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Background
Data Compression, as well as the associated techniques coming from Information The-
ory, has a long and very influential history for the storage and mining of biological data 
[1]. In recent years, it has received increasing attention via the proposal of novel special-
ized compressors, due to the facts that (a) storage costs have become quite significant 
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given the massive amounts of data produced by HTS technologies (see [2] for an enlight-
ening analysis, which is still valid [3, 4]); (b) generic compressors, even widely accepted 
leading methods, e.g. LZ4 [5], BZIP2 [6], are inadequate for the task of biological data 
compression. Good analytic reviews of the State of the Art are provided in [4, 7, 8], 
although no clear winner compressor has emerged. Here we concentrate on FASTA/Q 
files, since those formats, including unassembled genomic reads, have pervasive use in 
Bioinformatics.

The relation between Big Data Technologies and FASTA/Q data compression 

in bioinformatics

Due to the same reasons of massive data production, the development and use of Big 
Data Technologies for Genomics and the Life Sciences, have been indicated as direc-
tions to be actively pursued [9], with MapReduce [10], Hadoop [11] and Spark [12] being 
the preferred ones [13]. This is not just a following of a “Big Data trend” that has proved 
successful in other fields of Science, since Bioinformatics solutions based on those tech-
niques can be more effective than classic HPC ones, thanks to their scalability with avail-
able hardware and to their easiness of use. For later reference, it is worth pointing out 
that those technologies have “compression capabilities” via built-in generic data com-
pressors, e.g., BZIP2 [6]. The corresponding software is referred to with the technical 
term Codec, where compression is coding and decompression is decoding. Moreover, 
although with quite some knowledge of those technologies, it is possible to add other 
compressors to Hadoop, i.e., additional Codecs. It is to be added that not all data com-
pressors are amenable to a profitable incorporation due to the requirement of splittable 
compression: a file is divided into (un)compressed data blocks that can be compressed 
and decompressed separately granting in any case the integrity of the entire file. Indeed, 
processing files compressed using a non-splittable format is still possible under Hadoop, 
but at a cost of very long decompression times (data not shown but available upon 
request). Further discussion on those topics is in section “Preliminary”. We refer to the 
former category of data compressors as splittable Codecs.

Using the term standard, here and in what follows, to refer to a compressor that exe-
cutes on a sequential machine, i.e., a PC, we observe that in order to make a compres-
sor splittable, when its standard version is not, requires major code reorganization and 
rewriting.

Given the above discussion about Data Compression, it is rather surprising that the 
deployment of specialized compressors for biological data in Big Data technologies is 
episodic, in particular for FASTA/Q file formats, e.g., [14], that host a substantial part of 
genomic data.

Methodological contributions

We provide two contributions for the deployment of standard specialised compres-
sors for FASTA/Q files within MapReduce-Hadoop, together with the corresponding 
software.

•	 Splittable Compressor Meta-Codec When a standard compressor is splittable, we 
provide a method that facilitates its incorporation in Hadoop. Use of the software 
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library associated to the method offers a substantial savings of programming time 
for a rather complicated task. Intuitively, the Splittable Compressor Meta-Codec 
performs a transformation of a standard splittable compressor in an Hadoop split-
table Codec for that compressor.

•	 Universal Compressor Meta-Codec Independently of being splittable or not, 
as long as some mild assumptions in regard to input/output handling are satis-
fied, we provide a method to incorporate a data compressor in Hadoop, making 
it splittable. It is worth pointing out that the vast majority of standard specialized 
FASTA/Q compressors are not splittable. Again, intuitively, the Universal Com-
pressor Meta-Codec performs a transformation of a standard compressor in an 
Hadoop splittable Codec for that compressor.

A few comments are in order. The Splittable Compressor Meta-Codec provides 
a template useful for accelerating and simplifying the development of specialized 
Hadoop Codecs. The Universal Compressor Meta-Codec allows to support in 
Hadoop any standard compressor with no programming at all, provided that it is usa-
ble as a command-line application. The first option has to be preferred when inter-
ested in achieving the best performance possible, at a cost of analyzing the internal 
format employed by files processed with that compressor and writing the required 
integration code. The second option allows to almost instantaneously support any 
command-line compressor, but at a cost of possibly reduced performance that we 
have measured to be negligible with respect to the direct use of the Splittable Com-
pressor Meta-Codec. Both methods work also for Spark, when it uses the Hadoop 
File System.

It is also worth pointing out that the methods and software supporting both of the 
proposed Meta-Codecs leave unchanged the compression abilities of a standard com-
pressor. Indeed, as explicitly discussed in the technical presentation given in Sections 
“General guidelines for the design of an Hadoop splittable Codec”, the transforma-
tions are limited to port the standard compressor to Hadoop, with the standard com-
pression and decompression routines being treated as black boxes. This is particularly 
important for FASTQ files, where different fields are compressed with different meth-
ods even within the same standard compressor, e.g., [15]. Indeed, leading research in 
this area has studied thoroughly the various contributions to compression of FASTQ 
files given by its fields separately. The interested reader will find a good exposition of 
those studies in the Supplementary Material of [8, 15]. Therefore, it is important that 
the transformations proposed here do not alter the intrinsic abilities of any standard 
compressor to perform well (see Section 5 of the Additional file 1).

