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Abstract 

Background:  Gene co-expression networks (GCNs) are not easily comparable due 
to their complex structure. In this paper, we propose a tool, Juxtapose, together with 
similarity measures that can be utilized for comparative transcriptomics between a set 
of organisms. While we focus on its application to comparing co-expression networks 
across species in evolutionary studies, Juxtapose is also generalizable to co-expression 
network comparisons across tissues or conditions within the same species.

Methods:  A word embedding strategy commonly used in natural language process-
ing was utilized in order to generate gene embeddings based on walks made through-
out the GCNs. Juxtapose was evaluated based on its ability to embed the nodes of 
synthetic structures in the networks consistently while also generating biologically 
informative results. Evaluation of the techniques proposed in this research utilized RNA-
seq datasets from GTEx, a multi-species experiment of prefrontal cortex samples from 
the Gene Expression Omnibus, as well as synthesized datasets. Biological evaluation 
was performed using gene set enrichment analysis and known gene relationships in 
literature.

Results:  We show that Juxtapose is capable of globally aligning synthesized networks 
as well as identifying areas that are conserved in real gene co-expression networks 
without reliance on external biological information. Furthermore, output from a match-
ing algorithm that uses cosine distance between GCN embeddings is shown to be 
an informative measure of similarity that reflects the amount of topological similarity 
between networks.

Conclusions:  Juxtapose can be used to align GCNs without relying on known biologi-
cal similarities and enables post-hoc analyses using biological parameters, such as 
orthology of genes, or conserved or variable pathways.

Availability:  A development version of the software used in this paper is available at 
https​://githu​b.com/klove​ns/juxta​pose

Keywords:  Gene co-expression networks, Transcriptomics, Evolution, Machine 
learning, Embedding, Word2vec
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Background
High-throughput techniques such as RNA-seq and microarray make it possible to 
measure the expression level of a large number of genes in a single experiment. These 
high-throughput expression studies have resulted in a large number of gene expression 
datasets that are available through public repositories such as GEO [1] and ArrayExpress 
[2]. Differential expression analysis, which refers to the comparison of the expression 
measures of individual genes across phenotypes/conditions, has been the common prac-
tice in analysing these data [3]. This approach only leads to the identification of indi-
vidual genes with different expression levels across phenotypes/conditions. However, 
often coordinated interaction of groups of genes drives various biological processes and 
functions, and the change in the expression level of a single gene does not capture this 
complex network of interactions. These complex gene-gene interactions can be modeled 
as a network.

Networks have been widely used for the study of complex interactions between genes, 
proteins, and other biomolecules [4, 5]. In particular, gene co-expression networks 
(GCN) constructed using gene expression data can be utilized to extract information 
about coordinately expressed genes. GCNs are commonly represented as weighted net-
works, where the networks have a numeric value representing each interaction among 
nodes (genes) by some measure of their relationship as opposed to being represented 
as a binary network—typically used to represent protein-protein interaction (PPI) net-
works, for example—with unweighted links among nodes of a network. It has been 
shown that co-expression networks are not static, and can change depending on the the 
biological context [6]. Comparing these networks can aid in improving functional anno-
tation of genes and the discovery of gene–gene interactions [7], revealing the molecular 
mechanisms of complex diseases or the relationships between biological processes [8], 
and helping to speed up the process of selecting genes for targeted mutational studies 
[6]. Therefore, comparing these networks can provide valuable insight into the key coor-
dinated interactions that are associated with the phenotypes under study.

Approaches capable of comparing dense and weighted networks such as GCNs include 
measuring the similarity between the topological properties of networks [9–12], clus-
tering for the identification of conserved modules of genes [13–15], and comparison of 
edge weights for matched orthologs [16]. Common similarity measures include calculat-
ing differences between degrees, clustering coefficients and eccentricities [17, 18], spec-
tral signatures [19–21], and graphlet-degree signatures [22–24]. However, many of these 
methods provide a more generalized measure of the similarity, which can make it chal-
lenging to distinguish how specific genes actually relate to each other in a direct manner; 
and some of these measures can also get more and more difficult to interpret the more 
evolutionarily distant the species. Many of these measures may also rely on measuring 
the similarity between groups of genes, or modules.

One of the methods most commonly used to study the relationships between co-
expression modules and to test whether a module is preserved between two different 
phenotypes is weighted gene co-expression network analysis (WGCNA) [8]. Although 
WGCNA provides insight into the conserved modules between the pairwise compari-
son of phenotypes, it does not provide a systematic means for comparing more than two 
phenotypes or networks. OrthoCluster [25] is another method that can be used to align 
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modules in a pairwise comparison of phenotypes. However, it relies on external biologi-
cal information such as one-to-one orthologs that is not always readily available specifi-
cally for non-model organisms [26]. Furthermore, different genes throughout evolution 
can take on similar roles and processes [27–29], and matching orthologs is not always 
appropriate when comparing GCNs. In contrast, it is possible to align networks by 
strictly using the topology of the networks. However, comparing co-expression networks 
topologically with alignment methods can be challenging due to their large size and the 
computational complexity of this type of network comparison [30]; therefore, the appli-
cation of network alignment—more commonly applied to protein-protein interaction 
networks—to larger GCNs might be difficult.

Embedding techniques, a powerful tool in natural language processing, have also been 
utilized to analyse biological networks. These include matrix factorization-based meth-
ods as well as more recent neural network-based methods [31, 32]. Embedding methods 
provide a vectorized representation for each gene/protein and are often faster than other 
options, which can be critical when dealing with analysing networks [33]. Additionally, 
the learned embeddings are often applicable for downstream analysis as the method 
provides a numeric representation of the genes that can be fed into a machine learn-
ing algorithm, for example, while capturing information about how it is positioned in a 
network.

In this paper, we present Juxtapose, a systematic methodology for comparing multi-
ple co-expression networks using an embedding-based approach. The proposed method 
does not require external biological information such as knowledge of orthologs. Juxta-
pose establishes both a local and global measure of similarity between networks based 
on their topology. Using both synthesized and real networks, we show the utility of the 
proposed method for comparing GCNs. Due to the lack of network alignment methods 
specialized for GCN alignment, we compare to PPI alignment methods that have been 
used or can be used to compare GCNs [7, 34]. We also compare Juxtapose to MUNK 
[31], which has many similarities with our proposed embedding method. However, it 
has been designed for PPI alignment, so it is unknown how well it performs when align-
ing GCNs. Furthermore, the biological relevance of the gene set enrichment analysis 
results after aligning real GCNs from multiple species using Juxtapose is compared to 
the results obtained using a common method used to compare GCNs, WGCNA.

