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Abstract 

Background:  Model averaging has attracted increasing attention in recent years 
for the analysis of high-dimensional data. By weighting several competing statistical 
models suitably, model averaging attempts to achieve stable and improved prediction. 
In this paper, we develop a two-stage model averaging procedure to enhance accu-
racy and stability in prediction for high-dimensional linear regression. First we employ 
a high-dimensional variable selection method such as LASSO to screen redundant 
predictors and construct a class of candidate models, then we apply the jackknife 
cross-validation to optimize model weights for averaging.

Results:  In simulation studies, the proposed technique outperforms commonly used 
alternative methods under high-dimensional regression setting, in terms of minimizing 
the mean of the squared prediction error. We apply the proposed method to a ribofla-
vin data, the result show that such method is quite efficient in forecasting the riboflavin 
production rate, when there are thousands of genes and only tens of subjects.

Conclusions:  Compared with a recent high-dimensional model averaging procedure 
(Ando and Li in J Am Stat Assoc 109:254–65, 2014), the proposed approach enjoys 
three appealing features thus has better predictive performance: (1) More suitable 
methods are applied for model constructing and weighting. (2) Computational 
flexibility is retained since each candidate model and its corresponding weight are 
determined in the low-dimensional setting and the quadratic programming is utilized 
in the cross-validation. (3) Model selection and averaging are combined in the proce-
dure thus it makes full use of the strengths of both techniques. As a consequence, the 
proposed method can achieve stable and accurate predictions in high-dimensional 
linear models, and can greatly help practical researchers analyze genetic data in medi-
cal research.

Keywords:  High-dimensional regression, Model averaging, Variable selection, Cross-
validation, Jackknife
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Background
Model averaging and model selection are two important techniques for estimation and 
prediction in statistical modeling. Model selection is appealing for its simplicity and 
interpretability thus has been attracting more attention. A systematic review on model 
selection can be found in Heinze, Wallisch, and Dunkler [14] or Lee, Cho, and Yu [18]. 
The main drawback for model selection, however, is that the uncertainty is essentially 
ignored once an optimal model is found. A possible consequence is that the inference 
based on the “best” model can be misleading—either overestimating or underestimat-
ing, due to poor representative of the real distribution of the data. In addition, different 
methods, criteria, and even small changes in the data can result in very different final 
models, thus prediction accuracy of mode selection is reduced [23].

Model averaging has been widely recognized as a solution when model uncertainty 
is high and interferes with the quality of the prediction. By combining a set of compet-
ing models and wisely choosing the weights, model averaging can even out the overes-
timation and underestimation, therefore often leads to a more reliable result than the 
individual prediction. With model averaging, no assumption that a true model exists 
needs to be made, and inferences could be made about all candidate models. Hence, this 
method is preferred when uncertainty arises in the model selection process [24].

It has been shown that averaging models tend to yield better predictions than single 
models in the classical setting where the sample size is at least one order of magnitude 
greater than the number of predictors [16], how well it performs in high-dimensional 
regression, in which the number of predictors exceeds the sample size, is still under 
investigation. Recently, [2] proposed a two-step model averaging with cross-validation 
(MCV) procedure. The method consists of two steps: the first step is to construct candi-
date models by marginal correlation; the second step is to find optimal model weights by 
delete-one cross-validation. The main feature of MCV lies on the fact that the standard 
constraint of the model weights summing up to 1 is relaxed to the model weights can be 
vary freely between 0 and 1, and it is claimed that this relaxation lowers the prediction 
error.

The MCV approach is one of the only few references and is the first study that removes 
the weight restriction, thus marks a significant step toward the development in the high-
dimensional frequentist model averaging. Nonetheless, we have several concerns with 
this method. First, the model construction step of MCV employs the marginal correla-
tion to measure the strength of association between predictors and the response. Hence, 
it can miss some significant variables that are associated with the response condition-
ally but not marginally. Furthermore, the marginal correlation can be misleading when 
there exist non-trivial correlations among the predictors [20]. As a result, week candi-
date models could be involved and be given fairly large weights while strong candidate 
models could have small weights, and predictive inference is impaired. Second, we find 
the arguments in the paper regarding why the restriction of total weights summing to 1 
should be removed are not convincing. For example, Ando and Li remarked “consider the 
extreme case that the predictors are uncorrelated with each other and the noise variance 
is ignorable. The predictors from each model become uncorrelated with each other as well 
and the optimal combined predictor is the sum of all model predictors, implying that the 
optimal weight assignment should be (1, 1, ..., ). Thus, the total weight should be equal to 
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M, not 1.” This statement is problematic as for this special case, each model should be 
assigned the weight of 1M if there are M of them, thus the total weight is still 1. Consider-
ing such point, more scrutiny is needed on whether relaxing the total weight constraint 
will lower the prediction error. Third, numerical study was conducted in that paper to 
demonstrate the favorable performance of MCV, but the same original data is employed 
for both model building and model validation, and the mean squared error (MSE) is cal-
culated as the performance measure. A result of this model development process is that 
the MSE will tend to understate the inherent variability in making future predictions 
from the selected model [17], therefore the predictive capability of MCV needs to be re-
calibrated by the collection of new data.