Finally, given the pace at which new standard specialized compressors are imple-
mented, our methods can readily support the deployment of those future implemen-
tations in Hadoop.

For later use, we refer to the version of a standard compressor with the prefix HS 
when the incorporation in Hadoop has been made by using the Splittable Com-
pressor Meta-Codec or an Hadoop splittable Codec is already available, e.g., LZ4 
becomes HS_LZ4. Analogously, we use the prefix HU, when the Universal Compres-
sor Meta-Codec has been used.
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Practical contributions

We provide experimental evidence that our methods are a major advance in deal-
ing with massive data production in genomics within one of the Big Data technol-
ogies of choice. Indeed, for the Universal Compressor Meta-Codec, we show the 
following via an experimental comparative analysis involving a selection of special-
ized FASTA/Q compressors vs the generic compression Codecs already available in 
Hadoop.

•	 Disk space savings The size of the FASTA/Q files is significantly reduced with 
the use of specialized HU Codecs vs the generic HS ones available in Hadoop. 
Consequently, the cost of the hardware required to store them in the Hadoop File 
System is reduced.

•	 Reading time savings When using a specialized HU, the additional time required 
to decompress a FASTA/Q file in memory is counterbalanced by the much smaller 
amount of time required to load that file from the Hadoop File System. This results 
in a significant reduction of the overall reading time.

•	 Network communication time overhead savings The number of concurrent 
tasks required to process, in a distributed way, a FASTA/Q file compressed via 
an HU is greatly reduced, thus allowing for a significant reduction of the network 
communication time overhead required for the recombination of their outputs.

As for the Splittable Compressor Meta-Codec, we reach the same conclusions as 
above, but the experimentation is somewhat limited: the only standard specialized 
compressor for FASTA/Q files featuring a splittable format is DSRC [16]. Finally, disk 
space and reading time savings apply also to the Apache Spark framework, when used 
to process FASTA/Q files stored on the Hadoop File System.

Methods
This section is organized as follows. Section “Preliminary” is dedicated to introduce 
some basic notions about Hadoop, useful for the presentation of our methods. Sec-
tion “General guidelines for the design of an Hadoop splittable Codec” outlines some 
technical problems regarding the design of a splittable Codec for Hadoop, propos-
ing our solutions. The last two section are dedicated to the description of our two 
Meta-Codecs.

Preliminary

MapReduce is a programming paradigm for the development of algorithms able to 
process Big Data on a distributed system in an efficient and scalable way. It is based on 
the definition of a sequence of map and reduce functions that are executed, as tasks, 
on the nodes of a distributed system. Data communications between consecutive 
tasks is automatically handled by the underlying distributed computing framework, 
including the shuffle operation, required to move data from one node to another one 
of the distributed system.
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In Section 1 of the Additional file 1 we provide more information about this topic, 
including Hadoop, one of the most popular MapReduce implementations. Here we 
limit ourselves to describe how files are stored in the Hadoop File System, i.e., HDFS.

When uploading a large file to HDFS (by default, larger than 128MB), it is automati-
cally partitioned into several parts of equal size, where each part is referred to as HDFS 
data block. Each block is physically assigned to a Datanode, which are the nodes of the 
distributed system that execute map and reduce tasks.

For fault-tolerance reasons, HDFS data blocks can be replicated on several Datan-
odes according to a user-defined replication factor. This allows to process a HDFS data 
block even if the Datanode originally containing it becomes unavailable. By default, 
Hadoop assumes that each map task processes only the content of one particular HDFS 
data block. However, it may happen that, because of the aforementioned partitioning, 
a record to be analyzed by one map task is cut into two parts located in two different 
HDFS data blocks. We refer to these cases as disalignments.

This circumstance is managed by HDFS through the introduction of the input split 
concept or split, for short. It can be used, at the application level, to logically redefine the 
range of data to be processed by each map task, thus allowing a map task to process data 
found on HDFS data blocks different than the one it is processing.

Hadoop support for the input of compressed files

Currently, Hadoop supports two types of Codecs:

•	 Stream-oriented. Codecs in this class require that the whole file be available to each 
map task prior to decompressing it. For this reason, when a map task starts its execu-
tion, a request is issued to the other nodes of the cluster. As a result, all the parts of 
the file to be processed are collected from these nodes and merged into a single local 
file. This type of Codec can be developed by creating a new Java class implementing 
the standard Hadoop CompressionCodec interface.

•	 Block-oriented. Codecs in this class allow each map task to decompress only a por-
tion of the input file, without requiring the remaining parts of it. They assume the 
compressed file to be logically split into data blocks, here referred to as compressed 
data blocks, where each of them can be decompressed independently of the others. 
Assuming the possibility of knowing the boundaries of each compressed data block, 
a map task can autonomously extract and decompress all the compressed data blocks 
existing in its HDFS data blocks. This type of Coded can be developed by creating a 
new Java class implementing the standard Hadoop SplittableCompression-
Codec interface.

It is worth noting that the stream-oriented approach implies a significant computational 
overhead, as the same file is decompressed as many times as the number of map tasks 
processing it. It implies also a significant communication overhead, because the same 
file has to be replicated on each computational node running at least a map task. Finally, 
it may prevent a job from running at all because map tasks may not have enough mem-
ory to handle the decompression of the input file (e.g., when handling large files). For 
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this reason, in this research, we focus on block-oriented Codecs, which are de facto split-
table Codecs.