The rest of the paper is structured as follows. Related work on GCN and PPI network 
analysis using embedding is described in "Related work" section. "Methods" section 
presents the methodology in detail and "Results" section describes the results obtained 
when comparing GCNs. "Discussion" section discusses the results and identifies poten-
tial caveats. Finally, "Conclusion" section ends the paper with a brief summary.

Related work
Embedding methods stem from natural language processing (NLP), a discipline con-
cerned with the computational methods for understanding and analysing text. An 
embedding for a word is a vectorized representation, i.e. a point in embedding space. 
Methods for learning embeddings rely on the Distributional Hypothesis, which states 
that words that appear in the same contexts share semantic meaning [35]. As such, 
semantically similar words should be mapped close to each other in the embedding 
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space. In terms of embedding genes in the context of GCNs, co-expressed genes should 
be placed close together in the embedding space. When embedding GCNs, a sequence 
of genes can be generated by conducting a random walk on the network. These walks 
capture the organization of the genes in the GCN e.g., the more two genes appear in 
sequence, the closer their gene embedding representations will become during the 
model training process.

Word2vec is a neural network-based approach, which aims at learning a distribu-
tional representation of words as vectors [36]. The key components of this model are 
two weight matrices. The rows of the first matrix and the columns of the second matrix 
embed the input genes and target genes, respectively. The product of these two gene vec-
tors is then used to get the probabilities for being a target gene, given the selected input 
word. A gradient descent approach can be used to learn these weight matrices by maxi-
mizing the probabilities of the true target gene(s).

Methods that extend or utilize word2vec to embed graphs such as node2vec [32] 
generate random walks through the networks to generate node representations. When 
embedding GCNs, a sequence of genes can be generated by conducting a random walk 
on the network. These walks capture the organization of the genes in the GCN e.g., the 
more two genes appear in sequence, the closer their gene embedding representations 
will become during the model training process. However, as node2vec was not designed 
to consider networks with edge weights and also does not offer strategies to create 
embeddings to compare across networks, we did not make use of the pipeline directly 
for graph embedding as it would ignore essential characteristics of GCNs.

Recent advances in machine learning have led to the development of gene representa-
tions from co-expression networks [37–39]. Gene2vec [39] and G2vec [38] are exam-
ples that utilize the word2vec [36] model originally used for natural language processing. 
Word2vec aims to predict the co-occurrence of a word and its surrounding words, which 
is called the context for that word. Analogously, in GCNs genes that are co-expressed 
with a given gene are considered its context. Knowing a gene and its context, these 
methods try to predict a gene from its context or vice versa.

Currently, these techniques have been used to predict important genes for disease 
within a single co-expression network. Gene2vec [39], utilizes word2vec as well as a 
measure of “clusteredness” of known biological pathways from MSigDB to learn gene 
embeddings. They used the “clusteredness” measure to encourage genes that are part 
of the same biological process or function to cluster together in the embedding space. 
They evaluated their method by its capability to cluster genes in the same biological cat-
egories, as defined by MSigDB. G2vec [38] also used word2vec to compute gene rep-
resentations for identifying potential biomarkers important for cancer prognosis. Using 
gene expression data from cancer patients, the authors divided samples into two groups 
of poor and good prognosis as defined by survival outcome. For each group, they built 
a GCN. Then for each GCN, they generated random walks (10 walks originating from 
each gene). Next, these random walks were used for learning gene representations that 
distinguish good and poor prognosis groups. Using gene expression data acquired from 
TCGA transcriptomic dataset, Choy et  al. implemented a two-layer neural network 
architecture to learn gene representations from cancer biomarker discovery [37]. To 
learn an association between the category of each sample and its gene expression, they 
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trained the model to minimize the error between the predicted and actual gene expres-
sion values. They evaluated their model by its capability in clustering similar samples 
in the embedding space. G2vec [38] is the only method of those described above that 
directly compared two networks in a pairwise manner. However, combining walks from 
different GCNs to train a single model will convolute the gene representations as they 
will be a mixture of both networks. Furthermore, all of these methods utilize random 
walks as is traditionally done when embedding networks, which does not incorporate 
the weights of the edges in GCNs.

Finally, traditional techniques such as matrix factorization have shown promising 
results, as well as more recent manifold learning techniques to compare biological net-
works [40]. Fan et al. used a matrix factorization method as well as one-to-one orthologs 
to compare PPI networks of well-studied species, namely human, mouse, and two types 
of yeast [31]. Given a source PPI network, a target PPI network, and a set of homologous 
proteins across species, they computed diffusion kernels for each PPI network. Next, 
the diffusion kernel for the source species is factorized. To create protein representa-
tions that embed proteins from different species to the same embedding space, they 
solved a linear system of the source and target species’ diffusion kernels. The choice of 
the homologous proteins is essential for this approach as it can substantially affect the 
results of the linear system used for enforcing the embedding of multiple species to the 
same embedding space as it is a hard condition when solving the linear system [41].

Methods
In this section, the following will be described: the synthetic and real datasets used, the 
GCN construction and methodology of Juxtapose, the evaluation, and a comparison to 
other approaches in the literature. An overview of the Juxtapose methodology is shown 
in Fig. 1.