To address the above concerns of MCV and to further enhance the predictive ability, 
we develop a two-stage model averaging procedure for high-dimensional linear regres-
sion. In the first step, a high-dimensional variable selection method such as LASSO is 
employed to screen redundant predictors and to construct candidate models. In the sec-
ond step, the jackknife cross-validation with the conventional constraint of total weights 
summing to 1 is applied to optimize model weights for averaging. The proposed method 
makes full use of the strengths of both model selection and averaging, meanwhile it is 
computational feasible since each candidate model and its corresponding weight are 
determined in the low-dimensional setting and the quadratic programming is utilized in 
the cross-validation. We conduct simulations and a real data example, the results illus-
trate that the proposed approach is efficient in forecasting and outperforms the existing 
predicting methodologies.

The remainder of the article is organized as follows. “Method” section describes the 
problem setting and an improved two-stage high-dimensional model averaging pro-
cedure is developed. We present a simulation study in “Simulations” section and pro-
vide a real data example in “Riboflavin Data Analysis” section for empirically examining 
the effectiveness of the proposed method. The paper ends with discussion and future 
research directions.

Method
Given the dataset of n observations, a linear regression model takes the form of

where yi is the response in the ith trial, xi1, . . . , xip are the predictors, β1, . . . ,βp are the 
regression coefficients, and ǫi is the error term. Here, we assume: 1) the independent 
error ǫi has mean zero and finite variance σ 2 ; 2) the number of predictors p exceeds 
the sample size n; 3) only a subset of predictors have contributions in predicting the 
response.

Alternatively, in matrix form, model (2.1) can be written as

where

(2.1)yi = β1xi1 + · · · + βpxip + ǫi, i = 1, 2, . . . , n,

y = Xβ + ǫ,
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For model (2.1), we will develop a two-stage model averaging method to improve the 
predictive performance for high-dimensional regression.

Model construction step

For the high-dimensional linear models, [2] proposed a two-stage model averaging pro-
cedure named MCV. The procedure first divides p predictors into K + 1 groups by the 
absolute marginal correlations between all predictors and the response. Let model Mk 
consist of the predictors with marginal correlations falling into the kth group. The first 
group has the highest values, and the (K + 1) th group has values closest to 0 and is then 
discarded. Thus the number of candidate models is K. Each model can also be written in 
matrix form y = Xkβk + ǫ , for k = 1, . . . ,K  . Given candidate models whose number of 
predictors is smaller than the sample size, the regression coefficients are estimated by 
the least-squares method β̂k = (X′

kXk)
−1X′

ky and the predicted value ŷk = Xk β̂k.
As discussed in "Introduction" section, the marginal correlation could provide mis-

leading results in sorting variables and preparing candidate models therefore reduces 
prediction accuracy. To prepare proper candidate models ready for averaging, in the first 
step of the proposed method we consider some representative measurements which can 
simultaneously rank and select variables.

The first competitor is Distance Correlation. It is a measure of dependence between 
random vectors introduced by [22]. For all distributions with finite first moments, such 
method provides a robust way measuring and testing dependence by correlation of dis-
tances. The distance correlation test is implemented by the energy package in R. To find 
candidate models, we partition all predictors into different groups by the p-values of the 
test. The first group has the lowest values, and the last group has largest values and then 
is discarded.

Two well-known variable selection approaches are also considered for comparison. 
Ridge Regression [15] is a way to create a parsimonious model when the number of pre-
dictors exceeds the number of observations, or when multicollinearity exists in predic-
tors. The predictors are sorted and chosen by the method proposed by Cule et al. [7] and 
can be conducted by the ridge package in R. Similar to Ridge Regression, LASSO [23] 
also works in a similar fashion the only difference is of the penalty term. LASSO is per-
formed by ncvreg package in R, the importance of predictors is based on the coefficients 
magnitude, and those whose coefficients shrunk to 0 are abandoned.

Random Forest [4] is also under consideration. It is an ensemble learning method for 
classification, regression and other tasks that operate by constructing a multitude of 
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decision trees. Random Forest can be used to rank the importance of variables and to 
conduct variable selection in regression. The technique was described in the papers by 
Genuer, Poggi and Tuleau-Malot [10, 11], and is implemented in the R package VSURF.

To evaluate the prediction performance, we adopt a simulation setting from Ando and 
Li [2]. The detailed structure of the simulation study is given below.

Simulation 1. Set the sample size n = 100, 200 and the number of predictors 
p = 500, 1000, 2000 . Set the number of significant predictors s = 20, 50, 100 , and gen-
erate the coefficients βj from Unif(-1, 1). The predictors xij , i = 1, . . . , n, j = 1, . . . , p are 
generated independently from Unif(-1, 1) as well. Finally, the error terms ǫi are generated 
from N (0, σ = 0.1, 1, 2) . Therefore, in total there are 2 ∗ 3 ∗ 3 ∗ 3 = 54 combinations of 
(n, p, s, σ).