General guidelines for the design of an Hadoop splittable Codec

Here we consider some problems that a programmer must face in order to obtain an 
Hadoop splittable compression Codec, offering solutions. We concentrate on genomic 
files, although those guidelines apply to any textual compressor. The solution we are 
seeking must not require any modification to the internal compression/decompression 
routines of the Codec to be supported. That is, the compression properties of a given 
compression algorithm must be preserved, so that previous benchmarking studies 
assessing how well a compressor does with respect to classes of datasets are not invali-
dated and users can make informed choices. For instance, for FASTQ files, compressors 
have been extensively benchmarked, also in regard to the contributions given to com-
pression by the different fields of a FASTQ file, e.g., [8, 15]. Such a knowledge should be 
preserved.

There are two problems to face when extracting genomic sequences from a splitta-
ble compressed file. The first is about inferring the logical internal organization of the 
compressed file in regard to determine the relative position of the compressed data 
blocks. The second is in regard to the management of the possible disalignments exist-
ing between the physical partitioning of the file, as determined by HDFS, and the inter-
nal logical organization of the compressed file in compressed data blocks. In Section 
“Determining the internal structure of a compressed file” and in Section “Managing dis-
alignments between compressed data blocks and HDFS data blocks”, respectively, these 
problems are described in detail and the solution we propose is presented, highlighting 
that the compression routines of a given compressor are not involved in our solution.

Determining the internal structure of a compressed file

A map task can extract and decompress the compressed data blocks existing in the 
HDFS data block it is analyzing only if it knows their size and relative positions. How-
ever, this information could be stored elsewhere (e.g., in the footer of the compressed 
file) or it could be encoded implicitly.

In the following, we provide a solution for efficiently dealing with the most frequent 
scenario, i.e., the one where the list of compressed data blocks is made explicitly avail-
able. We refer the interested reader to [6] for an example of a solution for encoding this 
list implicitly.

Explicit Representation. An explicit list of all the compressed data blocks existing in a 
compressed file is maintained in an auxiliary index data structure. This latter may either 
be located at the beginning or at the end of the file (e.g., DSRC [16]), or it can be saved 
in multiple copies along a file. In some other cases, this data structure can be saved in an 
external file complementing the compressed file.

In this case, the solution proposed here is to have one process to retrieve the index 
before processing the compressed file and send a copy to all nodes of the distributed 
system using the standard Hadoop Configuration class. Then, each computing node 
makes available this information to the map tasks that it runs, thus allowing them to 
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determine the list and the relative position of the compressed data blocks in their HDFS 
data blocks.

Managing disalignments between compressed data blocks and HDFS data blocks

When uploading a large compressed splittable file on HDFS, it is likely that several of 
its compressed data blocks would be broken into parts located on different HDFS data 
blocks, because of the partitioning strategy used by the distributed file system. An exam-
ple of such a case is discussed in Fig.  1,with highlights given next. The file is initially 
stored as a whole on a local file system (Fig.  1a). If uploaded without specifying any 
splitting strategy, it would be partitioned into separate parts independently of the com-
pressed data blocks, as pictured in Fig. 1b. This would imply a severe performance over-
head when reading the content of compressed data blocks spawn across different parts 
because, in such a case, each node would be able to process its data blocks only after 
acquiring and decompressing together all the other parts of that file.

Fig. 1  The layout of a block-oriented compressed data file when uploaded to HDFS. In the figure, a the 
original file includes an header, a footer and 8 compressed data blocks. b When uploaded to HDFS, it is 
partitioned into 4 HDFS data blocks. c As a result of the partitioning, the compressed data block labeled as 
CB5 is divided into two parts and assigned to two different HDFS data blocks. Using the Compressed Block 
Split strategy, each compressed data block is modeled as a distinct split. d Using the Enhanced Split strategy, 
several compressed data blocks are grouped into fewer input splits
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A first possible solution addressing such an overhead, and denoted as Compressed 
Block Split strategy, is to model as input splits all the compressed data blocks existing 
in a compressed file (see Fig. 1c). However, this strategy may imply also a performance 
overhead because the typical size of compressed data blocks is usually orders of magni-
tude smaller than those of the HDFS data blocks. Thus, the number of input splits would 
be much larger than the number of HDFS data blocks.

A more efficient solution, here denoted as Enhanced Split strategy, is to fit several 
compressed data blocks into the same Hadoop input split and, then, have each map task 
query a local index listing the offset of all the single compressed data blocks existing in a 
split (see Fig. 1d). At this point, when processing compressed data blocks in a split, two 
cases may occur:

•	 standard case the compressed data block is entirely contained in a single HDFS data 
block. In such a circumstance, it is retrieved using the information contained in the 
index and, then, decompressed using the considered Codec.

•	 exceptional case the compressed data block is physically divided by HDFS into two 
parts, p1 and p2 . These parts are located on two HDFS data blocks but are assigned 
to the same input split. In such a case, a copy of p2 is automatically pulled from the 
Datanode holding it. Then, p1 and p2 are properly concatenated to obtain p. The 
resulting compressed data block is decompressed using the Codec decompression 
function.