Data

To analyse the accuracy of the results of the proposed method, Juxtapose, we use syn-
thetic and real GCNs. The 3 synthetic networks are shown in Fig. 2, which are only eval-
uated to test each method’s ability to align identical networks. The number of nodes and 
edges in each of these networks is presented in Table 4 of the Appendix. For the real 
datasets, we utilized RNA-seq data available from the GTEx project, which has expres-
sion data across many different tissues. To construct GCNs for brain and heart tissues, 
we used subsets of the expression data from heart ( n = 200 samples) and brain tissue 
( n = 200 samples). Gene expression and sample description data were downloaded on 
January 18th, 2020 from the GTEx website. We used a common pipeline for preproc-
essing RNA-seq data [42]. The preprocessing was conducted by using Trimmed Mean 
of M-values (TMM) normalization, and filtering lowly expressed genes was done using 
the edgeR [43] and limma [44] packages in R. Several KEGG pathways in humans—see 
Table 1 for the list of pathways—were selected in order to construct the networks from 
brain and heart tissues using a method discussed in Sect.  3.2. It is hypothesized that 
the GCNs constructed from heart tissue samples would have more conserved networks 
when these GCNs are compared to each other than when compared to GCNs con-
structed using brain tissue samples. Similarly, brain GCNs should show more similarities 
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Fig. 1  Methodology for generating joint gene embeddings from co-expression networks. 1 The 
co-expression networks are constructed from gene expression data. 2 Anchor genes ( a1, ..., an ) are selected 
as anchor nodes, which have relatively stable behaviour in the co-expression networks being compared. 
Dangling structures of γ artificial nodes are added to the graphs (shown with dashed borders and edges 
shown in grey) with equal edge weights across the networks being compared. In this illustration γ = 4 . These 
dangling structures are connected to one of the selected anchor nodes in the original networks. 3 These 
networks are used to generate a set of random walks from each gene in each network. 4 The paths through 
the nodes are used as sentences to feed to a word2vec model, which learns informative embeddings for 
each gene in the networks. The model takes a gene in a network and the genes surrounding it in a path 
within a defined window and feeds them to a neural network that, after training, predicts the probability that 
each gene appears in the window around the focus gene. The process begins with a vector that contains 
all zeros and a 1 which represents the corresponding gene in the network. An N × �G� embedding matrix 
contains one row for every gene in the vocabulary and the number of columns equal to the embedding 
size N. Pairs of genes are used to train the model and generate a representative embedding for each gene. 
This newly discovered embedding vector of dimension N forms the hidden layer. The input gene, selected 
using multiplication of the embedding matrix and Input vector, is fed to the model. The multiplication of 
the hidden layer and the word context matrix produces the output, which will be a prediction of the most 
probable output gene. Then, the loss is calculated between what was expected and the gene predicted. 
During backpropogation, when computing the gradient of the loss function, network weights including 
the embeddings for all genes in the vocabulary get updated. Given a hypothetical path from a random walk 
g1, g3, g4, g9, . . . , g2 and a window size of 2, g3 has the following input gene pairs (g1, g3) and (g3, g4) under 
the Skip-gram architecture of word2vec. 5 The pairwise similarity scores between genes in the embedding 
matrix are calculated resulting from the word2vec model. 6 The embeddings and the distances between 
genes in the embedding are are analysed and visualized

cb d ea

Fig. 2  Networks used for evaluating Juxtapose. The line, circle, and cross were synthetic networks and the 
last two networks are a heart and brain GCN, respectively
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to each other. Two of the networks constructed are shown in Fig. 2. Lastly, we also uti-
lized an RNA-seq dataset originating from the prefrontal cortex of human, chimpan-
zee, macaque, and mouse [45] to evaluate Juxtapose using a multi-species dataset. This 
dataset contained 12 samples for each species. The reads of this dataset were mapped 
to Ensembl genome builds GRCh38, Pan_tro_3.0, Mmul_10, and GRCm38 using STAR 
3.5.2 [46]. The raw counts were normalized for each species individually using TMM 
normalization. Any gene that did not meet thresholds was removed from downstream 
analyses.

To construct the real GCNs, Pearson Correlation Coefficient (PCC) was calculated for 
each pair of genes and transformed to a value between 0 and 1 using 0.5+ 0.5PCC(gi, gj) 
where gi and gj are a pair of genes in a network G. Although PCC ranges from −1 (neg-
ative correlation) to 0 (no correlation) to +1 (positive correlation), the affine transfor-
mation above was applied to map negative correlation to 0, no correlation to 0.5, and 
positive correlation to +1 . This ensures that negative correlations are separate and pre-
served, while allowing the values to be between 0 and 1. In order to construct the co-
expression networks, a threshold of +/− 0.8 for the original PCC values was selected 
before being transformed to determine whether an edge/relationship should connect a 
pair of genes.

Projecting genes from different networks into the same embedding space

When networks are embedded separately, they are not necessarily going to be directly 
comparable. Therefore, it is useful to have pieces of the networks with a known and con-
served structure. In this way, these pieces can be matched up with high confidence and 
can be used to align the parts of the network with unknown topology.

One strategy that has been used to jointly embed multiple PPI networks is to use a 
group of landmark or anchor genes [31]. However, there is an important difference when 
doing this procedure with co-expression networks. The selection of anchor genes when 
comparing co-expression networks is critical since expression relationships between 
some orthologous genes can vary widely depending upon the phenotypes or organ-
isms being compared. To avoid this problem, anchor genes were selected from highly-
conserved cellular processes, such as transcription and translation, which more likely 
contain orthologous gene positions within the co-expression network [47]. Therefore, 
anchor genes were selected from those annotated with homeostatic processes involved 
in the maintenance of an internal steady state at the level of the cell, including control 

Table 1  Gene sets used for constructing co-expression networks

∗ GO gene set was used to select candidate anchor genes

ID Description # of Genes

hsa04260 Cardiac muscle contraction 87

hsa05410 Hypertrophic cardiomyopathy 90

hsa05010 Alzheimer disease 369

hsa05012 Parkinson disease 249

Potential Anchor Genes
GO:0019725 cellular homeostasis∗ 970
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of cellular proliferation and death and control of metabolic function. These genes were 
selected from gene sets shown in Table 1. These genes are likely to have similar connec-
tions to the rest of a co-expression network. In order to compare co-expression networks 
using these anchor genes, we propose a method to embed genes in the same embedding 
space.

Figure 1 illustrates the steps for preparing two co-expression networks G1 and G2 for 
embedding and these steps are described as follows. First, the anchor genes need to 
be selected, a1, ..., an , that are present in the networks that will be embedded. We use 
anchor genes to provide a base for model evaluation. Since anchor genes are expected to 
be aligned across species, if we have the same graph structure attached to these genes, 
the structures also are expected to be aligned across GCNs. Thus, different synthetic 
structures are created and the same structure is added to matching anchor genes across 
networks. Hereafter, we refer to such a synthetic structure as a dangling structure. For 
a selected anchor gene, the dangling structure created is a random sparsely connected 
graph. The number of nodes for a dangling structure γ ( γ ∈ N ) is a hyperparameter for 
the model representing the number of nodes in a dangling structure. The nodes in the 
dangling structure are connected using 15% of all its potential edges. If the resulting 
dangling structure is not a connected graph, a minimal number of edges required for 
making the dangling structure a single component is randomly added to the dangling 
structure. All edges in the dangling structure are assigned a weight equal to 1.