To compare the methods in a fair manner, after candidate models are constructed in 
step 1, in step 2 the same delete-one cross-validation from MCV is used to optimize 
the model weights. In each run, we simulate a training set with n observations from 
the linear regression model in (2.1) for each combination. All the model building and 
averaging are done on the training set. We also collect an independent test data set of 
n∗ = 1000 observations to compute the mean of the squared prediction error (MSPE), 
MSPE=

∑n∗

i=1(yi−ŷi)
2

n∗  . We repeat this process 100 times, and report the means and stand-
ard deviations of MSPE for each method.

Table 1 summarizes the simulation results. Several observations can be made from this 
table. First, the predictive performance is affected by several factors, including the sam-
ple size, number of predictors, number of significant predictors, and the distribution of 
the error terms. More specifically, the prediction accuracy increases as n increases, p, s, 
or σ decreases. Second, out of the 54 scenarios, marginal correlation, Distance Correla-
tion,  Ridge Regression, LASSO, Random Forest perform the best 9/11/14/19/1 times, 
respectively. It seems that each method has its unique merits, none of the 5 methods can 
universally dominate the other competitors. The overall performance of LASSO appears 
to be the best, Ridge Regression is a close second. To explore the methods in more detail, 
we find that LASSO often performs favorably when n is large, or when s and σ are small, 
yet ridge regression tends to be more stable among different cases. In summary, the sim-
ulation results show that using a shrinkage variable selection method to construct candi-
date models is preferable to the marginal correlation in the model construction step for 
model averaging.

Model weighting step

After the candidate models and their corresponding least-squares predicted values 
{ŷ1, . . . , ŷK } are obtained, the second stage of model averaging is to determine the model 
weights. For the MCV method, the weight vector w is optimized by minimizing the 
delete-one cross-validation criterion

where ỹ =
∑K

k=1 wk ỹk , ỹk = (ỹ
(1)
k , . . . , ỹ

(n)
k ) be an n-dimensional vector, and ỹ(i)k  , is 

the predicted value ŷ(i)k  computed without the ith observation. Here, the restriction of 
∑K

k=1 wk = 1 is removed, and the minimization of ŵ can be easily solved by a quadratic 

(2.2)ŵ = CV(w) = (y − ỹ)′(y − ỹ),
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Table 1  Simulated results for simulation 1, comparing the means and standard deviations (in the 
parentheses) of MSPE

Setting MACOR DISCOR RIDGE LASSO FOREST

n100 p500 s20 σ.1 .905 (.3834) .943 (.387) .838 (.355) .0153 (.003) .965 (.385)

n100 p500 s20 σ1 2.603 (.469) 2.648 (.490) 2.629 (.469) 2.462 (.381) 2.715 (.442)

n100 p500 s20 σ 2 6.785 (.525) 6.742 (.648) 6.904 (.541) 7.094 (.886) 6.987 (.536)

n100 p500 s50 σ.1 4.458 (.760) 4.444 (.789) 4.264 (.843) 4.442 (1.03) 4.496 (.738)

n100 p500 s50 σ1 5.648 (.968) 5.715 (1.051) 5.591 (.932) 6.001 (1.083) 5.874 (.933)

n100 p500 s50 σ 2 10.042 (1.092) 10.103 (1.009) 10.221 (1.005) 10.771 (1.474) 10.050 (.945)

n100 p500 s100 σ.1 10.498 (1.292) 10.647 (1.397) 10.474 (1.402) 11.662 (1.768) 10.442 (1.282)
n100 p500 s100 σ1 11.498 (1.144) 11.879 (1.262) 11.469 (1.092) 12.885 (1.789) 11.701 (1.089)

n100 p500 s100 σ 2 15.652 (1.559) 15.639 (1.440) 15.627 (1.490) 17.047 (2.338) 15.622 (1.404)

n100 p1000 s20 σ.1 1.221 (.524) 1.189 (.489) 1.259 (.528) .064 (.346) 1.270 (.481)

n100 p1000 s20 σ1 2.945 (.433) 2.845 (.459) 2.979 (.424) 2.867 (.496) 3.062 (.473)

n100 p1000 s20 σ2 6.855 (.613) 6.889 (.616) 6.868 (.571) 7.135 (.780) 6.996 (.635)

n100 p1000 s50 σ.1 4.874 (.779) 4.874 (.820) 4.869 (.786) 5.117 (1.114) 5.049 (.831)

n100 p1000 s50 σ1 6.192 (1.007) 6.107 (1.005) 6.219 (.963) 6.705 (1.359) 6.348 (1.006)

n100 p1000 s50 σ2 10.173 (.995) 10.179 (1.028) 10.112 (.873) 10.716 (1.433) 10.384 (.859)

n100 p1000 s100 σ.1 11.163 (1.463) 11.246 (1.439) 11.182 (1.339) 12.759 (2.017) 11.421 (1.531)

n100 p1000 s100 σ1 12.380 (1.304) 12.538 (1.143) 12.409 (1.165) 13.809 (1.841) 12.763 (1.393)

n100 p1000 s100 σ2 16.815 (1.343) 17.038 (1.574) 16.943 (1.332) 18.969 (2.574) 17.231 (1.563)

n100 p2000 s20 σ.1 1.758 (.569) 1.634 (.565) 1.782 (.574) .258 (.722) 1.801 (.565)

