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at a cellular level. However, missingness and heterogeneity of metadata prevent

large-scale identification of drug exposure studies and limit assessments of sex bias.
To address this, we trained organism-specific models to infer sample sex from gene
expression data, and used entity normalization to map metadata cell line and drug
mentions to existing ontologies. Using this method, we inferred sex labels for 450,371
human and 245,107 mouse microarray and RNA-seq samples from refine.bio.

Results: Overall, we find slight female bias (52.1%) in human samples and (62.5%)
male bias in mouse samples; this corresponds to a majority of mixed sex studies in
humans and single sex studies in mice, split between female-only and male-only
(25.8% vs. 18.9% in human and 21.6% vs. 31.1% in mouse, respectively). In drug studies,
we find limited evidence for sex-sampling bias overall; however, specific categories

of drugs, including human cancer and mouse nervous system drugs, are enriched in
female-only and male-only studies, respectively. We leverage our expression-based sex
labels to further examine the complexity of cell line sex and assess the frequency of
metadata sex label misannotations (2-5%).

Conclusions: Our results demonstrate limited overall sex bias, while highlighting high
bias in specific subfields and underscoring the importance of including sex labels to
better understand the underlying biology. We make our inferred and normalized labels,
along with flags for misannotated samples, publicly available to catalyze the routine
use of sex as a study variable in future analyses.

Background

Sex differences have been reported across multiple traits and diseases and in response
to drugs. In the case of drug response, women experience more than 1.5-fold as many
adverse drug events [1]. This is in part due to historical exclusion of women from clinical
research. In 1993, the policies excluding women were revoked and the National Insti-
tutes of Health (NIH) Revitalization Act was passed to increase inclusion of women
and minorities in clinical research. This has improved inclusion of women, but clinical
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studies continue to show sex bias against female participants [2—4]. Additionally, pre-
clinical studies are critical to the drug development process [5]; however, there is limited
reporting of sex in both rodent [6, 7] and cell line research [8]. In 2016, the NIH passed a
mandate that requires researchers to consider sex as a variable in preclinical analysis [9],
which led to increases in sex reporting, but sex bias in these studies still remains [10].

Gene expression data is often used as part of the drug development pipeline in order
to better understand cellular and molecular-level effects of drugs and assess their mech-
anisms of action and side effects [11]. While we do not expect all drugs to show cellular-
level sex differences in drug response, pervasive use of single-sex studies may lead to the
development of drugs that do not work well for both men and women.

Although multiple studies have sought to assess sex reporting and bias in specific
areas, including in skin [12], neuroscience [6, 13], and pain research [14], and across
biomedical fields [6, 10], these assessments largely focus on scientific literature. Public
repositories of biological data provide another avenue for assessing sex bias. Reposi-
tories such as Gene Expression Omnibus (GEO) [15], Sequence Read Archive (SRA)
[16], and ArrayExpress [17] contain gene expression data and corresponding metadata
describing the experiments and samples, allowing for re-analysis and re-use of these
data. Gene expression metadata is organized according to the Minimum Information
about a Microarray Experiment (MIAME) [18] and Minimum Information about a high-
throughput Nucleotide Sequencing Experiment (MINISEQE) guidelines, despite this,
metadata is heterogeneous across experiments, making large-scale analysis difficult. In
the case of examining sex labels, not only are these labels reported inconsistently, the
majority of samples are missing this information, limiting assessment of sex bias. Previ-
ous studies also suggest there may also be widespread misannotation [19, 20]. Metadata
normalization, such as that performed by MetaSRA [21], seeks to address the problem of
inconsistent reporting of sex, cell type, age, and multiple other labels by mapping these
to existing ontologies; but is unable to address missing metadata.

Assessment of sex bias in gene expression data does not require metadata: sex can be
imputed from the expression levels of X and Y chromosome genes. Recount2 [22] used
expression data to impute sex labels across 70,000 publicly available human RNA-seq
samples using a linear model and found slight female bias overall [23]; however, their
work does not extend to microarray platforms [23]. While other methods for imputing
sex labels from microarray expression data have good performance [20, 24], they are
either clustering based and therefore limited to mixed sex studies (because they assume
two clusters) [20, 24] or only work for specific platforms [25].

In addition to challenges with metadata, expression data can be difficult to study at
scale because of platform heterogeneity and differences in data pre-processing and
normalization [26]. Previous resources, such as ARCHS4 [27] and recount2 [22], have
worked to address these limitations by releasing human and mouse RNA-seq data that
has been processed with standardized pipelines.

Refine.bio is a new transcriptomic resource that addresses many of these previous
limitations (http://www.refine.bio, [28]). It contains all publicly available microarray and
RNA-seq data from more than twenty-two organisms, pre-processed, de-duplicated,
and normalized to allow for examination across platforms. Additionally, portions of the
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metadata are “harmonized’, meaning that groups of semantically similar labels (e.g., “tis-
sue” and “organ”) have been manually aggregated into categories.

We sought to assess sex bias at the sample and study level across all publicly avail-
able expression data, including specifically drug-related datasets. For this analysis, we
focused on human and mouse expression studies, using refine.bio as a resource, and
expanded on previous analyses by using a penalized logistic regression model to predict
sample sex. In the process, we also considered cell line sex and used our imputed sex

labels to estimate baseline misannotation rates.

Results

Aggregation of publicly available mouse and human expression data

We downloaded all expression data and metadata for all human and mouse samples and
studies from refine-bio. After filtering (see “Expression data pre-processing” section),
this resulted in 330,508 and 123,279 microarray samples (spanning 11,333 and 9303
studies) and 119,863 and 121,828 RNA-seq samples (spanning 6240 and 6477 studies) in

human and mouse respectively (Fig. 1).