As each synthetic structure should be a connected component of the graph, the mini-
mum sparsity requirements for n nodes is equal to 2n . Also, to avoid disconnected com-
ponents, even if the choice of sparsity is under the minimum value required to make a 
connected structure, then the proposed approach will add connections until a connected 
component is achieved. However, it should be insured that all components are unique 
structures after construction. Figure  3 shows the minimum levels of sparsity required 
in order to make synthetic structure that could potentially be connected. The rationale 
behind using a sparse artificial network is that nodes in dense networks are topologically 
similar. Therefore there is not much topological variation that can be used for model 
evaluation, and any naive embedding that maps all nodes to almost the same value could 
be considered a reasonable solution. Therefore, we use sparse graphs to provide a better 
estimate of model capability in encoding topological variation among nodes.

Generating walks and model training in Juxtapose

Walk generation was performed in Juxtapose by converting the weights of the GCNs to 
a probability of travelling through the edges connecting genes. The higher a correlation 
value, the more likely a walk would travel through the edge. In order to handle large real 
networks in Juxtapose, translation from gene names or Ensembl IDs to integer values 
was performed in order to give the method the power to generate a large number of 
walks quickly. This translation generates a JSON file to make it convenient to convert 
integer values back to gene name or IDs for visualization and for interpreting results.

In order to generate gene embeddings, gensim version 3.8.3 was utilized. A word 
embedding was trained by maximizing the probability of gene co-occurrences in con-
text, i.e., only a few genes apart in a single walk. Analogously, we defined the context of 
a gene by the other genes that are co-expressed with it. An N × �G� embedding matrix 
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is randomly initialized and contains one row for every gene in the vocabulary and the 
number of columns equal to the embedding size N. This newly discovered embedding 
vector of dimension N forms the hidden layer. An input gene is fed to the model in order 
to generate predicted output genes, meaning the genes that are most likely to follow the 
input gene in the generated walks within a set window. The multiplication of the hidden 
layer and the word context matrix produces the output, which will be a prediction of the 
most probable output gene. Then, the loss is calculated between what was expected and 
the gene predicted. This process continues with all of the generated walks.

The parameters used to generate the embeddings for genes in each dataset are pro-
vided in Table 5 of the Appendix. We rely on our ability to generate training data from 
the GCNs by using more walks per gene rather than increasing the number of training 
epochs or iterations, which can cause overfitting [48]. This is often not possible for many 
applications since the amount of training data can be limited. However, in the context of 
GCN, one can extract a large dataset of random walks. This has the benefit of (1) pro-
viding a better representation of a co-expression network by having a large number of 
random paths and (2) not needing to repeat the training for a large number of epochs. 
Indeed, our model used only 1 epoch, and it generated a large number of random paths 
from the entire network. Instead of, for example, using 10 walks per gene and iterating 
over this 100 epochs we use 1000 walks per node with 1 epoch.

Measuring similarity of embedded genes, aligning networks, and measuring network 

similarity with Juxtapose

One local and one global measure of similarity between genes was used in order to 
compare the genes of two co-expression networks. The local similarity measure utilized 
between all pairs of gene vectors between the two networks was cosine distance, which 
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Fig. 3  Line graph illustrating the required minimum sparcity levels in order to create a connected sythetic 
structure to attach to the real portions of the gene co-expression networks. The x-axis shown the number of 
nodes used to construct the synthetic structure and the y-axis shows the minimum level of sparcity (numbers 
of edges connecting nodes of the synthetic structure) required to make a connected graph, i.e., there is only 
one component that includes all of the nodes in the synthetic structure
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measures the cosine of the angle between them. Cosine distance between pairs of genes 
was calculated as shown in Equation 1, where a = (a1, . . . , an) and b = (b1, . . . , bn) are 
the gene vectors/embeddings.

One advantage of cosine distance is that it has low computational complexity, where only 
the non-zero dimensions of the gene vectors need to be considered. Furthermore, cosine 
distance tends to be effective at estimating the distance between vectors when they have 
a high dimension [49]. Indeed, as the structure of GCNs can be quite complex, and the 
number of genes in these networks is often in the thousands, the gene embeddings may 
require a high dimension in order to represent their position in the GCNs accurately.

With this local distance measure between genes of different networks, it is then 
possible to match genes from one network to the other. A matching algorithm (for-
mally, on bipartite graphs) is an algorithm that takes two lists of elements where 
there is a distance between every element of one list to every element of the other, 
and constructs a “matching” between the two lists—a matching associates every ele-
ment of one list with exactly one element of the other list in such a way that each 
element only gets associated once—and it does so in such a way that the sum of the 
distances matched is minimal over all possible associations. The Hungarian algo-
rithm is a well-known matching algorithm that runs in polynomial time complexity. 
The matching constructed by the algorithm is mathematically guaranteed to be opti-
mal, and have the smallest sum of matched distances [50]. In our case, the two lists 
are the genes in the two GCNs being compared, and the distance between pairs of 
genes of the two networks being compared is the cosine distance. Thus, the Hungar-
ian algorithm in the scikit-learn Python library [51] is used to create a type of global 
similarity by producing the best global alignment (matching) of genes in two net-
works based on their pairwise angular distance. This matching not only provides an 
optimal association (or alignment) between genes of the two networks, but the sum 
(or equivalently, average) of the matched distances provides a global similarity score 
between the networks being compared. As there was a distance calculated between 
each pair of genes, groups of genes that have similar patterns of distances can also be 
grouped using a biclustering method. This can also be overlaid with other biological 
information for other downstream analyses.

Biclustering was utilized in order to discover groups of genes that have similar dis-
tances to each other as well as similar differences to other genes. Spectral Bicluster-
ing assumes a checkerboard structure where the same gene can belong to multiple 
biclusters [52]. The rows and columns of a matrix with this structure may be par-
titioned so that the entries of any bicluster in the Cartesian product of row clusters 
and column clusters are approximately constant. For instance, if there are two row 
partitions and three column partitions, each row will belong to three biclusters, and 
each column will belong to two biclusters. Biologically, genes may be involved in 
different biological processes and have different patterns of distance between genes. 
This method of biclustering was used since the biclusters generated provide clusters 

(1)cos distance(a, b) = 0.5− 0.5

∑n
i=1 aibi
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of genes that have similar distances from a gene of interest to different degrees. 
Gene set analysis was performed on the resulting biclusters on the non-simulated 
networks using WebGestalt [53].