n100 p2000 s20 σ1 3.041 (.446) 2.936 (.512) 3.088 (.529) 2.874 (.583) 3.081 (.469)

n100 p2000 s20 σ2 7.068 (.554) 7.166 (.592) 7.058 (.578) 7.651 (.985) 7.305 (.586)

n100 p2000 s50 σ.1 5.439 (.895) 5.326 (.942) 5.439 (.845) 5.699 (1.029) 5.599 (.922)

n100 p2000 s50 σ1 6.765 (.968) 6.705 (1.004) 6.808 (.936) 7.304 (1.180) 7.072 (.993)

n100 p2000 s50 σ2 10.364 (.951) 10.382 (.989) 10.469 (1.029) 11.316 (1.196) 10.639 (1.051)

n100 p2000 s100 σ.1 11.672 (1.241) 11.588 (1.282) 11.665 (1.329) 13.039 (1.588) 12.212 (1.294)

n100p2000s100σ1 12.878 (1.205) 13.089 (1.311) 13.104 (1.209) 14.229 (1.816) 13.523 (1.363)

n100 p2000 s100 σ2 16.717 (1.233) 16.799 (1.275) 16.867 (1.317) 18.999 (1.967) 17.074 (1.483)

n200 p500 s20 σ.1 .229 (.132) .315 (.186) .178 (.110) .012 (.001) .253 (.148)

n200 p500 s20 σ1 1.787 (.298) 1.794 (.312) 1.784 (.272) 1.724 (.179) 1.838 (.284)

n200 p500 s20 σ2 5.878 (.535) 5.869 (.543) 6.014 (.549) 6.078 (.659) 5.986 (.503)

n200 p500 s50 σ.1 2.098 (.654) 2.397 (.642) 1.663 (.685) .020 (.006) 2.242 (.649)

n200 p500 s50 σ1 4.017 (.619) 4.246 (.658) 3.743 (.731) 2.899 (.585) 4.112 (.653)

n200 p500 s50 σ2 8.364 (.754) 8.511 (.738) 8.321 (.738) 8.641 (1.206) 8.455 (.801)

n200 p500 s100 σ.1 7.973 (1.338) 8.213 (1.254) 6.986 (1.493) 6.836 (1.608) 7.941 (1.381)

n200 p500 s100 σ1 9.123 (1.019) 9.439 (1.096) 8.723 (1.162) 8.559 (1.266) 9.232 (1.045)

n200 p500 s100 σ2 13.662 (1.452) 13.801 (1.352) 13.350 (1.411) 14.299 (1.699) 13.651 (1.359)

n200 p1000 s20 σ.1 .299 (.187) .331 (.180) .253 (.171) .0120 (.001) .332 (.197)

n200 p1000 s20 σ1 2.021 (.283) 1.991 (.279) 2.024 (.272) 1.809 (.195) 2.056 (.260)

n200 p1000 s20 σ2 6.416 (.554) 6.357 (.528) 6.536 (.552) 6.499 (.952) 6.463 (.576)

n200p1000s50 σ.1 3.046 (.849) 3.261 (.851) 2.848 (.897) .023 (.008) 3.347 (.866)

n200 p1000 s50 σ1 4.771 (.694) 4.771 (.726) 4.676 (.735) 3.869 (.882) 4.969 (.729)

n200 p1000 s50 σ2 9.089 (.918) 9.093 (.954) 9.159 (.912) 9.323 (1.034) 9.152 (.920)

n200 p1000 s100 σ.1 8.786 (.975) 8.831 (.899) 8.555 (.989) 8.627 (1.375) 9.147 (.981)

n200 p1000 s100 σ1 10.224 (1.005) 10.290 (.981) 10.036 (.940) 10.628 (1.442) 10.509 (1.121)

n200 p1000 s100 σ2 14.143 (1.287) 14.219 (1.386) 14.095 (1.313) 14.976 (1.674) 14.474 (1.371)

n200 p2000 s20 σ.1 .419 (.249) .432 (.279) .429 (.276) .012 (.002) .473 (.266)

n200 p2000 s20 σ1 2.413 (.416) 2.288 (.368) 2.465 (.407) 1.907 (.228) 2.404 (.399)

n200 p2000 s20 σ2 6.593 (.470) 6.556 (.519) 6.653 (.454) 6.684 (.723) 6.641 (.533)



Page 7 of 17Pan ﻿BMC Bioinformatics          (2021) 22:155 	

programming. Following the similar idea, [3] further extended model averaging to high-
dimensional generalized linear models.

To compare with the relaxed cross-validation criterion in MCV, we consider three 
weight choice alternates in which the conventional constraint of total weights summing 
to 1 is applied.

AIC [1] is a consistent estimator of the Kullback-Leibler discrepancy between the dis-
tribution that generated the data and the model that approximates it. Suppose there are 
K models, AICk = −2log(Lk)+ 2pk , where Lk is the maximized likelihood function and 
pk is the number of parameters under the k-th model. [5] advocated to use the MAIC for 
determining the weights

More recently, [12] proposed a least-squares model average estimator with model 
weights selected by minimizing Mallows’ Cp criterion [21]. The Mallows’ criterion for 
the model averaging estimator (MMA) is

where k(w) is the effective number of parameters, and σ 2 can be estimated by a sam-
ple variance from a “large” approximating model. Hansen showed that the model aver-
age estimator that minimizes the Mallows criterion also minimizes the squared error in 
large samples.