Large-scale sex labeling of mouse and human data

The majority of samples are missing metadata sex labels

We extracted and examined the missing of metadata sex labels in all mouse and human
data present in refine.bio (see “Metadata sex label extraction” section). Across all four

Human samples: Mouse samples:
Data 330,508 microarray, 123,279 microarray,
119,863 RNA-seq 121,828 RNA-seq
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Fig. 1 Schematic of study analysis. We constructed our dataset from all human and mouse microarray and
RNA-seq data in refine-bio. We then extracted metadata labels for sex, cell line, and drug, and built elastic net
models to infer sample sex from gene expression. Using the metadata and inferred sex labels, we investigated
the sex breakdown of samples by organism, as well as cell line “sex” complexity (e.g., Y chromosome loss). We
also looked for the presence of mislabeled data by examining concordance between predicted and actual
sex labels, and at sex bias in drug studies (e.g., underrepresentation of females in studies of nervous system
drugs)
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datasets (human, mouse, microarray and RNA-seq), we find that the majority of sam-
ples and studies do not have metadata sex labels (left portion of each panel in Fig. 2,
Additional file 1: Fig. S1). For example, in human microarray, we find that 70.7% of sam-
ples and 83.9% of their corresponding studies are missing sex labels (see Additional
file 2: Table S1A and B for RNA-seq and mouse statistics). In the absence of metadata
sex labels, we can neither assess inclusion of males and females in studies nor examine
whether there are sex-related effects.

Inferring sample sex from expression data

Existing methods for inferring missing sex labels from expression data are limited to
mixed sex studies [20, 24], so cannot be applied across studies where we do not know the
sex breakdown (e.g. some studies could be single-sex), or are only applicable to certain
platforms or data types [23, 25]. In order to overcome these limitations and label the
majority of publicly available human and mouse expression data, we trained multiple
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Fig. 2 Breakdown of study sex labels. Alluvial diagram showing the breakdown of study sex labels in the
metadata (left of each panel) and after expression based labeling (right of each panel). The flow is colored
by the initial metadata labels and helps trace whether there is a “change”in labels. For the majority of studies
with metadata labels, the labels match the inferred expression labels. The results are shown for both human
and mouse (columns) and in microarray and RNA-seq (rows). Gray indicates that a study is missing sex labels
(for studies with up to 60 samples, more than half of the labels are missing: for studies with greater than 60
samples, there are fewer than 30 labels), dark blue means the samples in the study are female-only, dark
orange is male-only, and pink is mixed-sex. Mostly male (light orange) and mostly female (light blue) indicate
that more than 80% of the samples labeled in that study are of that sex. For the metadata breakdown, the
numbers of studies in mostly-male and mostly-female categories was small (e.g. 71 mostly-female and 87
mostly-male studies in human microarray) and were grouped into mixed sex for ease of visualization. (For a
similar figure with sample sex breakdown see Additional file 1: Fig. S1.)
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machine learning models to impute sample sex from the expression of X and Y chromo-
some genes. We selected penalized logistic regression because of its high performance
and interpretability (see “Model selection and training” section for a description of other
models used and Additional file 1: Fig. S2 and Additional file 2: Table S2 for the results
of using these models). The predicted value from the model corresponds to the model’s
predicted probability of that sample being male (P(male) or P(sex=1) using the standard
coding where female is 0 and male is 1); we refer to this value as a sample sex score. We
both use this score to label sample sex, assigning samples to male or female at a certain
threshold cutoff, and examine the distribution of these scores across samples.

We assessed the accuracy of our models in a held-out test set (agreement 91.7% in
microarray, 88.4% in RNA-seq for human) and as compared to all metadata sex labels
(93.1% in microarray, 91.3% in RNA-seq for human) (see Additional file 2: Table S3A
for test set composition). The flow of sample labels highlighted in Fig. 2 shows the cor-
respondence between metadata and inferred expression labels. We see similar perfor-
mance in human and mouse (see Additional file 2: Table S3B), with higher agreement
in microarray datasets than RNA-seq. We additionally looked at the performance for
the subsets of these labels in single sex studies (95.1%), mixed sex studies (91.5%) (sta-
tistics shown for human microarray), and, in human, manually annotated sex labels
from a previous analysis (94.2%) [25]. As expected, at more stringent cutoffs for assign-
ing sample sex, we achieved higher concordance at the expense of leaving a portion of
samples unlabeled (Additional file 1: Fig. S3, values in Additional file 2: Table S3B). We
selected a threshold of 0.7 to correspond with approximately 95% agreement between
metadata and expression labels across the datasets. Our models show good perfor-
mance in most platforms; however, 7 of 62 platforms (covering <3% of all samples) have
very poor performance in the extended test set (agreement<70%, see Additional file 1:
Fig. S4 and Additional file 2: Table S4A for platform-specific accuracy). We filtered to
remove these “problem platforms’, and at a threshold of 0.7, for human data, we have
94.3% and 92.1% concordance with 92.9% and 70.0% of the data labeled in microar-
ray and RNA-seq respectively (mouse datasets show similar patterns, Additional file 2:
Table S4B). RNA-seq samples with more read counts are more likely to be labeled (point
biserial correlation=0.197, p<2 x 10719); higher read counts are also correlated with
increased accuracy of labeling, but to a lesser extent (point biserial correlation=0.0251,
p <4.55 x 107, Additional file 1: Fig. S5).

Key model features include Y chromosome and X escape genes

Elastic net performs feature selection, reducing the number of genes (or transcripts)
included in the model. We examined the location and X-inactivation status of the result-
ing genes (see Additional file 1: Fig. S6 and Additional file 2: Table S5). For human micro-
array, this reduced the number of genes from 548 to 33, none of which were located
in the pseudoautosomal region. The genes with the strongest coefficients in the male
direction are located on the Y chromosome, while the genes with the strongest coeffi-
cients in the female direction are known X chromosome escape genes [29]. This finding
is consistent with biological understanding; X chromosome genes that escape inactiva-
tion have higher expression in females because there are two X chromosomes. A small
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number of inactive and variable escape X chromosome genes are included in the model

with small coefficients in both directions.

Sex labeling mixed sex or pooled samples

A small fraction of samples (<0.01% in human data, 0.6% in mouse data) have meta-
data indicating that they are pooled or mixed sex samples. This practice is more com-
mon in mouse data, as samples are often pooled from mice of the same strain before
analysis, and it is used to both increase signal and reduce the number of expression sam-
ples (and thereby the cost). Pooling often includes samples from both sexes, but this is
highly variable. We sought to examine our models’ predictions on these mixed or pooled
samples. The models’ sample sex score distributions are significantly different in mixed/
pooled samples versus male or female labeled samples (see Additional file 1: Fig. S7). At
a threshold of 0.7, which was selected to correspond to a 95% accuracy rate (Additional
file 1: Fig. S4), pooled samples fall into the unlabeled category at higher rates than sam-
ples with male and female metadata sex (in mouse microarray data, 28.8% of pooled ver-
sus 5.4 and 7.7% of female and male samples are not labeled).