Evaluation of Juxtapose

Results from two common methods of graph alignment, IsoRankN [20] and MAGNA++ 
[54], as well as MUNK [31] and WGCNA [8] were compared to the results of the gene 
embedding method Juxtapose, where appropriate. IsoRankN and MAGNA++ were 
evaluated based on their ability to align the nodes of equal or similar networks and the 
information captured by their similarity scores. Real networks for brain and heart were 
also compared to each other in order to compare similarity results from Juxtapose to the 
results from IsoRankN, MAGNA++, and MUNK. The percentage of correctly aligned 
genes was determined by measuring the proportion of genes with corresponding gene 
names in each aligned GCN that were matched together in an alignment. Juxtapose was 
further evaluated with large, real GCNs from multiple organisms to demonstrate its abil-
ity to handle various GCNs with different genes as well as to assess the method from a 
biological perspective. WGCNA was compared based on the conserved modules identi-
fied in pairwise comparisons between GCNs of real large networks from the prefrontal 
cortex of multiple species.

Results
The following sections present the results of network comparison using Juxtapose. Sec-
tion 4.1 reports the results of comparing identical synthetic and real GCNs using Jux-
tapose and comparing these results to PPI network alignment methods IsoRankN and 
MAGNA++. Section  4.2 includes the comparison of GCNs constructed using differ-
ent subsets of samples from brain and heart tissue samples and compares the results of 
Juxtapose to IsoRankN, MAGNA++, and MUNK. Finally, Sect. 4.3 applies Juxtapose to 
large GCNs constructed from multiple species and compares to WGCNA.

Alignments of identical networks

Table 2 indicates the percentage of correctly matched genes for IsoRankN, MAGNA++, 
and Juxtapose. Both IsoRankN and MAGNA++ have a parameter (alpha) that for 
IsoRankN indicates the extent to which network topology is used to make the network 
alignment—where 1 is completely topology based—and MAGNA++ has a alpha value 
that balances between node and edge conservation. Furthermore, we provide these 
methods with different degrees of knowledge about known node matches between the 
networks in the form of (sequence similarity) bitscores. If 100% of the bitscores are pro-
vided, this means that the bitscores clearly indicate which matches are the most appro-
priate matches between nodes e.g. the corresponding genes between networks have a 
value set to 1 and the remaining node matches are set to zero. Juxtapose does not use 
any sequences and therefore matching does not take sequence similarity into account 
and is purely topologically based. The performance of the alignment methods was meas-
ured based on their ability to align the corresponding genes in the networks compared 
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e.g., gene1 in a GCN correctly aligned to gene1 in a duplicate version of the GCN would 
be counted as a match.

IsoRankN and MAGNA++ were able to match all of the corresponding nodes of the 
two networks only when provided with the known matches in the form of high sequence 
similarity i.e., high bitscore values. This is in agreement with an observation also 
reported by [19] that including sequence information improves the performance signifi-
cantly. These methods sometimes struggled with aligning the structures that had sym-
metry such as the line and circle synthetic networks if artificial bitscore matches were 
not provided to the algorithms. IsoRankN had relatively higher scores than MAGNA++ 
for the synthetic networks when no biological similarity was used during the alignment 
process. The exception of low performance without bitscores was that MAGNA++ 
was able to align the heart GCN with 93% of the nodes matched correctly. However, 
Juxtapose reported the most appropriate matches compared to the results of these two 
alignment methods, perfectly aligning the networks in every case. This is especially note-
worthy given that Juxtapose also did not require any known matches between genes to 
be provided in terms of external biological information such as sequence similarity and 
was mainly using network topology to align the networks. Juxtapose was able to align 
the true matches only using the cosine distance between gene embeddings followed by 
the Hungarian algorithm to determine the match with the lowest cost.

Alignment of different networks

First, to assess the choice of hyperparameters, we compared the average distance 
between anchor nodes and random genes to ensure that the selected anchors used to 
build synthetic structures into the real networks were appropriate for the analyses. 
We generated a selection of 1000 sets of random genes of equal size to each synthetic 
structure and compared the sum of the similarities between matched genes in both 
groups. The distances between the anchor nodes was significantly less than the dis-
tances between nodes in the random groups of genes (p-value < 0.001). Therefore, the 

Table 2  Percentage of matched genes in self-aligned networks reported for MAGNA++, IsoRankN, 
and Juxtapose

The alpha values indicate the balance between node similarity and edge similarity (MAGNA++) or the balance between 
topological similarity and sequence similarity (IsoRankN). When no percentage of bitscores is provided, the algorithm was 
not provided with informative bitscores i.e. the match between any genes was equally likely. When 50% of bitscores were 
provided, 50% of the genes had the highest bitscore provided for the real match between the genes of both networks. 
When 100% of bitscores were provided, 100% of the genes had the highest bitscore provided for the real match between 
the genes of both networks. N/A is given for the settings in Juxtapose as no bitscore file is provided and no alpha value is 
provided to the tool

MAGNA++ IsoRankN Juxtapose

alpha 
0.50

alpha 
0.95

alpha 0.50 
with 50% 
bitscores

alpha 0.50 
with 100% 
bitscores

alpha 
0.50

alpha 
0.95

alpha 0.50 
with 50% 
bitscores

alpha 0.50 
with 100% 
bitscores

N/A

Line 0 0.10 0.52 1.0 0.24 0.19 0.0 1.0 1.0

Circle 0 0.14 0.57 1.0 0.33 0.29 0.0 1.0 1.0

Cross 0.24 0.02 0.52 1.0 0.29 0.19 0.83 1.0 1.0

Heart 0.93 0.93 0.99 1.0 0.16 0.04 0.71 1.0 1.0

Brain 0.33 0.55 0.99 1.0 0.18 0.07 0.82 1.0 1.0
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hyperparameters selected as well as the anchor genes were determined to be appropriate 
for the following comparisons.