In addition, [13] suggested to select the weights by minimizing a deleted-one cross-
validation criterion, and the method is termed as the jackknife model averaging (JMA). 
The same method is adopted in MCV as expressed in (2.2). However, JMA requires 
∑K

k=1 wk = 1 while such conventional restriction is relaxed in MCV. This criterion is 
quadratic in the weights, so computation is a plausible application of quadratic program-
ming. It is also shown that the JMA estimator is asymptotically optimal in achieving the 
lowest possible expected squared error.

To compare all the weight determining methods, we conduct another simulation study.
Simulation 2. We use the same setting and data generating process in Simulation 1. 

The same candidate models are constructed from the training data, all the methods 

wk =
exp(−AICk/2)

∑K
k=1 exp(−AICk/2)

, k = 1, . . . ,K .

Cn(w) =
(

y − Xβ̂
)′(

y − Xβ̂
)

+ 2σ 2k(w),

Bold values indicate the smallest MSPE in each scenario

MARCOR, DISCOR, RIDGE, LASSO, FOREST denote the method of Marginal Correlation, Distance Correlation, Ridge 
Regression, LASSO, Random Forest, respectively

Table 1  (continued)

Setting MACOR DISCOR RIDGE LASSO FOREST

n200 p2000 s50 σ.1 3.729 (.874) 3.607 (.751) 3.731 (.825) .419 (1.050) 3.900 (.711)

n200 p2000 s50 σ1 5.354 (.852) 5.089 (.877) 5.330 (.862) 4.518 (1.012) 5.465 (.949)

n200 p2000 s50 σ2 9.707 (.763) 9.583 (.805) 9.827 (.763) 10.054 (1.255) 9.972 (.798)

n200 p2000 s100 σ.1 9.693 (1.046) 9.584 (1.137) 9.686 (.980) 10.119 (1.456) 10.275 (1.169)

n200 p2000 s100 σ1 10.863 (1.194) 10.983 (1.052) 10.578 (1.161) 11.092 (1.609) 11.163 (1.292)

n200 p2000 s100 σ2 15.006 (1.164) 15.057 (1.145) 14.948 (1.126) 15.852 (1.129) 15.462 (1.169)
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described in this session are used to determine the model weights. An independent test 
data set of n∗ = 1000 observations is generated to compute the prediction accuracy 
measured by the MSPE. We repeat the iteration 100 times.

Table 2 compares the means and standard deviations of MSPE for each method. Out of 
the 54 scenarios, the relaxed cross-validation (refers to CV in the table), MAIC, MMA, 
JMA perform the best 9/7/14/24 times. The overall performance of JMA appears to be 
the best, MMA performs similarly but slightly worse. More importantly, we find that in 
most cases (45 out of 54), relaxing the total weight constraint does not lower the predic-
tion error. The results confirm with our concern in "Introduction" section.

The improved two‑stage high‑dimensional model averaging

Based on the results from the numerical experiments, we propose an improved model 
average (IMA) procedure, which contains the following two steps:

Stage 1: Construct candidate models by a high-dimensional penalized variable selec-
tion method (LASSO or its variants, such as SCAD [8] and ALASSO [26]).

•	 Run the penalized regression for the high-dimensional data and obtain the LASSO 
estimate for each predictor.

•	 Partition all p predictors into K + 1 groups by the magnitude of the estimates. The 
first group has the largest absolute values of LASSO estimates, and the (K + 1) th 
group contains the predictors whose coefficients are already shrunk to 0. We drop 
the (K + 1) th group, thus the number of candidate models is K.

•	 For each model Mk , k = 1, . . . ,K  , y = Xkβk + ǫ , and the least-squares prediction is 
ŷk = Xk β̂k.

Stage 2: Optimize the model weights by the standard jackknife cross-validation criterion 
by Hansen and Racine [13].

•	 Let ỹk = (ỹ
(1)
k , . . . , ỹ

(n)
k ) be an n-dimensional vector, where ỹ(i)k  , is the predicted value 

ŷ
(i)
k  computed without the ith observation.

•	 Let w = (w1, . . . ,wk) be the weight vector for the K models, then the jackknife pre-
dictor is 

•	 The optimal estimate of w is obtained by minimizing the cross-validation 

 where the standard restriction 
∑K

k=1 wk = 1 is applied.
•	 Finally, the model averaging predicted value ŷ is expressed as 

ỹ =

K
∑

k=1

wkỹk .