The architecture of the splittable compressor Meta‑Codec

This Meta-Codec consists of a library of abstract Java classes and interfaces implement-
ing a standard Hadoop splittable Codec for the compression of FASTA/Q files, but with 
empty compression/decompression routines.

Its architecture is based on a specialization of the generic compressors and decom-
pressors interface coming with Hadoop and targeting block-based Codecs. It offers 
the possibility to automatically assemble a compressed file as a set of compressed data 
blocks while maintaining their index using an explicit representation, as described in 
Section “Determining the internal structure of a compressed file”. In addition, the com-
pressed data blocks are organized according to the Enhanced Split strategy (see Section 
“Managing disalignments between compressed data blocks and HDFS data blocks”). 
Compression/decompression occurs using the original routines available with the target 
Codec, without requiring any modification to their internal implementation. Also the 
creation of the compressed data blocks index is automatically managed by our Meta-
Codec, which also provides the ability to share the content of the index with all nodes of 
an Hadoop distributed system so to allow for each node to know the exact boundaries 
of the compressed data blocks it has to process. Additional details regarding the archi-
tecture of this Meta-Codec are given in Fig. 1 of the Additional file 1. Here we limit our-
selves to mention that it includes the following Java classes.

•	 CodecInputFormat. It fetches the list of compressed data blocks existing 
in a compressed file and sends it to all the nodes of an Hadoop cluster together 
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with the instructions required for their decompression. Then, it defines the input 
splits as containers of compressed data blocks. These operations are compres-
sor-dependent and require the implementation of several abstract methods like 
extractMetadata, to extract the metadata from the input file, and getData-
Position, to point to the starting address of the first compressed data block.

•	 NativeSplittableCodec. Assuming the compression/decompression routines 
for a particular Codec are available as a standard library installed on the underlying 
operating system, it simplifies its integration in the Codec under development.

•	 CodecInputStream. It reads the compressed data blocks existing in a HDFS 
data block, according to the input split strategy defined by the CodecInputFor-
mat. The compressed data blocks are decompressed on-the-fly by invoking the 
decompression function of the considered compressor and returned to the main 
application. Some of these operations are compressor-dependent and require the 
implementation of the setParameters abstract method. This method is used 
to pass to the Codec the command-line parameters required by the compressor, 
e.g execution flags, in order to correctly decompress the compressed data blocks.

•	 CodecDecompressor. It decompresses the compressed data blocks given by 
the CodecInputStream. It requires the implementation of the decompress 
abstract method.

•	 NativeCodecDecompressor. It decompresses the compressed data blocks 
given by the CodecInputStream. It requires the implementation of the 
decompress method through the native interface.

The architecture of the Universal Compressor Meta‑Codec

This Meta-Codec is a software component able to automatically expose as a HU 
splittable Codec the compression/decompression routines offered by a given stand-
ard compressor. As opposed to the Splittable Compressor Meta-Codec, requiring 
some programming, it works as a ready-to-use black box, since the only information 
it needs is the set of command lines to be used for compressing and for decompress-
ing an input file by means of a standard compressor. This implies that no modification 
is performed on the internal routines of the given compressor.

Assuming there is an input file to compress in a splittable way, this method works by 
splitting the file into uncompressed data blocks and, then, compressing each uncom-
pressed data block using an external compression application according to the com-
mand line given at configuration time. As for the Splittable Compressor Meta-Codec, 
compressed data blocks are organized following the Enhanced Split strategy (see Section 
“Managing disalignments between compressed data blocks and HDFS data blocks”).

The resulting file uses an index for the explicit representation of the compressed 
data blocks existing therein (see Section “Determining the internal structure of a 
compressed file”) based on the following format.

•	 compression_format: A unique id number telling the Codec format used for this 
file.
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•	 compressed_data_blocks_number: Number of compressed data blocks existing in 
the file.

•	 blocks_sizes_list: List of the size of all the compressed data blocks included in the 
file.

•	 uncompressed_block_size: The size of the data structure used for decompressing 
the compressed data blocks.

The decompression is achieved by exploiting the information contained in the afore-
mentioned index.

The usage of this Meta-Codec assumes the possibility of parking as files on a local 
device the content of the (un)compressed data blocks to process. For efficiency reasons, 
these are saved on the local RAM disk, a virtual device usable as a disk but with the same 
performance of memory.

The Java classes for this Meta-Codec, shown in Fig. 2 of the Additional file 1, are the 
following.

Table 1  List of splittable Codecs considered in our experiments

For each splittable Codec, it is reported: (1) the originating compressor; (2) the input format it supports; (3) whether or not it 
has been developed using our Splittable Compressor Meta-Codec (HS) or our Universal Compressor Meta-Codec (HU) 
or directly supported (HS)

Compressor Input FormatType Implementation

BZIP2 [6] Any file HS

LZ4 [5] Any file HS

ZSTD [17] Any file HS

DSRC [16] FASTQ files HS/HU

Fqzcomp [18] FASTQ files HU

MFCompress [19] FASTA files HU

SPRING [15] FASTA/Q files HU

Fig. 2  Experiment 2-Reading time savings. Type 1 datasets FASTA files. HDFS reading time speed-up when 
considering files of increasing size and different compressors. The speed-up has been evaluated as specified 
in the main text. The tick line denoted equal time performance of “compressed vs uncompressed ” execution. 
Values greater than 1 denote a speed-up, while values smaller than 1 denote a slow-down. The abscissa 
denotes file size and the speed-up of each compressor is denoted by a bar, with color as indicated in the top 
right of the figure
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•	 Algo. Contains the command-line instructions of a particular compressor, defined 
through the configuration file.