Next, to assess the alignment of different networks, we generated 2 replicate GCNs 
from subsets of non-overlapping brain and heart samples. As such, these replicates gen-
erated similar, but not equivalent, network structures. Each replicate was compared 
in a pairwise fashion using Juxtapose, and the proportion of correctly matched genes 
between different networks constructed from the same tissues as well as between alto-
gether different tissues was recorded and visualized in Fig. 4. The proportion of matches 
was significantly higher (0.69 and 0.85) when comparing the same tissues vs. when com-
paring between tissues where the proportion of matches was never more than 0.3. Fur-
ther, the global similarity values for Juxtapose are shown in Fig. 5. Juxtapose reported 
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global distance scores around 0.3 between tissues; i.e., GCNs that are less similar to each 
other, for the GCN comparisons made between brain and heart compared to the dis-
tances reported for comparisons between GCNs from the same tissue type. Also, the 
heart GCNs result in global distances that were higher than the ones reported for brain 
networks. This likely has to do with the number of edges in the heart networks that form 
a “hairball” topology. Although the most similar genes tend to be the corresponding 
genes in the other network, the distance between the genes is much higher.

Similarity measures for IsoRankN and MAGNA++ when all bitscores for matched 
genes are provided are shown in Figs. 4, 6, and 7. The proportion of matched nodes did 
not agree with the similarity between brain and heart networks when using IsoRankN or 
MAGNA++. The two brain networks were reported as most similar by IsoRankN after 
the self comparisons, which is reasonable. The next most similar alignment occurred 
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Fig. 5  The global cosine distances between heart and brain networks compared using Juxtapose. A distance 
closer to 1 indicates the networks are less similar and a distance closer to 0 means the networks have more 
similarity
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when comparing a brain network to a heart network (0.39). The comparison between 
the two replicate heart networks is one of the lowest scores (0.34). MAGNA++ had a 
relatively low percentage of matched nodes between networks. However, MAGNA++ 
has an S3 score and node score shown in Figs. 6 and 7 that reflect the similarity of the 
networks and it is usually comparable to Juxtapose (but again, MAGNA++ is using 
bitscores while Juxtapose is not). This score penalizes GCN alignments that map denser 
network regions to sparser ones or alignments that map sparser network regions to 
denser areas. However, the proportion of matched nodes remains relatively low and the 
similarity when comparing heart networks to brain networks is much lower than the 
scores reported by Juxtapose even though the genes present in these networks and their 
structures overlap significantly.
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Fig. 6  The S3 similarity score between heart and brain networks compared using MAGNA++. Using 
MAGNA++, a value closer to 1 indicates the networks are more similar and a distance closer to 0 means the 
networks are more distant. Bitscores were provided to each method and the alpha value was set at 0.5
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We also compare MUNK to Juxtapose using the heart GCN replicates. The synthetic 
networks constructed in Sect.  4.1 were not used to compare to MUNK as there are 
some characteristics that make them unsuitable input to MUNK. The method has been 
designed for PPI networks that are sparse, unweighted, and directed. Some of the limita-
tions of MUNK for co-expression networks include the following items.

•	 Requires networks to be directed
•	 Does not utilize edge weights
•	 Removes nodes with a degree less than 2 so their representation will never be 

learned
•	 Requires one-to-one orthologs mapping to perform alignment of the networks
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Fig. 7  The node scores (NS) between heart and brain networks compared using MAGNA++. Using 
MAGNA++, a value closer to 1 indicates the networks are more similar and a distance closer to 0 means the 
networks are more distant. Bitscores were provided to each method and the alpha value was set at 0.5
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•	 Only analyzes the largest connected component, so if there are two connected 
components, it will only take into account the largest one and the rest of the genes 
are lost before the comparison is made

We take the upper triangular correlation matrix of the heart and brain replicate GCNs 
to form a directed version of the network and remove the weights from the edges. The 
largest connected component of the networks were 154 and 153 nodes, respectively 
so these were the components used to make the alignment. Since MUNK uses a lin-
ear mapping, it was capable of producing an almost exact match between duplicate 
heart networks (98.7%). However, MUNK was only able to align 1 (<1%) of the genes 
successfully between the heart and brain networks where Juxtapose was able to align 
roughly 30% of the genes between these networks. This may be due to the ability of 
Juxtapose to consider the edge weights as well as the undirected nature of the net-
works, allowing the random walks to pass through an edge in either direction and 
learning more informative embedding in the context of GCN comparison compared 
to PPI comparison. In this way, Juxtapose can identify genes with similar connectivity 
in different networks more successfully in the context of GCN comparison.

Figure  8 shows the result of biclustering the cosine distance matrix comparing the 
heart and brain networks with spectral biclustering. The brain GCNs had the most simi-
larity overall, with the most conserved bicluster containing the lowest cosine distances 
containing genes that were mostly from the Alzheimer disease and Parkinson’s disease 
KEGG pathways (96% of the genes in the top left bicluster were part of the brain dis-
ease pathways, and the next most conserved module contained 25% of the heart-related 
genes). The heart GCNs, on the other hand, resulted in the most conserved bicluster 
containing a large portion of genes from the KEGG heart-related pathways (30% of 
the genes were from the heart KEGG pathways in the most conserved bicluster in the 
bottom right corner, and 26% of these genes were present in the next most conserved 
bicluster). Furthermore, when comparing one of the heart GCNs and a brain GCN, the 
genes that were closest to each other based on cosine similarity were mostly from the 
Alzheimer disease and Parkinson’s disease KEGG pathways in both the brain and heart 
network as opposed to genes specific to the heart KEGG pathways. In the bicluster with 
the smallest distances between genes, the heart GCN had 78% of the genes from the 
brain KEGG pathways and 19% from genes shared in both the heart and brain KEGG 
pathways. Only 3% were strictly from the heart KEGG pathways.

Fig. 8  Biclustering results for the cosine distance matrix for one replicate of the heart GCNs and one replicate 
of the brain GCNs. Dark green indicates less distance between nodes while light green or white indicates 
nodes are more distant from each other. The orange boxes indicate groups of genes that have lower local 
cosine distances, indicating more conservation between these genes in the GCNs being compared
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Prefrontal cortex multi‑species

Finally, we utilized Juxtapose to compare large, real GCNs from different species. 
Bozek et al. observed an acceleration of metabolite concentration differences among 
tissues that were confirmed by expression-level differences in corresponding genes 
in the prefrontal cortex of the brain and in skeletal muscle [45]. They also predicted 
that these rapid changes might reflect parallel mechanisms in human evolution. We 
attempt to find evidence of differences in the gene expression regulating the metabo-
lome by constructing GCNs from the data generated by Bozek et al. and comparing 
the networks using Juxtapose. In the biclusters, we identified groups of genes that 
were far apart—and thus possible candidates for adaptation with respect to mam-
malian brain metabolomics—between the species which we selected and performed 
over-representation analysis to identify modules with enriched KEGG pathways.