Sex breakdown shows slight female bias in humans and male bias in mice

We applied these models to all publicly available human and mouse expression data and
found that the overall sex breakdown is slightly female-biased (52.1%) in humans and
male-biased (62.5%) in mice (Additional file 1: Fig. S1; for RNA-seq versus microarray
breakdown see Additional file 2: Table S1A). At a study-level, in humans, the majority
of studies are mixed sex and there are more female-only than male-only studies (55.3%
mixed sex, 25.8% female-only, 18.9% male-only). In mice, single sex studies make up
the largest proportion of studies; however, this is only slightly more than the fraction of
mixed sex studies, and there are more male-only than female-only studies (47.4% mixed
sex, 21.6% female-only, 31.1% male-only) (right portion of each panel in Fig. 2). This pat-
tern does not appear to change over time (Additional file 1: Fig. S8).

Cell line “sex” is complex

We performed named entity recognition to identify cell lines based on the metadata and
mapped 74,140 out of 99,426 human samples and 8433 out of 17,061 mouse samples
to Cellosaurus identifiers. For human RNA-seq samples, this showed high concordance
with MetaSRA (76.5% exact matching, 14,390 out of 18,821 samples).

Our analysis supports previous observations that cell line “sex” is fundamentally different
from tissue sex

While previous studies [8] have encouraged researchers to report the sex of their cell
lines, other studies have shown that cell line sex can be complicated, in part because cell
lines often lose their Y chromosomes in culture [30]. We find that many samples with
reference sex male are labeled as female based on expression data (37.8%) while rela-
tively few samples have reference sex female and are labeled male (4.24%, Fig. 3A, Addi-
tional file 1: Fig. S9). This pattern of cell line “switching” from male to female matches
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patterns that have already been shown on a smaller scale; namely, many cell lines lose Y
chromosomes.

Overall, we see significant enrichment of the overall proportion of female imputed
labels in cell line versus tissue samples (Additional file 1: Fig. S10A, p<0.05 for human
and mouse microarray and human RNA-seq, N.S. for mouse RNA-seq). Additionally,
the distributions of sample sex scores for cell line versus tissue show increased female
scores and a wider distribution of scores in cell line versus tissue data (Additional file 1:
Fig. S10B).

Our analysis provides evidence of cell-line specific patterns of Y chromosome loss.

Across male cell lines, the fraction of inferred male versus inferred female samples var-
ies greatly, with certain cell lines appearing more “male-like” (e.g., THP-1, OCI-Ly7),
“female-like” (e.g. KYSE-30, HaCaT), and other cell lines appearing to belong more in
the middle with samples belonging to both (A549, HCT-116) (Fig. 3b, c). We further
examined 87 cell lines from male donors that had a large number of studies (>5) and
samples (>3 per study) (Additional file 2: Table S6). Of these cell lines, 45 are included
in Cancer Cell Line Encyclopedia (CCLE) [31]. On a cell line level, our sample sex score
predictions correlate with CCLE Y but not X chromosome copy number (Spearman cor-
relation of medians for Y: 0.774, p <4.58 x 107, and X: —0.0944, p =0.537) (Fig. 3C).

Page 7 of 23
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Our models allow for improved detection of mis-annotated data

We can estimate metadata mis-annotation rates at scale by comparing our inferred
sex labels to metadata sex labels. First, we examined the mismatch rates in mixed
sex versus single sex tissue studies and found significantly higher mismatch rates
in samples from human mixed sex studies (4.87%) than single sex studies (2.03%)
(Chi-squared p value<1.69 x 10~*). By contrast, in mouse studies, mismatch rates
for samples in single sex studies (3.42%) exceeded that of mixed sex (2.58%) studies
(<9.70 x 107°) (Additional file 2: Table S7A).

Second, we created a dataset of large mixed sex studies with metadata labels, con-
sisting of 6066 mouse and 8658 human samples (168 and 163 studies respectively),
which we sex labeled with the Toker and massiR methods, as well as our own (see
“Comparing expression-based methods in mixed sex studies” section). Across these
samples, 4.74% of human and 6.64% of mouse samples had metadata sex labels that
did not match any of the predicted expression-based labels. At a study level, 35.0% of
human and 16.7% of mouse studies contained at least one mismatched sample (Addi-
tional file 2: Table S7B).

Third, to estimate the probability that an individual sample is mislabeled in a mixed
sex study, we fit a mixture of Gaussians to each study-level distribution of sample sex
scores (see “Clustering to identify high confidence swaps in mixed sex studies” sec-
tion). This allowed us to identify high confidence mismatches at a particular prob-
ability threshold (> 0.95) by examining the concordance between metadata labels and
expression labels. After discarding mixed sex studies where the best model was a sin-
gle Gaussian (409 or 26.9% of mixed sex studies—by comparison, we also clustered
single sex studies and found 94.0% of single sex studies were best modeled by a single
Gaussian), we estimate that 2.04% of mouse and 3.06% of human samples are misla-
beled in these studies. At a study level, this corresponds to 26.0% of mouse and 51.7%
of human studies containing at least one high confidence mismatched sample (Addi-
tional file 2: Table S7C).

Sex breakdown of drugs in tissue data

Labeling drug studies using metadata

We identified all gene expression studies containing drug mentions by applying
named entity recognition and normalization to the study and sample metadata (see
“Drug labeling” section). We labeled studies with drug mentions (n=7665), which
contain a drug in the study abstract or title, and drug exposure studies (n=1095)
which include a drug in the sample treatment field.