•	 UniversalCodec. Contains fields and methods for managing data compression 
and decompression.

•	 UniversalInputFormat. Extends the CodecInputFormat class, implement-
ing the methods according to the compressed file structure.

•	 UniversalDecompressor. Extends the CodecDecompressor class, imple-
menting the method decompress, according to the command-line commands of 
the Algo object.

Experimental setting

Choice of compression Codecs: standard specialized or available in Hadoop

For our experiments, all the standard splittable general-purpose compression Codecs 
available with Hadoop have been considered: BZIP2 [6], LZ4 [5] and ZSTD [17].

As for the specialized FASTA/Q files compressors, we have developed a set of com-
pression Codecs based on SPRING [15], DSRC [16], Fqzcomp [18], MFCompress [19]. 
These have been chosen, with independent experiments, as they cover the range of pos-
sibilities in terms of the trade-off compression and time. A list of all these Codecs is 
reported in Table 1, with their relevant features for this research.

It is to be remarked that while the general purpose compressors have been designed 
to compress well and be fast in compression/decompression times, the specialized ones 
are not so uniform with respect to this design criteria. For instance, HU_SPRING com-
presses very well, but it is very slow in compression/decompression times, while HU_
DSRC offers a good balance of those aspects. To place every compressor at a peer, we 
use their default settings.

Datasets

We have used for our experiments two types of datasets. Both of them contain files that 
are collections of reads and therefore are good representatives of files that are the end 
product of HTS technologies. Details regarding those datasets are in Section  4 of the 
Additional file 1.

The first type of dataset, here referred to as type 1 datasets, is a collection of FASTQ 
and FASTA files, of different sizes. The FASTQ files contain a set of reads extracted uni-
formly and at random from a collection of genomic sequences coming from the Pinus 
Taeda genome [20], while the FASTA files contain a set of reads extracted uniformly and 
at random from a collection of genomic sequences coming from the Human genome 
[21]. We have chosen these datasets because they are so large to represent a relevant 
benchmark for the type of experiment we were interested in, allowing us to assess 
changes in performance of the compressors according to a predetermined file size.

The second type of dataset, here referred to as type 2 datasets, is a collection of 
FASTQ files, providing different coverages of H.sapiens. They have been already used to 
benchmark SPRING and we have followed the same instructions available in the Sup-
plementary Material of [15]. We have chosen these datasets because they allow us to 
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measure the potential performance advantages coming from the processing of files with 
increasing degree of redundancy.

Hardware

The testing platform used for our experiments is a 9 nodes Linux-based Hadoop cluster, 
with one node acting as resource manager and the remaining nodes being used as work-
ers. Each node of this cluster is equipped with two 8-core Intel Xeon E3-12@2.70 GHz 
processor and 32GB of RAM. Moreover, each node has a 200 GB virtual disk reserved to 
HDFS, for an overall capacity of about 1.6 TB. All the experiments have been performed 
using the Hadoop 3.1.1 software distribution.

Results
As a preliminary step, we provide evidence that the HS and HU Codecs imported in 
Hadoop via our methods preserve the compression properties of the stand-alone com-
pressors, as required in Section “General guidelines for the design of an Hadoop split-
table Codec”. Such an experiment, together with the results, is presented and briefly 
discussed in Section 5 of the Additional file 1. Then, in order to quantify the advantages 
of deploying FASTA/Q Codecs in Hadoop via our methods, we perform the experiments 
detailed below, that we briefly justify next. The intent of Experiments 1-3 is to provide 
evidence of the space and time performance advantages deriving from the adoption of 
specialized FASTA/Q compressors within MapReduce-Hadoop. Finally, Experiment 
4 is provided for completeness, since it assesses the possible space compression loss, 
referred in what follows as overhead, due to the usage of a HS and/or HU Codec against 
the usage of a same stand-alone compressor, i.e., when executed in a non distributed 
setting.

•	 Experiment 1: An assessment of disk space savings The aim here is to determine 
the possible disk space savings achievable thanks to the adoption of a specialized 
HU or HS Codec, when storing FASTA/FASTQ files on the Hadoop HDFS distrib-
uted file system, with respect to the usage of general-purpose HS Codecs available in 
Hadoop. Space savings (in percentage), in terms of HDFS data blocks, has been com-
puted according to the following formula. Let F be an input genomic file and F ′ its 
compressed splittable representation, then space savings is 1− (size of F’ in HDFS blocks )

(size of F in HDFS blocks)  . 
The size of each HDFS data block is 128 MB. The results of this experiment are 
reported in Tables 2, 3, 4.