Juxtapose was able to identify multiple biclusters with enrichment for KEGG path-
ways associated with metabolism. Many of these biclusters also had relatively low 
cosine distances between human and the other three species, suggesting differences 
in topology in portions of the networks. For example, when comparing human and 
chimpanzee GCNs biclusters with cosine distances over 0.5, i.e. relatively distant, had 
enriched terms including Amphetamine addiction, Dopaminergic synapse, and Thy-
roid hormone signaling pathway, which were reported in the paper by Bozek et al. and 
include genes that are important regulators of growth, development and metabolism. 
The biclusters that showed the most difference between these species also included 
enrichment for choline metabolism. All the compared species had biclusters with 
high cosine distances (indicating less similarities in these parts of the networks from 
a topological perspective) in biclusters containing KEGG pathways including Valine, 
leucine and isoleucine degradation, Inositol phosphate metabolism, Tryptophan 
metabolism, Pyruvate metabolism, beta-Alanine metabolism, and Propanoate metab-
olism, beta-Alanine metabolism, some of which were also identified by Bozek et  al. 
[45]. Glutamatergic synapse and Aminoacyl-tRNA biosynthesis were terms enriched 
in a bicluster that was slightly more similar i.e., had lower cosine distances between 
these two species. These results are in support of human-specific metabolic diver-
gence as found by Bozek et al. [45]. From the global cosine distance score, macaque 
and mouse were the most distant from human with global cosine distances of 0.41 
and 0.40, respectively and human was the most similar to chimpanzee with a global 
cosine distance of 0.34. These results are presented in Table 3. As the global cosine 
distances are relatively low for all of the species, these results suggest that there is a 

Table 3  Global cosine distances reported by Juxtapose when comparing prefrontal cortex GCNs 
from human, chimpanzee, macaque, and mouse

For the global distance measure, a distance closer to 1 indicates the networks are less similar and a distance closer to 0 
means the networks have more similarity

human chimpanzee macaque mouse

human 0 0.34 0.41 0.40

chimpanzee 0 0.36 0.36

macaque 0 0.35

mouse 0
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lot of conserved portions of the networks as well. These global cosine distance results 
are also supported by the WGCNA results described below. This observation sup-
ports that the global cosine distance scores reported by Juxtapose can also be inform-
ative when analysing large GCNs. The biclustering enrichment analysis results for 
each species are presented in the Supplementary Materials. Below, we describe the 
similarities and differences between the results discovered using Juxtapose and the 
well-established GCN analysis tool WGCNA.

The results of the WGCNA analyses are presented in Figure S1 and S2 of the Sup-
plementary Materials. The hierarchical clustering results showed similar patterns for 
human and chimpanzee gene modules with the macaque clustering appearing the most 
distinct with one cluster containing a large proportion of the genes. Mouse, on the other 
hand, had more visual similarity with the human and chimpanzee clustering results. 
However, the Zsummary scores were relatively low in human versus mouse compared to 
human versus the other two species (chimpanzee and macaque). The mouse transcrip-
tome being the most distinct from the other three species agrees with the original pub-
lication, which concluded that the human metabolome underwent greater change in a 
shorter period of time than the mouse metabolome did over the 130 million years sepa-
rating mice from the common ancestor of humans, chimpanzees, and macaques [45]. 
Mouse is also the most phylogenetically distant from human among these species. We 
selected modules that showed little to no evidence of preservation (Zsummary < 2) and 
performed over-representation analysis to identify modules with enriched KEGG path-
ways. The cyan and pale turquiose modules were the only modules with low preserva-
tion that were enriched for any KEGG pathways. Pancreatic secretion, Protein export, 
Longevity regulating pathway, and Oocyte meiosis, were enriched in the pale turquoise 
module while the cyan module was enriched with Legionellosis. Of these enriched 
terms, Pancreatic secretion and Oocyte meiosis are the only enriched terms in the low 
preservation modules that overlap with the terms reported by Bozek et al. as enriched in 
the human–specific concentration profiles in the prefrontal cortex. In fact, most of the 
enriched pathways show up in the highly conserved modules such as the turquoise mod-
ule, which includes enriched terms such as Amphetamine addiction, Cocaine addiction, 
Dopaminergic synapse, Chemokine signaling pathway, Aminoacyl-tRNA biosynthesis 
that were identified in the original publication. This suggests that although the expres-
sion levels of the genes in these clusters may be quite different, they have not changed as 
much in terms of their co-expression with other genes.

Discussion
This paper introduced Juxtapose, a tool for comparing the topology of GCNs utilizing 
a gene embedding approach. One benefit of using Juxtapose as a means of comparing 
networks is that no knowledge is required about the genes themselves from a biological 
perspective in order to make a relatively good alignment compared to other alignment 
methods. Using this embedding method, it is easy to identify not only the best matches 
with a gene in a corresponding network, but also observe the similarity of a gene to all 
other genes in the network as well with the local cosine distances. In this way, it is pos-
sible to identify areas in the networks that are unambiguous matches (highly conserved) 
vs. more ambiguous matches (good matches to many genes). It also allows for orthologs 
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that are not strictly one-to-one or functional orthologs to be analyzed to get a more 
complete picture of the similarities and differences between GCNs, which is a particu-
larly attractive feature for evolutionary studies.

Juxtapose appears to outperform existing alignment-based methods for identifying 
similar nodes/genes. Indeed, even when aligning artificial networks with unique struc-
tures, the typical alignment-based methods performed poorly without prior knowledge 
of gene similarity. This makes these methods not as informative for aligning co-expres-
sion networks. Our method was able to identify the known matches between the identi-
cal networks without knowledge of gene similarity. We show that the score of the known 
matches is also the minimum score one can get by employing the Hungarian algorithm 
for making the global alignment of the nodes in each network. Therefore, Juxtapose was 
able to outperform these alignment methods even though its intended purpose is not 
necessarily to align corresponding nodes in the graphs, but to obtain a measure of simi-
larity between all genes being compared between GCNs.