Out of the 95,788 human and mouse samples with non-null treatment fields (span-
ning 9130 unique treatment labels), 30,000 mapped to only control terms (1144
unique) and 463 mapped to both DrugBank drugs and control terms (91 unique),
12,692 mapped to only drugs (1410 unique treatment labels, mapping to 417 drugs),
leaving 52,633 unmapped treatment labels (6485 unique). 96 additional samples
mapped using compound or title.

The overlap between the studies with drug mentions (n=7665) and treatment stud-
ies (n=1095) is 757 studies; 557 of these studies map to the same drug or drug(s)
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and 159 map to at least one of the same drugs. After filtering for only overlapping
drugs, there are 844 unique study-drug pairs spanning 319 drugs and 715 studies. We
include a list of these drug exposure studies in Additional file 2: Table S8A.

The sex breakdown of drug studies shows limited sex bias overall

We then asked the question of whether global patterns of sex breakdown continue in the
context of drug studies. We found that this was the case, with slightly increased female-
bias in human studies (52.1% overall, 59.9% in drug studies) and decreased male-bias in
mouse studies (62.5% overall, 57.1% of drug studies) (Additional file 1: Fig. S11). This
pattern varies across drug Anatomic Therapeutic Class (ATC), with female-only studies
enriched in human and mouse genitourinary system drugs (class G, p<10™®and p <1071
respectively) and in human cancer/immune system drugs (L, p<107/), and male-only
studies were enriched in mouse nervous system drugs (N, p<1077) (Fig. 4). These pat-
terns match sex breakdowns in drug exposure studies (Additional file 1: Fig. S2A, C) and
a previous dataset of manually curated drug expression studies ([32], n=472) (Addi-
tional file 1: Fig. S12B, D).
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Human cancer drug studies are female-biased

There are 370 female-only versus 105 male-only studies with cancer drug mentions;
however, the majority of cancer drug studies are still mixed sex (n=396). These studies
span 143 different drugs and despite being highly female-biased at the study level, 115 of
these drugs (80.4%) have at least one mixed sex study.

To determine the possible association between cancer and sex, we examined whether
drugs targeting strongly sex-biased cancers (e.g. breast, ovarian, prostate) were associ-
ated with more single sex studies. In humans, of the drugs with >70% female-only stud-
ies, 9 out of 21 are breast cancer specific and 19 out of 21 drugs contain indications for
breast or ovarian cancer (Additional file 2: Table S9A). For drugs with>70% male only
studies, in humans 2 out of 8 of these are used for prostate cancer (Enzalutamide, Abira-
terone) and the remainder are used for multiple types of cancer (this includes Bleomycin
which is used for multiple cancers including ovarian).

Mouse nervous system drug studies are male-biased

In the case of mouse nervous system drugs, we see high male-bias in the proportion of
male mice used as study subjects. This pattern of male-only rodent studies in neurosci-
ence has been previously reported [6]. At an individual drug level, while the majority
drugs have both single and mixed sex studies (n=147, 38.7% of human; n=95, 34.5%
of mouse) or mixed sex only studies (n=115, 30.3% of human; n=38, 13.8% of mouse),
some drugs had only male studies (10.3% of human, 20.7% of mouse). In nervous sys-
tem drugs in particular (n=27 in humans, n=37 in mice), this fraction is markedly
increased in mouse nervous system drugs, with 13 drugs that are only studied in males
versus 5 only in females (see Additional file 2: Table S9B for a list of neuro drugs). The
13 drugs with male-only studies in mice, two have mixed sex studies in humans (Her-
oin and Carbamazepine), two only have male-only studies in humans (Fluoxetine and
Haloperidol), and the remainder have no human studies (Acepromazine, Amphetamine,
Levadopa, Memantine, Modafinil, Olanzapine, Quetiapine, Salsalate, Venlafaxine).
Fluoxetine is particularly interesting because it is a commonly prescribed antidepressant
and is present in eight mouse studies, all of which are male-only. The eight studies are all
treatment (fluoxetine) versus control comparisons and collectively contain 128 samples
all from mouse brain tissue. In humans, there is only one fluoxetine study and it is also
all male.

Discussion

We inferred sample sex labels at scale from expression data; to our knowledge, our
analysis represents the first effort to label the majority of publicly available human and
mouse microarray and RNA-seq expression samples. We leveraged these labels to assess
sex bias overall and in drug studies, examine cell line sex, and estimate misannotation
rates. Below, we discuss our findings in the context of previous results, and potential
limitations of our methodology.

Labeling expression data at scale
Improving on previous methods, which have high accuracy but are focused on spe-
cific data or platforms [23, 25] or mixed sex studies [20, 24], our labeling method has
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consistent accuracy across the majority of platforms and in both mixed and single sex
studies. We leverage the sample and study metadata to label sample sources (e.g. tis-
sue, cell line, primary cell, etc.) and map samples and studies to cell line and drug iden-
tifiers from Cellosaurus [33] and DrugBank [34] respectively. Our combined metadata
mappings and inferred sex labels allow us to examine the sex breakdown across sample
source type, cell lines, and drug-related expression studies.

We found that the overall sex breakdown shows slight female-bias in human samples
and male-bias in mouse samples. This breakdown continues at a study level, where about
half of studies are mixed sex but there is still slight female- and male-bias in human and
mouse studies respectively. This low overall sex bias is in contrast to what we expected,
given the history of clinical trials excluding women, but is consistent with previous find-
ings in human RNA-seq data [23]. In preclinical rodent research, male-bias often comes
from the historical (and incorrect) perception that female rodents show more variability
due to hormonal cycles [35, 36], and in our analysis, we also see male-bias but to a lim-
ited degree. It is likely that analysis by disease or sub-field may show different patterns
of sex bias. It is important to note our analysis focuses on publicly available expression
studies and does not extend to private data from drug company data or clinical trials.

When we examined labels over a fifteen-year period (2004—2019), we found that the
missingness of sex labels and patterns of sex bias did not appear to change over time.
This was also unexpected because in 2016 there was an NIH mandate to include sex
as a variable in preclinical studies and overall there has been increased awareness of its
importance. Specific fields have documented improvements in the inclusion of females
and reporting of sex [10]; it is possible that future analysis grouping by field may show
changes in the sex breakdown over time despite the overall pattern seeming consistent.