•	 Experiment 2: An assessment of reading times savings The aim here is to deter-
mine if there is a positive trade-off between the time saved thanks to the smaller 
amount of data to read from HDFS and the cost to be paid for reading and unpacking 
compressed FASTA/Q files, once compressed with an HS or an HU Codec. Follow-
ing the methodology used in [22], this experiment is implemented by benchmarking 
a very simple Hadoop application. It runs only map tasks whose goal is to count the 
number of occurrences of the letters {A,C ,G,T ,N } in the input sequences, without 
producing any output. That is, the application spends most of its time reading data 
from HDFS. In what follows, we refer to such a task as benchmarking task 1. Speed-
up has been evaluated by dividing the overall execution time of experiments run on 
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each uncompressed file with respect to the overall execution time of the same exper-
iment, but run on the same compressed file. The results are reported in Figs. 2, 3, 4.

•	 Experiment 3: An assessment of network communication time overhead savings 
The aim here is to establish if the smaller amount of network traffic due to the reduced 
number of map tasks needed to process a FASTA/Q file compressed with an HS or HU 
Codec has a beneficial effect on the overall shuffle time of an application, compared 
to the case where the input file is uncompressed. This experiment is implemented by 
benchmarking an application where each map task counts the number of occurrences 
of the letters {A,C ,G,T ,N } , in each of the sequences read from an input file. Once 
finished, the map task emits, as output, the overall count for each of the considered 
sequences. The reduce tasks gather and aggregate the output of all map tasks, and print 
on output the overall number of occurrences of each distinct letter. That is, the execu-
tion of this experiment requires a communication activity between map and reduce 
tasks that is proportional to the number of map tasks being used. In what follows, we 
refer to such a task as benchmarking task 2. Speed-up has been evaluated by dividing 
the overall execution time of experiments run on each uncompressed file with respect 

Fig. 3  Experiment 2-Reading time savings. Type 1 datasets FASTQ files. The Figure Legend is as in Fig. 2

Fig. 4  Experiment 2-Reading time savings. Type 2 datasets FASTQ files. The Figure Legend is analogous to the 
one in Fig. 2
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to the overall execution time of the same experiment, but run on the same compressed 
file. The results are reported in Figs. 5–7.

•	 Experiment 4: An assessment of the compression loss due to the usage of our HS 
and HU Codecs against the stand-alone methods The aim here is to determine the 
possible disk space overhead introduced by the usage of a target Codec via our HS and 
HU Codecs, when storing FASTA/FASTQ files on the Hadoop HDFS distributed file 
system, with respect to the space usage needed to store the same files on a non-distrib-
uted setting using the original version of the same Codec. The overhead has been com-
puted as follows. Let CS be a file compressed using a stand-alone compressor and CH 
be the same file compressed using its corresponding HS or HU Codecs, the file size 
overhead is (size of CH in bytes)

(size of CS in bytes) − 1 . The results of this experiment are reported in 
Tables 5, 6, 7.

Discussion
Experiment 1: Specialized compression yields significant disk space savings on Hadoop.

With reference to Tables 2, 3, 4, it is evident the ability of the specialized HU and HS 
Codecs, i.e. the ones that have been imported in Hadoop using our methods, to reach 

Fig. 5  Experiment 3-Network overhead savings. Type 1 datasets FASTA files. Execution time speed-up 
of benchmarking task 2, measured when considering files of increasing size and different compressors. 
Speed-up has been evaluated as specified in the main text. The tick line denoted equal time performance 
of “compressed vs uncompressed” execution. Values greater than 1 denote a speed-up, while values smaller 
than 1 denote a slow-down

Table 2  Experiment 1-Space Savings. Type 1 dataset FASTA files

Space savings (in percentage) and in terms of HDFS blocks, computed as specified in the main text. Files of increasing size 
are listed on the rows, while general-purpose and specialized compression Codecs are listed on the columns

Dataset HS_BZIP2 (%) HS_LZ4 (%) HS_ZSTD (%) HU_MFCompress 
(%)

HU_SPRING 
(%)

16G 81 55 76 85 86

32G 82 55 76 85 86

64G 82 55 76 85 87

96G 82 55 76 85 87
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space savings significantly better than that of generic HS Codecs already available in 
Hadoop. This is witnessed by the much smaller number of HDFS data blocks needed 
to store a distributed compressed representation of each file, with respect to uncom-
pressed files. In particular, all specialized codecs exhibit better performance than the 

Table 3  Experiment 1-Space Savings

Type 1 dataset FASTQ files. The Table Legend is as in Table 2

Dataset HS_BZIP2 
(%)

HS_LZ4 
(%)

HS_ZSTD 
(%)

HU_DSRC 
(%)

HS_DSRC 
(%)

HU_
Fqzcomp 
(%)

HU_SPRING 
(%)

16G 81 53 74 83 84 84 84

32G 81 54 75 83 84 84 84

64G 81 53 75 82 84 84 84

96G 81 53 75 84 84 86 87

Table 4  Experiment 1-Space Savings: Type 2 datasets FASTQ files

The Table Legend is analogous to the one in Table 2

Dataset HS_BZIP2 
(%)

HS_LZ4 
(%)

HS_ZSTD 
(%)

HS_DSRC 
(%)

HU_DSRC 
(%)

HU_
Fqzcomp 
(%)

HU_
SPRING 
(%)