Juxtapose also outperforms MAGNA++, IsoRankN, and MUNK for aligning different 
GCNs to one another. MAGNA++ and IsoRankN are only able to achieve comparable 
results to Juxtapose when they are provided knowledge of the similarity between genes 
based on biological information such as bitscores. Juxtapose has no such requirement. 
MUNK also requires some knowledge of orthologs for landmark selection; however, the 
requirements that likely cause the method to perform more poorly on GCNs compared 
to PPI networks are that it requires a directed network as input, and it cannot utilize the 
edge weights to make the alignment. Furthermore, MUNK only operates on the largest 
connected component of the graph, which may lead to the similarities between some 
genes not being calculated. Juxtapose, on the other hand, is able to report both local and 
global distances or similarities between all genes in a GCN.

Another benefit of the proposed methodology is that since it relies on probabilistic 
walks through the co-expression networks, differences at the level of gene expression 
or correlation across species do not require normalization across the networks being 
compared. Normalization tends to be a significant challenge in gene expression analysis, 
especially when the data has been sequenced in different batches, labs, etc. However, 
needing to apply multiple types of normalization can actually obscure real signal in the 
data as none of them work perfectly [55]. Furthermore, there may be unknown factors 
that require normalization that are missed [56]. Methods such as IsoRank and IsoRankN 
have been utilized for comparing co-expression networks, but they were not originally 
designed for analysing these types of networks. Therefore, assumptions have to be made 
about the data that may limit the analyses of GCNs. MUNK also has assumptions that 
may limit the analysis of GCNs, so although these methods may work well for analys-
ing PPI networks, more methods that are specifically designed for comparing GCNs 
are required. Juxtapose is much more adaptive for networks that require weights on the 
edges compared to many alignment strategies originally designed for PPI networks.

We also demonstrated that the local cosine distances comparing genes from different 
GCNs is biologically informative. The biclustering results of the heart and brain GCNs 
revealed that there was more conservation observed between the genes from the brain-
related KEGG pathways. The genes of the heart pathways were more conserved in the 
heart GCN compared to the brain GCN. This also supports the hypothesis that more 
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conservation would be observed in genes important for regulating processes in the brain, 
as is supported or suggested in the literature [57].

Ultimately, the goal is to utilize this method in order to compare networks constructed 
from homologous samples in different species, so we also applied this method to networks 
constructed from gene expression data from different species. These results could indicate 
genes that show more evidence of constraint or adaptation between the networks com-
pared. The biclustering results analysing the local cosine distances between human, chim-
panzee, macaque, and mouse identified modules of genes that contained enriched KEGG 
pathways related to metabolism. Also, these modules of genes tended to have high cosine 
distances, suggesting that these portions of the GCNs across species were less conserved. 
Juxtapose was also able to identify more terms specifically related to different metabolites 
compared to both WGCNA and the hierarchical clustering performed by [45] while also 
having results that agreed with the observations made by [45] as well. These results show 
that Juxtapose can produce results that complement WGCNA results while making it eas-
ier to determine the distances or similarities for all pairwise comparisons between modules 
of genes.

One consideration when dealing with very dense networks that have thousands of genes 
using Juxtapose is time and memory bottlenecks. For example, for a network as dense and 
large as the multi-species dataset, a large amount of memory is ultimately required given 
the number of walks used for training the models. The number of walks and their length 
ultimately informs how much memory is going to be required. Other hyperparameters 
of the model training do not have much influence on memory requirements. However, 
the sliding window parameter used to train could significantly impact biological inter-
pretations, especially for co-expression networks. Since the networks tend to have a lot 
of false positives, increasing the window in effect is similar to creating more direct edges 
between genes that probably do not have a direct relationship. As future work, we suggest 

Fig. 9  Visualization of a simple example of probabilistic random walks demonstrating the importance of 
walk number to avoid overfitting when training a model with gene co-expression networks. A small number 
of walks is represented by the image on the left, where the blue arrows indicate a walk that is going through 
a hub gene (center node) in the network. A larger number of walks through this same node is shown on the 
right. Each arrow colour indicates a separate walk. Assuming that all of these edges have comparable edge 
weights, if we have a small number of walks that travel through this node, which is more likely the fewer/
shorter walks we make, than this gene will not be well represented in the final model, no matter how many 
iterations/epochs are made during the training. This challenge would become even greater when hub genes 
are also connected to each other which increases the possibilities for distinct walks immensely. Densely 
connected nodes tend to be a characteristic of gene co-expression networks, so the number of walks is an 
important consideration
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measuring how much changing this particular hyperparameter impacts the resulting bio-
logical interpretation.

The choice of the number of walks selected in order to train the word2vec models is also 
dependent on the density of the networks being analysed. Consider a network that is not 
sparse, which tends to be the case with gene co-expression networks. For example, generat-
ing ten walks from each node in the network is less likely to be an accurate representation 
of genes highly connected to many other genes. In Figure 9, we show a simple example of 
this scenario. The fewer/shorter walks made, the worse the representation will be for dense 
portions of the network in the final model, no matter how many iterations/epochs are made 
during the training. This challenge would become even greater when hub genes are also 
connected to each other, which increases the possibilities for distinct walks immensely.

One limitation is the need to confirm that the dangling pieces of the network are spread 
out in different areas. Future work may also include exploring different updates to the loss 
function. If they were incorporated directly into the gene expression data, this would not be 
an issue and will be a goal of future research. There are also newer state-of-the-art embed-
ding strategies in NLP that use Transformers available that can be adapted to embed net-
works such as BERT [58], ELMO [59] etc. It would be interesting to apply these context 
dependent methods in future research, particularly with biological networks that have 
direction to their edges.

Conclusion
Gene co-expression networks are not easily comparable due to their complex struc-
ture. In this paper, we proposed a python-based tool and similarity measures that can 
be utilized for comparative co-expression network analyses. A word embedding strat-
egy commonly used in natural language processing was adapted and utilized in order 
to generate gene embeddings based on walks made throughout the gene co-expres-
sion networks.

The utility of Juxtapose was demonstrated in scenarios such as comparisons 
between species and tissues. Synthesized datasets, RNA-seq datasets from GTEx, and 
a multi-species experiment of prefrontal cortex samples from the Gene Expression 
Omnibus (GEO) were used to demonstrate its ability to embed the nodes of synthetic 
structures in the networks consistently while also generating biologically informative 
results in real networks. Furthermore, Juxtapose is able to successfully align GCNs 
without relying on known biological similarities and enables post-hoc analyses using 
biological parameters, such as orthology of genes, or conserved or variable pathways.

Appendix
See Tables 4 and 5.
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