Sex labeling cell lines shows Y chromosome loss

In 2014, Shah et al. [8] encouraged researchers to include and examine the sex of the
cells they use. Previous studies have shown that certain types of male and female cells in
culture respond differently to drugs [37], underscoring the importance of this considera-
tion. However, there is an important distinction between examining the sex of primary
or stem cells and examining the sex of transformed cell lines. While the sex of the cell
line donor provides some information, cell lines in culture often undergo chromosomal
loss or duplication [38], in particular, loss of Y chromosomes is common [30]

While the gold standard for cell line sex labeling is PCR-based authentication [39],
in the absence of this information, we can use our models to infer sample sex and
identify Y chromosome loss from expression data, allowing for re-examination of
existing studies. We found both highly prevalent (43.4% of male cell lines contain
at least one female-appearing sample) and variable patterns of Y chromosome loss
across cell lines. It is unclear whether this variability across cell lines is due to dif-
ferences in cell stability [40], passage number (Y chromosome loss is more com-
mon after longer time in vitro [38]), contamination, or mislabeling. We additionally
found that the distribution of sample sex scores in cell lines varies greatly from that
of tissues and primary cells, with human primary cell line distributions more closely
resembling tissues than cell lines. Many mouse primary samples had ambiguous
sample sex scores, which is likely due to the practice of using pooled samples for
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mouse primary cultures. Altogether, these results highlight the lack of a cell line sex
binary and match previous recommendations against using cell lines for examining
sex-related effects [41]. We performed the remainder of the analysis in cell lines and
tissues separately.

While we infer potential Y chromosome loss in cell lines with donor sex male that
appear female in our expression data, it is also possible that these cell lines are contami-
nated, which is very common [42]. Proper cell line authentication (via PCR) is necessary
to confirm contamination; however, this is not possible during re-analysis of existing
studies. Our estimates are limited in that they do not provide direct copy number infor-
mation, which is important because cell lines also often undergo X chromosome dupli-
cation or changes in autosomal ploidy [38]. However, the sex breakdown of individual
cell lines correlates with the cell line’s Y chromosome reference copy number variation
(CNV) statistics from Cancer Cell Line Encyclopedia (CCLE), validating our inferred
labels and providing further evidence of cell line specificity.

Another potential factor that may influence sex-related behavior in cell lines is the
presence of media, which we did not examine in this analysis. Many media contain
phenol red as an indicator, which has estrogenic properties, and serum, which mim-
ics a pregnancy-like environment, and these may impact the study of sex-related
effects [41, 43]. Examining the effects of media is very challenging as there is great
heterogeneity and media types are often underreported or missing specific informa-
tion [43].

Estimation of misannotation rates

Metadata mislabeling is a widespread problem. Previous studies [19, 20] have used
inferred expression labels to estimate mislabeling rates. Toker et al. found that 46% of
the 70 mixed sex datasets they examined contained mislabeled samples, with an overall
sample mislabeling rate of 2% (4160 samples). In humans, we estimate that 2% of sam-
ples contain misannotated sex labels and 52% of studies contain at least one misanno-
tated sample. Our estimates match previous studies [19, 20] and expand this analysis to
include many more microarray platforms, RNA-seq studies, and mouse samples.

We initially examined the difference in mismatch rates between mixed and single
sex tissue studies, with the expectation that mixed sex studies would have higher
mismatch rates than single sex studies because of the potential for swapped anno-
tations. This was the case in human but not mouse data, and it is unclear why sin-
gle sex studies show higher mismatch rates in mice. It is possible that our approach
may have poorer performance in mouse data than human data at identifying cell line
samples (for human data, we evaluated through comparison to MetaSRA). Inclu-
sion of cell line samples within the tissue analysis would increase mislabeling rates.
Additionally, this difference in rates may be related to the collection of samples from
mouse pups, which are hard to sex [44]. This raises questions about the proportion
of mouse studies that are truly single sex, which requires further investigation and
underscores the importance of using proper authentication for sex determination.
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Including sex as a variable in drug-related studies

The sex breakdown of drug data shows limited sex bias and matches the overall break-
down of samples and studies; however, studies of specific drug classes show sex bias:
particularly mouse nervous system drugs (male-biased) and human cancer drugs
(female-biased). While we focused our analysis on studies that mention a drug, which
may have low specificity, we found a similar sex breakdown in drug exposure studies,
and in a crowd-sourced set of drug studies from CREEDS [32]. Future work may involve
better annotation of drug exposure studies from metadata using deep learning based
methods.

While it is of interest to examine whether particular drugs lead to differential gene
expression responses between males and females, we are underpowered to identify
interaction effects in most of these studies using classical methods because of sample
size. However, it is possible that non-parametric methods and pathway or gene set based
techniques could be used to examine these effects [45]. Additionally, it is still important
to include both sexes in studies regardless of our ability to examine interaction effects
[7]. Our inferred sex labels allow for assessment of these practices. In addition, we hope
that these labels can lead to improved selection of studies and inclusion of sex as a vari-
able in the re-analysis of public data.

Analysis limitations

In developing our sex labeling model, we chose to focus on a model that would allow us
to infer sample sex at high accuracy across a wide range of samples, studies, and plat-
forms. Our model has better performance on microarray data, which may be due to the
fact that we used similar models for microarray and RNA-seq data by applying the Box-
Cox transformation to the RNA-seq count data. It is also possible that alternate models
or transformation methods for count data [e.g. the voom transform [46]] may perform
better. Additionally, the high degree of homology between X and Y chromosomes can
lead to technical artifacts during RNA-seq read mapping that make discerning sample
sex more difficult. While these artifacts are present, they are limited and we still achieve
good labeling performance. Use of methods to directly address these artifacts, such as
XYalign [47], may also improve performance. As is common, our model results in one
probability score for each sample, allowing for accurate probability cutoffs. However, it is
possible that having two predicted scores (for male-like and female-like behavior) could
allow for better understanding of sex in cell lines, pooled samples, and samples from
intersex individuals. While our analysis uses the expression of X and Y chromosome
genes to label sample sex, we did not consider autosomal expression because previous
studies have indicated that sex differences in this are generally tissue-specific [48]. How-
ever, sex differences in autosomal expression, as determined through methods such as
ISEXSs [49], are also important for biological understanding and future work may involve
including autosomal genes.