ŵ = CV(w) = (y − ỹ)′(y − ỹ),

ŷ =

K
∑

k=1

ŵk ŷk .
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Table 2  Simulated results for simulation 2, comparing the means and standard deviations (in the 
parentheses) of MSPE

Setting CV MAIC MMA JMA

n100 p500 s20 σ.1 .856 (.413) .829 (.423) .841 (.418) .854 (.418)

n100 p500 s20 σ1 2.575 (.403) 2.649 (.485) 2.474 (.378) 2.471 (.379)
n100 p500 s20 σ 2 6.877 (.699) 6.839 (.888) 6.183 (.711) 6.177 (.708)
n100 p500 s50 σ.1 4.337 (.881) 5.080 (1.003) 4.493 (.835) 4.492 (.840)

n100 p500 s50 σ1 5.922 (.918) 6.822 (1.1122) 5.919 (.907) 5.916 (.907)
n100 p500 s50 σ 2 9.919 (1.029) 10.593 (1.286) 9.374 (1.128) 9.328 (1.029)
n100 p500 s100 σ.1 10.581 (1.227) 11.924 (1.461) 10.376 (1.075) 10.377 (1.073)

n100p500s100σ1 11.696 (1.354) 12.829 (1.530) 11.205 (1.248) 11.196 (1.254)
n100 p500 s100 σ2 15.640 (1.197) 16.939 (1.633) 14.693 (1.183) 14.682 (1.160)
n100 p1000 s20 σ.1 1.329 (.467) 1.286 (.585) 1.264 (.497) 1.267 (.494)

n100 p1000 s20 σ1 2.946 (.396) 2.990 (.553) 2.739 (.431) 2.732 (.417)
n100 p1000 s20 σ2 7.084 (.494) 7.065 (.664) 6.276 (.537) 6.260 (.509)
n100 p1000 s50 σ.1 4.947 (.774) 5.541 (.977) 4.895 (.743) 4.895 (.744)
n100 p1000 s50 σ1 6.145 (.634) 6.633 (.799) 5.870 (.617) 5.869 (.616)
n100 p1000 s50 σ2 10.429 (.870) 10.805 (1.222) 9.419 (.771) 9.414 (.768)
n100 p1000 s100 σ.1 11.385 (1.481) 12.309 (1.595) 10.857 (1.294) 10.861 (1.291)

n100 p1000 s100 σ1 12.515 (1.621) 13.700 (1.928) 11.931 (1.624) 11.932 (1.629)

n100 p1000 s100 σ2 16.333 (1.826) 17.324 (2.306) 15.147 (1.609) 15.143 (1.611)
n100 p2000 s20 σ.1 1.728 (.575) 1.575 (.627) 1.519 (.560) 1.519 (.559)

n100 p2000 s20 σ1 3.115 (.502) 3.113 (.681) 2.823 (.506) 2.833 (.506)

n100 p2000 s20 σ2 7.283 (.651) 7.559 (.746) 6.490 (.573) 6.491 (.575)

n100 p2000 s50 σ.1 5.345 (.895) 5.815 (1.209) 5.092 (.885) 5.092 (.886)
n100 p2000 s50 σ1 6.880 (.803) 7.57 (1.207) 6.523 (.805) 6.521 (.806)
n100 p2000 s50 σ2 10.925 (1.118) 11.403 (1.383) 9.954 (.998) 9.955 (.998)

n100 p2000 s100 σ.1 11.894 (1.136) 13.166 (1.814) 11.280 (1.159) 11.278 (1.162)
n100p2000s100σ1 13.014 (1.047) 14.281 (1.667) 12.243 (1.028) 12.245 (1.028)

n100 p2000 s100 σ2 16.564v1.558) 17.597 (2.241) 15.282 (1.459) 15.282 (1.460)
n200 p500 s20 σ.1 .254 (.151) .245 (.143) .247 (.146) .251 (.149)

n200 p500 s20 σ1 1.724 (.251) 1.679 (.260) 1.686 (.247) 1.693 (.249)

n200 p500 s20 σ2 5.859 (.428) 5.823 (.499) 5.512 (.424) 5.499 (.415)
n200 p500 s50 σ.1 2.226 (.683) 2.224 (.726) 2.221 (.709) 2.234 (.706)

n200 p500 s50 σ1 3.933 (.683) 4.061 (.811) 3.964 (.710) 3.959 (.718)

n200 p500 s50 σ2 8.453 (.761) 8.988 (.979) 8.203 (.799) 8.170 (.757)
n200 p500 s100 σ.1 8.055 (1.101) 9.544 (1.538) 8.567 (1.251) 8.538 (1.267)

n200p500 s100 σ1 9.269 (.832) 10.965 (1.212) 9.758 (.874) 9.722 (.859)

n200 p500 s100 σ2 13.247 (1.304) 14.661 (1.640) 13.144 (1.247) 13.076 (1.249)
n200 p1000 s20 σ.1 .330 (.217) .306 (.198) .318 (.211) .325 (.214)

n200 p1000 s20 σ1 2.008 (.309) 1.802 (.302) 1.841 (.289) 1.841 (.286)

n200 p1000 s20 σ2 6.319 (.531) 6.191 (.633) 5.714 (.480) 5.713 (.479)
n200p1000 s50 σ.1 2.757 (.841) 2.844 (1.047) 2.775 (.919) 2.803 (.905)

n200 p1000 s50 σ1 4.699 (.729) 5.080 (.893) 4.716 (.747) 4.717 (.745)

n200 p1000 s50 σ2 9.028 (.824) 9.438 (1.062) 8.515 (.752) 8.514 (.743)
n200p1000s100σ.1 9.070 (1.087) 10.523 (1.293) 9.366 (1.105) 9.366 (1.106)

