-marker pair searching functions can prioritize 
novel biomarker partners to use in combination with a pre-selected marker (M1). We 
searched key TME-related GEP markers in combination with ARID1A mutations using 
the Cox survival model and verified CXCL13 and IFNG as top candidates. We have also 
identified a novel statistically significant interaction between HMGB1 expression and 
the ARID1A mutation, representing that ARID1A mutated patients were with longer OS 
only in the HMGB1-high subgroup, while not in the HMGB1-low subgroup (Fig. 4). This 
interaction would require further validation study.
Dualmarker is a powerful exploratory tool for biomarker data mining. It streamlines 

potential dual-marker visualization and identification; Its strengths are as follows: (1) 
comprehensive visualization of marker pairs with over 14 types of plots, including box-
plots, scatterplots, ROCs, and Kaplan–Meier plots; (2) comprehensive performance 
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evaluation of dual marker combination. It builds four regression models and summarizes 
the model parameters simultaneously; Meanwhile it provides comprehensive model per-
formance evaluation, including ROC/AUC for binary response variable, concordance 
probability for time-to-event variable, model comparison of dual marker versus single 
marker in logistic regression and Cox regression. (3) novel biomarker pair identification 
function without predefined hypotheses; (4) applicable to both survival and response 
analyses and compatible with both continuous and categorical variables; (5) user friendly 
with only 5 core functions. The interface for dual marker visualization and statistics 
of response and survival is dm_pair, which is compatible with both continuous (e.g., 
gene expression, TMB) and categorical (e.g., mutation, PDL1 level) variables. De novo 
marker2 identification is achieved through dm_searchM2_logit and dm_serach_M2_cox 
for logistic and Cox regression, respectively; all dual biomarker combination can be eval-
uated using dm_combM_logit and dm_combM_cox function. A detailed and up-to-date 
tutorial can be found at https ://githu b.com/maxia openg /dualm arker . Thus, we expect 
wide usage of dualmarker in biomarker studies for the evaluation of biomarker pairs of 
interest and exploration of novel biomarker combinations for precise patient stratifica-
tion as well as mechanism of action and resistance research.
Dualmarker is designed for data visualization and exploration purpose with some 

limits. Firstly, it can’t deal with the non-linear associations between predictors and the 
outcome for the four regression models, which needs methods such as restricted cubic 
spline and may be included in the package of the future version. Secondly, the regression 
model can include covariates, however, the current version can’t deal with the interac-
tions between covariates and biomarkers. Thirdly, the package can’t handle ordinal var-
iables, which need dichotomization aforehand, and it is not feasible for multiple (> 2) 
marker analysis. Finally, evaluating all marker combination from thousands of biomark-
ers like gene expression profiles, is time-consuming, and parallel computation or other 
methods could be introduced to improve the computation efficiency.

Conclusions
A new open-source software toolkit, which includes an R package  dualmarker and 
accompanied tutorial, is presented. This package implements logistic regression and Cox 
survival analysis models, and the data visualization command can be easily applied for 
biomarker pair evaluation and novel biomarker combination identification.

Availability and requirements

Project name: dualmarker
Project home page: https ://githu b.com/maxia openg /dualm arker 
Operating system(s): Platform independent
Programming language: R
Other requirements: ggplot2, dplyr, pROC, survival, survminer, CPE, ggpubr
License: MIT License
Any restrictions to use by non-academics: no restrictions

https://github.com/maxiaopeng/dualmarker
https://github.com/maxiaopeng/dualmarker
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