As part of our analysis, we also leveraged metadata to map samples and studies to
sample source types, cell lines, and drugs. For mappings of samples to cell line and
drug labels, we required an exact match with a cell line name or synonym, and for sam-
ple source type, we also required exact lexical matches for many of the sample source
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categories, resulting in many unlabeled or “other” samples. Use of state-of-the-art bio-
medical named entity recognition and normalization methods may help to improve the
accuracy and sensitivity of these labels.

We focused on sex bias in publicly available human and mouse expression data in
refine.bio because we wanted to examine sex bias in data from both humans and a mam-
malian model organism. Mice have the largest amount of available expression data and
are often used in drug development. We labeled a large fraction of these data; however,
a small subset of samples could not be labeled due to platform challenges or poor qual-
ity expression data. Since this is a small fraction, and missing data is spread across many
studies, we do not expect that labeling these data will change our conclusions; despite
this, continued efforts will attempt to “rescue” these missing data. While we found only
slight overall bias in publicly available mouse and human expression data, it is possi-
ble that public data for other organisms or proprietary data show different patterns of
bias. In the future, we hope to extend our methods to sex label publicly available samples
from other organisms with XY determination systems in order to further aid in the re-

analysis and assessment of sex bias.

Methods
The code used for this analysis is publicly available at https://github.com/erflynn/sl_
label; all analyses were performed in R (3.6.1) or python (3.7.1);

Dataset construction

Expression data pre-processing

We downloaded the normalized expression compendia and RNA-seq libraries for
human (Homo sapiens) and mouse (Mus musculus) from refine.bio (3/15/2020). The
compendia contain both microarray and RNA-seq data, quantile normalized and with
missing values imputed using SVD-impute [50] (430,119 human, 228,708 mouse sam-
ples). We extracted the microarray data (330,508 human, 123,279 mouse samples) and
converted the data to gctx format to aid analysis [51], no other transformations were
applied to them. All RNA-seq libraries for human and mouse were downloaded from
refine.bio (122,864 human, 125,652 mouse). RNA-seq samples with fewer than 100,000
counts were removed, resulting in 119,863 human and 121,828 mouse samples. Tran-
scripts per million (TPM) counts were extracted from the salmon quant.sf files output
[52]. To convert RNA-seq count data to a normal distribution for logistic regression, the
data were transformed with the Box-Cox transformation using the R package BestNor-

malize [53].

Extraction of sample and study metadata labels

GEO microarray metadata were extracted from GEOMetadb [54], including study infor-
mation (title, description, date), sample-study membership, and sample titles and attrib-
utes included in the characteristics_chl field. Following a similar process to refine-bio
metadata harmonization, RNA-seq metadata was extracted from European Nucleotide
Archive (ENA) [55] XML files, including study information, study-run membership,
run-to-sample mappings, and sample attributes. All runs were assigned the attributes of
their corresponding samples (each sample can map to multiple runs but no run maps to
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multiple samples, for consistency with other data sources, we refer to SRA runs as “sam-
ples” from here forward. ArrayExpress microarray metadata was also extracted from
ENA json files.

Sample metadata were present for 443,611 of 448,827 (98.8%) GEO samples, all 4960
ArrayExpress samples, and 237,267 of 241,691 RNA-seq runs (98.2%, corresponding to
196,852 unique samples).

Sex labeling
Metadata sex label extraction
Sample-level sex labels were extracted from metadata sample attributes by filtering for
keys that contained the words “sex” or “gender”. Additional attributes were also extracted
if values contained exact matches to the words “male” or “female”. All unique values were
then mapped to one of “male’, “female’, “mixed” sex (e.g. pooled sample from both males
and females), or “unlabeled” The human labels for the refine-bio RNA-seq samples
almost exactly match those of MetaSRA [21] (30,063 of 30,073 samples).

We grouped studies into the following categories based on the provided sample sex

labels:

1. Unlabeled: studies with either less than half of their samples labeled (for studies with
up to sixty samples) or less than thirty samples labeled (for studies with more than
sixty samples)

. Male-only: all male labels

. Female-only: all female labels

. Mostly-male: > 80% of labeled samples are male

. Mostly-female: > 80% of labeled samples are female

N U B W N

. Mixed sex: <80% of labeled samples belong to either sex

To distinguish between studies with similar and highly imbalanced male/female pro-
portions, we created separate categories for mixed sex (<80%) versus mostly-male
and mostly-female studies (>80%). We selected a cutoff threshold of 80% because this
roughly corresponds to dips in the distributions of study sex fraction (Additional file 1:
Fig. S13). See Additional file 2: Tables S1A, B for the sample and study sex breakdowns

respectively.

Inferring sample sex from expression data

Training and testing data There is often substantial overlap of samples across studies,
with groups of samples belonging to multiple studies. To reduce this overlap, we removed
studies that share one or more samples with greater than five other studies. For the
remainder of studies, we aggregated studies into study groups such that all samples that
share any study are in the same study group.

For each organism and data type (human, mouse, and microarray, RNA-seq), we
stratified by study group, sampled a maximum of five samples per study (to limit
overfitting to a particular study), and then randomly selected training (n=2,300—
3,200 samples, 540-1,300 studies, ranges listed across four datasets) and testing
data (n=630-790 samples, 120-360 studies) such that the resulting datasets were
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approximately balanced between males and females (48.4-50.7%) (see Additional
file 2: Table S3A for size of datasets by organism and data type). The goals in con-
structing these data sets were to ensure there was no leakage between training and
test sets, limit overfitting, and retain sufficient samples and studies to perform strati-
fied cross-validation.

Model features We used X and Y chromosome genes as features for our sex labeling
models. We extracted lists of human (GRCh38.p13) and mouse (GRCm38.p6) X and
Y chromosome Ensembl transcripts and genes from biomaRt (version 2.40.5) [56] and
X escape genes from the literature [29, 57, 58]. To examine the presence of potential
technical artifacts in XY chromosome read mapping, we compared Y chromosome
RNA-seq read counts in males and females, and found limited but present mapping
of reads to the Y chromosome in samples labeled female (median 8.70, interquartile
range (IQR) 3.62-21.0) versus much more prevalent mapping to the Y chromosome in
males (median 268, IQR 86.1-505) (Additional file 1: Fig. S14).