n200 p1000 s100 σ1 9.881 (1.102) 11.395 (1.368) 10.034 (1.046) 10.028 (1.049)

n200 p1000 s100 σ2 14.765 (1.169) 16.065 (1.569) 14.097 (1.159) 14.100 (1.161)

n200 p2000 s20 σ.1 .409 (.267) .334 (.208) .369 (.226) .373 (.225)

n200 p2000 s20 σ1 2.454 (.362) 2.113 (.416) 2.151 (.357) 2.152 (.356)

n200 p2000 s20 σ2 6.529 (.536) 6.355 (.622) 5.791 (.484) 5.789 (.481)
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Remark  As a referee points out, ranking is an essential component of the out-per-
formance. By ranking all the predictors based on the magnitude of the estimates, the 
models proposed in Stage 1 are not equally competitive. The first few models are likely 
to be more informative than the last few models because of the ordering of regressors. 
Therefore, assigning larger weights to the first few models and smaller weights to the last 
few models tend to improve the predictive performance. Note that [2] also ranked the 
predictors in the MCV method by using the marginal correlation. Moreover, we have 
conducted some simulation experiments, the results show that (although not shown in 
the article) ranking predictors into K different groups has lower prediction errors than a 
random assignment of non-zero predictors.

Remark  The overall performance of the proposed method depends on the choice of 
parameter K which is the total number of models. Determining the optimal value of K 
is similar to finding the best tuning parameter � in penalized variable selection. For each 
candidate value of K, a group of models is constructed and the best model weights are 
determined. The optimal K is the one with the lowest cross-validation score. Note that 
the specification of K may vary case by case, here we propose a practical strategy for 
optimizing the choice of K. The number of predictors pk in each model is set to be the 
same, pk = n× q , where n is the sample size, q is a value between 0 and 1. First, we set T 
to be the number of predictors whose LASSO estimates are non-zero. Because the total 
number of predictors from K models is equal to K × pk , it is desirable for K × q × n to 
be no greater than T. Subject to this restriction, we choose K and q whose cross-valida-
tion prediction error is the smallest.

Simulations
To assess the performance of the improved model averaging (IMA) method, we com-
pare our approach with some existing model selection and averaging methods on simu-
lated data. These competitors include MAIC [5], LASSO [23], MCV [2], and SISSCAD (a 
combination of sure independence screening [9] and SCAD [8]).

In this simulation study, we follow the settings of Ando and Li [2], 6 model settings are 
considered. 

Bold values indicate the smallest MSPE in each scenario

Table 2  (continued)

Setting CV MAIC MMA JMA

n200 p2000 s50 σ.1 3.736 (.939) 3.760 (1.066) 3.644 (.961) 3.653 (.948)

n200 p2000 s50 σ1 5.443 (.714) 5.693 (.915) 5.227 (.710) 5.227 (.710)
n200 p2000 s50 σ2 9.577 (.759) 10.098 (1.009) 8.923 (.722) 8.925 (.723)

n200 p2000 s100 σ.1 9.813 (1.085) 11.147 (1.312) 9.842 (1.064) 9.842 (1.064)

n200 p2000 s100 σ1 11.309 (1.278) 12.557 (1.691) 11.091 (1.254) 11.091 (1.255)
n200 p2000 s100 σ2 15.286 (1.056) 16.467 (1.499) 14.388 (1.076) 14.390 (1.079)
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(a)	 Set the sample size n = 50 and the number of predictors p = 2000 . Let the 
number of true predictors s = 50 , the true predictors xi are spaced evenly, 
i = 40(j − 1)+ 1, j = 1, . . . , 50. Further, the true coefficients βj are generated 
from N(0, 0.5), and the design matrix X is generated from N (0,� = ρ|i−j|) , where 
ρ = 0.6 . Finally, the error terms ǫi are generated from N (0, σ = 0.2).

(b)	 Under the same setting (a), n is increased to 100.
(c)	 Under the same setting (a), the value of ρ is decreased to 0.
(d)	 Under the same setting (a), the standard deviation of the error term σ follows 

Unif(2.1, 2.3).
(e)	 Under the same setting (d), n is increased to 100.
(f )	 Under the same setting (d), the value of ρ is decreased to 0.

For each setting, we generate n∗ = 1000 observations to compute MSPE. Figures 1, 2, 
3, 4, 5 and 6 show the boxplots of MSPEs after 100 simulation runs under settings (a) to 
(f ). As we can see, increasing the sample size ((a) V.S (b) and (d) V.S. (e)), and decreas-
ing the correlation ρ in the design matrix X ((a) V.S (c) and (d) V.S. (f )), both tend to 
decrease the prediction error. In addition, the proposed procedure IMA yields the small-
est median of MSPE in most settings, and achieves stable performance by having the 
short length of the boxplots. The results demonstrate that IMA performs favorably in 
comparison with other methods. In particular, the median of MSPE of IMA is at least 
20% lower than that of MCV, we remark that the IMA method outperforms MCV, and 
thus significantly improves the prediction accuracy and stability of model averaging for 
high-dimensional linear regression.