H. Sapiens 1 
(cov. 1.6x)

75 45 67 78 78 81 81

H. Sapiens 2 
(cov. 14.4x)

74 41 65 77 77 80 80

H. Sapiens 3 
(cov. 26.6x)

86 62 80 86 86 89 89

Table 5  Experiment 4-File size overhead

Type 1 datasets FASTA files: Space overhead (in percentage), computed as specified in the main text, introduced by 
compression Codecs encapsulated in the HU and in the HS Codecs vs their (SA) stand-alone versions (on the columns), 
when compressing input files of increasing size (on the rows)

Dataset BZIP2 LZ4 ZSTD MFCompress SPRING
SA vs HS SA vs HS SA vs HS SA vs HU SA vs HU

16GB ∼ 0% ∼ 0% ∼ 0% ∼ 4.35% ∼ 46.67%

32GB ∼ 0% ∼ 0% ∼ 0% ∼ 9.09% ∼ 59.26%

64GB ∼ 0% ∼ 0% ∼ 0% ∼ 7.95% ∼ 95.45%

96GB ∼ 0% ∼ 0% ∼ 0% ∼ 7.63% ∼ 134.55%

Table 6  Experiment 4-File size overhead: Type 1 datasets FASTQ files: The Table Legend is as in 
Table 5

Dataset BZIP2 LZ4 ZSTD DSRC DSRC Fqzcomp SPRING
SA vs HS SA vs HS SA vs HS SA vs HS SA vs HU SA vs HU SA vs HU

16GB ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 4.55% ∼ 10.53%

32GB ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 2.27% ∼ 10.53%

64GB ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 1.12% ∼ 16.44%

96GB ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 1.49% ∼ 11.01%
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non-specialized ones, with HU_Fqzcomp and HU_SPRING somewhat better than HS_
DSRC and HU_DSRC.

It is to be noted that those latter methods yield nearly identical compression results. 
This is an important indication that our Universal Meta-Codec is effective and worth-
while. Indeed, the development of HS_DSRC took non trivial programming skills as well 
as several days of work, while the development of HU_DSRC took few minutes to be 
developed and no programming.

Experiment 2: a careful use of specialized compression yields significant reading‑times 

savings on Hadoop for FASTQ files.

Compression may significantly reduce the amount of time required to read data from 
an external device, as long as the decompression process is “fast”. Such a trade-off is well 
known for generic standard compressors. Here we study it in regard to HS and HU spe-
cialized Codecs. Our experiments indicate the following.

•	 FASTA performance for type 1 datasets. We notice here that the trade-off between 
compression space efficiency and decompression times matters. On a side, we 
observe from Table 2 that the usage of the specialized Codecs leads to a better com-
pression with respect to non specialized Codecs. However, this advantage is canceled 
out by the much slower decompression routines of specialized Codecs, as witnessed 
by the results reported in Fig. 2. In order to support such a conclusion, it is worth 
recalling that the benchmarking task 1 consists of reading compressed files and then 
of decompressing them. Consequently, the usage of specialized codecs does not bring 
a positive speed-up in this setting. Our experiments, however, provide the following 
novel and useful guidelines. When fast reading time is critical, it is recommended to 
use HU_ZSTD as it allows for a significant time performance speed-up while guar-
anteeing consistent space savings. When space is important, while accounting for 
reading time also, HU_SPRING is better than HU_MFCompress.

•	 FASTQ performance for type 1 datasets and type 2 datasets. As well illustrated 
by the results in Figs. 3, 4, HS_DSRC and HU_DSRC are among the top performers. 
Indeed, their reading and decompression time performance is better or quite close to 
that of a highly engineered generic compressor such as ZSTD. This is mostly due to 
their significant compression ability and to their very fast decompression routines. 
Moreover, as the dataset size grows and/or its redundancy increases, the perfor-
mance of those two methods gets better and better. To explain this, consider that 
when managing the 16G input file, HS_DSRC and HU_DSRC return a number of 
HDFS data blocks to process that is smaller than the number of available processing 
cores. So, not all the available processing capability of the cluster is exploited. When 
the size of the input increases to 32G, the number of HDFS data blocks gets larger 
and allows to use all the available processing cores, thus resulting in an improved 
overall efficiency. The novel indication that we get from our experiments is that HS_
DSRC and HU_DSRC are definitely the methods of choice for FASTQ files, when 
space is at a premium and reading time from HDFS is important.
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It is to be noted that also this experiment confirms the validity and convenience of our 
Universal Meta-Codec, since the reading time speed-up of HS_DSRC and HU_DSRC 
are very close on all of the experiments we have performed.

Experiment 3: a careful use of specialized compression yields significant network 

communication cost on Hadoop for FASTA/Q files.

When considering more complex Hadoop applications, such as our second benchmark-
ing task, we notice that the usage of specialized Codecs allows for a significant time per-
formance speed-up (see Figs. 5, 6, 7). This is mostly due to the beneficial effect on the 
network traffic flowing from Hadoop map tasks to Hadoop reduce tasks thanks to the 
reduced amount of HDFS data blocks to process. In particular, our experiments suggest 
the following evaluation.

•	 FASTA performance for type 1 datasets. According to the experimental results 
depicted in Fig. 5, HU_SPRING, while preserving its superior compression perfor-

Fig. 6  Experiment 3-Network overhead savings. Type 2 datasets FASTQ files. The Figure Legend is as in 
Fig. 5

Fig. 7  Experiment 3-Network overhead savings. Type 1 datasets FASTQ files. The Figure Legend is as in Fig. 5
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mance with respect to the other compressors, can also provide some speed-up (or at 
least, no sensible performance degradation) in terms of network traffic savings. This 
latter, then, results in an overall time savings.