Model selection and training We compared the performance of a wide range of machine
learning models, including penalized logistic regression methods (lasso, ridge, and elas-
tic net) to K nearest neighbors (KNN), Support Vector Machines (SVM), Linear Discri-
minant Analysis (LDA), Naive Bayes, Random Forest, AdaBoost, Decision Trees, and a
Multi-layer perceptron (MLP) [using scikit-learn version 0.24 [59]]. Model performance
was assessed with six-fold cross-validation. Across the four datasets (mouse, human
microarray and RNA-seq data), many methods have similar performance, specifically we
see the highest performance from Random Forest followed by penalized logistic regres-
sion, MLP, and AdaBoost, which have similar performance (Additional file 1: Fig. S2 and
Additional file 2: Table S2). While Random Forest shows the highest performance, given
the similarly high performance and increased interpretability of penalized logistic regres-
sion, we use this method for the remainder of our analysis.

We trained logistic regression models with an elastic net penalty (using the R package
glmnet version 4.0-2 [60]) using X and Y chromosome genes as input. We used nested
cross-validation to select the hyperparameters alpha (elastic net penalty) and lambda
(shrinkage parameter). Briefly, for each of the six cross-validation folds (study-stratified),
each value of alpha (0.1 to 1 in increments of 0.1), lambda was selected from a grid of
values by performing cross-validation on five of the six folds and selecting the lambda
within one standard error of the minimum mean cross-validated error (“lambda-1se”).
This model was assessed on the sixth “validation” fold. We then computed the median
classification error and median lambda for each alpha across all six validation folds, and
selected the value of alpha (and its corresponding lambda) with the lowest median error.

We performed nested cross-validation in this way because of the substantial
between-study heterogeneity and within-study correlations in expression data. Selec-
tion of hyperparameters without the additional cross-validation loop led to increased
classification error. The procedure described is equivalent to the percentile lasso [61]
using the 50th percentile, and extended to select both alpha and lambda.
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Accuracy assessment and cutoff selection We assessed the accuracy of our model
using both the held-out test set (described above) and an extended test set consisting
of all samples with metadata sex labels from studies not in either the training set. We
consider a sample to be correctly labeled when metadata sex matches the expression-
based sex; however, it is important to note that we are actually measuring concord-
ance, as metadata sex labels may contain errors. We also examined two subsets of the
extended test set: samples from large (1) mixed sex studies (at least 10 samples per
study) or (2) exclusively single sex studies (at least 8 samples per study, with all samples
present and annotated as from one sex) and assessed the accuracy on these subsets of
the data (see Additional file 2: Table S3A for a full list of assessment datasets and their
sizes, and Additional file 2: Table S3B for the corresponding accuracies).

We created the exclusively single sex datasets for two reasons: (1) we expect that if
metadata indicates all samples in a study are of one sex it is less likely there are misanno-
tation errors, and (2) to make sure that within study variability did not skew or ability to
label these data. In microarray data, in particular, because these data are signal intensi-
ties rather than counts, improper normalization of single sex studies can lead to a wider
distribution of sex relevant gene expression values.

For assigning sex labels to samples, we used a cutoff threshold of 0.7 on the model pre-
dicted probabilities in order to approximate 95% accuracy (see Additional file 1: Fig. S3).
This leads to labeling of 92.8% of the human microarray and 72.3% of the human RNA-
seq extended test sets (see Additional file 2: Table S3B for mouse statistics).

Assessment of performance across platforms Platform heterogeneity presents a huge
challenge for examining microarray data, and as a result, previous sex labeling methods
have been limited to specific platforms. With our method, we aimed to have high perfor-
mance across a range of platforms. Our models show high performance in the majority of
platforms; however, they perform particularly poorly in a small number of platforms (less
than 70% accuracy in either mouse or human) but these cover < 3% of samples (Additional
file 1: Fig. S4 and Additional file 2: Table S4A, B). As a result, these seven platforms were
excluded from subsequent analysis.

Cell line sex label assessment

Cell line labeling.

Cell line normalization Cell line names, synonyms, sex labels, and amelogenin Short
Term Repeat (STR) marker results were extracted from Cellosaurus [33] (3/27/2020). We
filtered for human and mouse cell lines (n=109,426 unique accessions). Cell line names
and synonyms were converted to lowercase. Where multiple different accessions have the
same name (n=31 names, 760 synonyms) or the same names with different punctuation
(n=294 names, 579 synonyms), we map every instance to all accessions. If a synonym
matches a cell line name it does not share an accession with (n=412 exactly, 91 with
different punctuation), we map that name only to the cell line accession where the name
belongs, but not to both. A subset of the identically named cell lines have the same par-
ent cell line (n =77 names, 739 synonyms), in this case, the parent cell line is used for the

subsequent analysis steps.
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We mapped samples to cell lines by matching values to Cellosaurus names and syno-
nyms. We performed mapping using three sets of attributes, of decreasing specificity: (1)
attribute pairs with keys containing “cell” and “line’, (2) attribute pairs with values con-
taining “cell” and “line’; and (3) attribute pairs that mention the word “cell” Human and
mouse data were mapped separately, using the appropriate Cellosaurus subset. Prior to
analysis, mouse strain names, common stop words, and cell line names/synonyms that
consisted of all numeric characters were removed. We first used exact matches between
the value and cell line names (> 3 characters) for attribute pairs with a cell line key. Then,
cell line mentions were detected using n-gram matching (n=1, 2, 3) between the attrib-
ute value (>3 characters) to a cell line or synonym.

Labeling sample source type Based on the presence of exact lexical matches to key
terms in the sample metadata, we automatically assigned samples to one of: tissue, stem
cell, xenograft, cancer cell, cell line, primary cell, or other. Cell line data was divided into
“named” and “unnamed” cell lines, where named cell lines map to a Cellosaurus identi-
fier (see Additional file 1: Fig. S15 for logic and Additional file 2: Table S10 for counts by
sample type).