Table 3 compares the computational time required for each method under the set-
tings (a) to (f ). The computations are conducted using R version 3.5.0 on the Owens 

Fig. 1  Boxplots of MSPEs for Setting (a)
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clusters at the Ohio Supercomputer Center (OSC). After 100 simulation runs, the 
averaged time (in seconds) and corresponding standard deviations are given. Several 
observations can be seen from this table. First, with the fixed number of predictors p 
and the correlation ρ , increasing the sample size n will decrease the computing time. 

Fig. 2  Boxplots of MSPEs for Setting (b)

Fig. 3  Boxplots of MSPEs for Setting (c)
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Second, with the fixed number of predictors p and the sample size n, decreasing the 
correlation ρ will decrease the computing time. Third, in general, model selection 
methods (LASSO, SISSCAD) have less computing time than the model averaging pro-
cedures (MAIC, MCV, IMA). Last, the proposed method IMA is much faster than 
other model averaging competitors and is comparable to model selection methods 
regarding the computational cost.

Fig. 4  Boxplots of MSPEs for Setting (d)

Fig. 5  Boxplots of MSPEs for Setting (e)
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Riboflavin data analysis
To further explore the practical behavior of the proposed method, we consider the 
riboflavin data with n = 71 observations in Bühlmann and Mandozzi (2014 [6]). The 
response variable y is the logarithm of the riboflavin production rate, the predictors 
are the gene expression levels for 4088 genes. The methods to be included in the com-
parison experiment are: IMA, MAIC, SCAD, MCV, and RMSA (another recent model 

Fig. 6  Boxplots of MSPEs for Setting (f )

Table 3  Averaged computational time (in seconds) and corresponding standard deviations (in the 
parentheses) for each method

Setting MAIC LASSO MCV IMA SISSCAD

Setting (a) 13.773 .397 13.767 .457 .035

(7.012) (.020) (7.010) (.046) (.002)

Setting (b) 2.237 .672 2.220 .749 .047

(.612) (.064) (.598) (.082) (.006)

Setting (c) 9.757 .405 9.727 .472 .037

(3.624) (.023) (3.612) (.050) (.002)

Setting (d) 11.600 .298 11.599 .510 .037

(2.993) (.069) (2.992) (.072) (.003)

Setting (e) 2.065 .403 2.069 .922 .047

(.418) (.075) (.429) (.097) (.001)

Setting (f ) 9.667 .325 9.595 .594 .038

(2.727) (.069) (2.706) (.079) (.005)
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averaging procedure by Lin et al. [19]. We randomly divide the data into a training set 
with 50 observations and a test set with the remaining 21. In each time, p = 500 or 
1000 genes are chosen randomly from the totality of all genes, the process is repeated 
100 times.

The results for the Riboflavin data are presented in Table 4. Similar to the results in the 
simulation study, the prediction errors of IMA are substantially smaller than those of the 
other methods, and the computing time is pretty competitive. It is also noted that RMSA 
performs well in this real example, while the amount of computation required for such 
method is considerably high. Therefore, compared to RMSA, IMA not only has slightly bet-
ter performance in prediction accuracy, but also enjoys much lower computing cost.

Discussion
To achieve a stable and improved prediction, we propose a novel two-stage model aver-
aging procedure in high-dimensional linear regression models. The method uses vari-
able selection to group predictors for model averaging and applies the standard jackknife 
cross-validation for optimizing weights.

Compared with the recent model averaging procedure (MCV, [2]), the proposed 
approach has better predictive performance, meanwhile it retains computational flex-
ibility even for extra high-dimensional data. We conduct numerical studies including 
simulations and a real riboflavin data analysis, the results demonstrate that the proposed 
technique is quite efficient in forecasting and outperforms the existing methodologies in 
general.

Even though advantages of model averaging over model selection have been demon-
strated in the low dimensional regression analysis, it is still unclear to a large extent when 
model averaging should be preferred is high-dimensional linear models. [25] proposed 
an index, PIE, to measure model selection instability in estimation. They suggested that: 
If PIE is bigger than 0.5, model averaging should be considered; if PIE is less than 0.4, 
model selection is likely to work better than the model combining methods. However, 
PIE does not function properly for high-dimensional data based on our investigation. In 
the future, we intend to develop a measure which can be used to guide practitioners for 
deciding which way to go: averaging or selection, when dealing with high-dimensional 
problems.

Table 4  Results for the Riboflavin data, comparing the means and standard deviations (in the 
parentheses below) of MSPE, and the averaged computational time (in seconds) and corresponding 
standard deviations (in the parentheses below) for each method

Case MAIC LASSO SCAD MCV IMA RMSA

p = 500

MSPE .489 .475 .469 1.294 .371 .402

(.166) (.179) (.163) (1.612) (.127) (.155)

Running Time 12.379 .111 .130 12.371 .172 .761

(10.698) (.008) (.017) (10.709) (.054) (.080)

p = 1000

MSPE .384 .375 .372 1.713 .316 .322

(.123) (.189) (.173) (2.993) (.130) (.127)

Running Time 12.079 .176 .210 12.113 .248 .795

(16.953) (.032) (.057) (17.007) (.068) (.062)
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