•	 FASTQ performance for type 1 datasets and type 2 datasets. According to the 
experimental results depicted in Figs. 6, 7, HS_DSRC and HU_DSRC are consistently 
among the top performers, for the same reasons outlined in the discussion of the 
previous experiment.

Finally, also this experiment supports the validity of our Universal Codec.

Experiment 4: The compression loss of distributed HS and HU Codecs with respect 

to the stand‑alone ones is minimal, provided those latter are amenable to splittability.

With reference to Tables 5, 6, 7, it is clear that the space overhead introduced by our HS 
and HU Codecs to bring any standard compressor to Hadoop is, in most cases, negligi-
ble. This is particularly true for Codecs that are natively splittable or are, at some degree, 
amenable to splittability. However, “global compression strategies” are not amenable to 
splittability, as well illustrated by SPRING. Indeed, its compression algorithm first reor-
ders reads so that they are approximately ordered to their position in the genome and, 
then, the ordered reads are used to assemble a reference genome that is finally com-
pressed, while removing duplicate reads. Indeed, such an approach is expected to work 
very well when processing very large and redundant files. Conversely, its compression 
efficiency is not so effective, when working separately on each piece of a partitioned file, 
as HDFS requires. In particular, with the aid of

Tables 8, 9, it is evident that the overhead introduced by HU_SPRING, with respect 
to its stand-alone version, grows with the compressibility of the files. Quite remarkably, 

Table 7  Experiment 4-File size overhead: Type 2 datasets FASTQ files: The Table Legend is as in 
Table 5

Dataset BZIP2 LZ4 ZSTD DSRC DSRC Fqzcomp SPRING
SA vs HS SA vs HS SA vs HS SA vs HS SA vs HU SA vs HU SA vs HU

H. Sapiens 1 (cov. 1.6x) ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 4.76% ∼ 10.00%

H. Sapiens 2 (cov. 14.4x) ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 1.41% ∼ 43.71%

H. Sapiens 3 (cov. 26.6x) ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 0% ∼ 1.41% ∼ 154.43%

Table 8  Datasets Compressibility-SPRING: Type 1 datasets: Space savings (in percentage) of SPRING 
when processing files of increasing size (on rows)

Let F be an input genomic file and F ′ be the same file compressed using SPRING as stand-alone application, the space saving 
is computed as 1− (size of F’ in bytes)

(size of F in bytes)

Dataset FASTA (%) FASTQ 
(%)

16GB 90 86

32GB 91 86

64GB 93 86

96GB 94 86



Page 19 of 21Ferraro Petrillo et al. BMC Bioinformatics  2021, 22(1):144	

despite this significant space overhead, HU_SPRING is still among the best for compres-
sion over Hadoop (see the discussion regarding Experiment 1 again).

It is also of interest to point out that although BZIP is based on the Burrows and 
Wheeler transform [23], it applies such a transform to small chunks of a file (900 Kb 
each). Therefore, although in principle compression “a la Burrows and Wheeler” could 
be implemented as a global strategy, BZIP compression is “local” since it works on small 
pieces of a file separately. As a consequence, its distributed version has virtually no over-
head with respect to the stand-alone one.

Conclusions
We have provided two general methods that can be used to transform standard 
FASTA/Q data compression programs into Hadoop splittable data compression Codecs. 
Being the methods general, they can be used for specialized standard compression pro-
grams that will be developed in the future. Another main characteristic of our methods 
is that they require very little, or none at all, programming and knowledge of Hadoop 
to carry out a rather complex task. Our methods apply also to the Apache Spark frame-
work, when used to process FASTA/Q files stored on the Hadoop File System.

We have also shown that the use of specialized FASTA/Q Hadoop Codecs, not avail-
able before this work, is advantageous in terms of space and time savings. That is, we 
provide effective and readily usable tools that have a non-negligible effect on saving costs 
in genomic data storage and processing within Big Data Technologies.

Apart from the specific recommendations provided to a potential user of the special-
ized compressors imported in Hadoop via our methods, this research also highlights 
the characteristics of specialized compressor in order to be proficuously imported in 
Hadoop. Namely, effective “local” compression and fast decompression time.

Availability of data and materials
Project name: FASTdoopC

Project home page: https://​github.​com/​fpali​ni/​fastd​oopc
Operating system(s): Platform independent
Programming language: Java
Other requirements: Java 8 or higher, Hadoop 3.1.1 or higher/Spark 2.3.3 or higher
License: Apache LicenseLicense: Apache License
Any restrictions to use by non-academics: None
A copy of the datasets analysed during the current study is available on the FAST-

doopC project web site, at https://​github.​com/​fpali​ni/​fastd​oopc.

Table 9  Datasets Compressibility-SPRING: Type 2 datasets: The Table Legend is as in Table 8

Dataset FASTQ 
(%)

H. Sapiens 1 (cov. 1.6x) 83

H. Sapiens 2 (cov. 14.4x) 86

H. Sapiens 3 (cov. 26.6x) 96

https://github.com/fpalini/fastdoopc
https://github.com/fpalini/fastdoopc
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