Examining cell line sex

Using our normalized cell line labels, we can compare the reference sex of a cell line from
Cellosaurus to the inferred sex from our expression data. For this analysis, we examined
cell line samples that were both labeled as a cell line using our expression model and
mapped to a Cellosaurus ontology label based on its metadata.

Two types of reference sex labels from Cellosaurus were compared to imputed sex
labels from our model; these include donor sex, the sex of the donor the cell line was
derived from, and recorded sex, which is the sex of cell line samples derived from Short
Tandem Repeat (STR) profiling of the amelogenin genes [39]. Samples are labeled as
“both” if multiple STR analyses have obtained different sex labels.

For cell lines with corresponding data in the Cancer Cell Line Encyclopedia (CCLE)
[31], we compared our sample sex scores to CCLE X and Y chromosome copy number
(CNV) data (downloaded 9/5/2020).

Estimation of metadata misannotation

We examined metadata sex label misannotation rates in three ways, described below.

Comparing mismatch rates in single sex versus mixed sex studies

We examined the rates of sample and study sex label mismatches in large single and
mixed sex studies (>10 samples). A sample mismatch is a sample with a metadata sex
label of male or female and an expression-based sex label (with score above 0.7) indicat-
ing the opposite sex. A mismatched study means that the study contains at least one
mismatched sample. We used a chi-squared test to examine whether the fraction of mis-
matched samples and studies was significantly different across mixed versus single sex
studies.
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Comparing expression-based methods in mixed sex studies

For large mixed sex studies (at least 5 male and 5 female samples), we compared meta-
data labels to expression labels predicted from the clustering-based methods in Toker
et al. [20] and massiR [24] and those from our own classification method. We conserva-
tively labeled a sample as a mismatch if all of the expression labels disagreed with the

metadata label.

Clustering to identify high confidence swaps in mixed sex studies

While the model predicted probability (“sample sex score”) provides an estimate that a
sample is a particular sex, we find there is a lot of study-to-study heterogeneity in the
distribution of these sample sex scores. By clustering the sample sex scores, we can lev-
erage information about their distribution within a mixed sex study to obtain a prob-
ability estimate that a sample belongs to either the male or female cluster (Fig. 5). This

provides a more local estimate of mis-annotated samples at a study level and allows us to
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Fig. 5 Leveraging within-study distributions of sample sex scores to identify high-confidence mislabeled
samples. Each row is a study (randomly sampled from the list of mixed sex tissue studies with multiple
clusters). Samples are separated by metadata sex (on the y axis) and our model sample sex score (P(male)) (on
the x axis). Samples are colored by whether they show a high confidence (as indicated by a P(sample belongs
to cluster) > 0.95) “match” (blue) or “mismatch” (red) between the metadata and expression-based sex; samples
that were not classified by the model are labeled “unclassified” (gray), classified samples that do not pass the
0.95 threshold for their cluster are labeled “unclear” (purple). Clustering was obtained by fitting a mixture of
Gaussians; and the estimated mean (solid line) and 95% confidence interval (dashed line) for each cluster is
shown
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identify high confidence swaps. To obtain a probability estimate that a sample belongs to
a cluster, we fit a mixture of one-dimensional Gaussians.

To identify high confidence misannotated samples in mixed sex studies, we used
Gaussian model based clustering (R package Mclust [62]) to cluster the sample sex
scores within a study. We performed clustering by fitting a mixture of Gaussians using
the unequal variances model. We used the default prior with a larger scale parameter
(scale=0.15) to account for the spread of samples. Noise was added in the case that sam-
ple sex scores fell in the unclassified category (0.3 <p(male) <0.7) and was initialized to
the set of these samples; however, for studies with > 1/3 samples unclassified, we did not
include noise terms to help with convergence. The number of Gaussians (n=1 or 2) and
the best model for each study was selected using Bayesian Information Criterion (BIC).
We additionally filtered studies with little separation between clusters, removing studies
where the difference in means between the two clusters’ sample sex scores was less than
0.3 (n=2 studies). For the remaining studies, we set a cutoff posterior probability of 0.95
for assignment of a sample to a cluster, in cases where the metadata sex does not match
that cluster, we have a “mismatched” sample. The remaining samples are labeled “unclas-
sified” (if the model estimated that they were noise) or “unclear” (assigned a cluster by
the model but with probability < 0.95).

Sex bias in drug data
Drug labeling
Study drug mention labeling Studies were labeled as having a drug mention if the meta-
data contained a drug name. DrugBank [63] (date accessed: 4/14/2019) XML data was
downloaded and synonyms and drug names parsed. Names or synonyms 3 or fewer char-
acters long were discarded, as well as common stop words. Then, we used n-gram match-
ing (n=1, 2, 3) to map between the metadata text (either study or sample) and a drug or
synonym.

To find drug-containing studies with high sensitivity, we labeled studies based on drug
mentions in their metadata. Study mapping used the text from study title and description
fields. Out of 44,184 total studies, 7665 (17.3%) contained a drug mention (1104 drugs).

Sample-level annotation of drug labeling To build a high specificity dataset, we also
performed sample level labeling using the refine.bio harmonized “treatment” and “com-
pound” fields, as well as the sample title.

We created a library of common control terms for sample mapping. This vocabulary
consists of the following words:

"o "o "o "o

"none’; "control’, "untreated’, "dmso’, "na’; "placebo’; "saline’, "pbs’, "mock’, "base-
"o mon

line, "unstimulated’, "etoh”, "ethanol’, "ctrl’, "non-treated’, "vehicle’, "ctl’, “no treat-
ment”

We then identified the subset of studies where the drug mentioned in a treatment field
is the drug mentioned in the study; we call these drug exposure studies.
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Assessment of sex bias in drug data

Anatomic Therapeutic Class (ATC) drug mappings were extracted from DrugBank.
The enrichment of male only versus female only, and single versus mixed sex studies
in each class was assessed separately using chi-squared tests. Prior to running tests, we
removed classes with less than 5 samples in a category. We filtered for a chi-squared p
value <0.05/48220.001 using a 557 correction on the number of tests (n=48). We also
grouped by drug and calculated the fraction of male-only and female-only studies for
each drug.
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