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Abstract 

Background:  Combined whole-genome sequencing (WGS) and RNA sequencing of 
cancers offer the opportunity to identify genes with altered expression due to genomic 
rearrangements. Somatic structural variants (SVs), as identified by WGS, can involve 
altered gene cis-regulation, gene fusions, copy number alterations, or gene disruption. 
The absence of computational tools to streamline integrative analysis steps may repre-
sent a barrier in identifying genes recurrently altered by genomic rearrangement.

Results:  Here, we introduce SVExpress, a set of tools for carrying out integrative analy-
sis of SV and gene expression data. SVExpress enables systematic cataloging of genes 
that consistently show increased or decreased expression in conjunction with the 
presence of nearby SV breakpoints. SVExpress can evaluate breakpoints in proximity to 
genes for potential enhancer translocation events or disruption of topologically associ-
ated domains, two mechanisms by which SVs may deregulate genes. The output from 
any commonly used SV calling algorithm may be easily adapted for use with SVExpress. 
SVExpress can readily analyze genomic datasets involving hundreds of cancer sample 
profiles. Here, we used SVExpress to analyze SV and expression data across 327 cancer 
cell lines with combined SV and expression data in the Cancer Cell Line Encyclopedia 
(CCLE). In the CCLE dataset, hundreds of genes showed altered gene expression in 
relation to nearby SV breakpoints. Altered genes involved TAD disruption, enhancer 
hijacking, and gene fusions. When comparing the top set of SV-altered genes from can-
cer cell lines with the top SV-altered genes previously reported for human tumors from 
The Cancer Genome Atlas and the Pan-Cancer Analysis of Whole Genomes datasets, a 
significant number of genes overlapped in the same direction for both cell lines and 
tumors, while some genes were significant for cell lines but not for human tumors and 
vice versa.

Conclusion:  Our SVExpress tools allow computational biologists with a working 
knowledge of R to integrate gene expression with SV breakpoint data to identify 
recurrently altered genes. SVExpress is freely available for academic or commercial 
use at https://​github.​com/​chadc​reigh​ton/​SVExp​ress. SVExpress is implemented as a 
set of Excel macros and R code. All source code (R and Visual Basic for Applications) is 
available.
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Background
In cancer, somatic structural variations (SVs) are rearrangements of large DNA seg-
ments within the cancer genome. SVs may impact nearby genes’ expression in several 
ways, including forming fusion transcripts or disrupting or repositioning cis-regulatory 
elements near genes. Our recent studies [1–4] have demonstrated an analysis approach 
to integrate SV with gene expression data, identifying gene-level associations between 
altered expression and nearby SV breakpoints in proximity to genes. Genes recurrently 
deregulated in conjunction with SVs may involve topologically associated domain (TAD) 
disruption or enhancer hijacking. An SV involves two breakpoints representing the 
fusion of two respective genomic coordinates. Some of the individual steps involved in 
our SV-expression integrative analysis approach include constructing a gene-to-sample 
breakpoint pattern matrix, linear regression modeling to associate altered expression 
with nearby breakpoints, and identifying putative enhancer hijacking and TAD disrup-
tion events. These steps would be labor-intensive for most analysts working from scratch 
using standard tools such as R, Excel, or BEDtools [5]. The absence of computational 
tools to streamline these steps may represent a barrier to others’ ability to implement 
our approach in other datasets.

Other published methods for integrating SV with expression data include cis-X [6], 
which analyzes data from a single cancer sample. cis-X first finds aberrantly cis-activated 
genes that exhibit allele-specific expression accompanied by an elevated outlier expres-
sion, then searches for causal noncoding variants including SV-associated enhancer 
hijacking. In contrast, our data integration method utilizes large sample cohorts, rather 
than a single sample, to identify genes recurrently impacted by SVs across multiple 
samples. Another software package, SV-HotSpot [7], identifies hotspots of SV break-
points represented by a set of cancer samples, which hotspots may then be evaluated 
for expression associations involving nearby genes. In contrast, our method does not 
focus exclusively on hotspot patterns, as we have found that SVs contributing to dereg-
ulated expression may involve breakpoints across a large region surrounding a given 
gene, not limited to hotspots nor to a single mechanism [1–4]. Our method is similar in 
many respects to the Cis Expression Structural Alteration Mapping (CESAM) method 
[8, 9], which also relies on linear regression modeling to integrate expression with SV 
breakpoint pattern across a large number of samples. However, for the gene-to-sample 
breakpoint matrix, CESAM assigns SV breakpoints to bins if they fall into the same pre-
annotated TAD. In contrast, our method does not limit itself to TAD disrupting SVs 
or potential enhancer hijacking events. No public software tool for using the CESAM 
method appears to be available. Whereas the linear modeling steps involved with our 
method or CESAM should be relatively straightforward for bioinformatics users to carry 
out using R, no user-friendly software has been available for compiling SV data into a 
form amenable for linear modeling with expression data.

As presented here, our “SVExpress” suite of computational tools allows one to iden-
tify SV breakpoint-to-expression associations across a set of cancer samples profiled 
for both SVs and gene transcription. SVExpress takes as input a table of somatic SV 
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breakpoints, a gene-to-sample expression matrix, and a gene-to-sample copy number 
alteration (CNA) matrix. Using Excel Visual Basic for Applications (VBA), SVExpress 
then constructs a gene-to-sample breakpoint matrix, which the user can then integrate 
with the expression matrix by linear regression modeling, using the provided R code. 
Furthermore, using SVExpress, top SV-gene associations identified can be examined 
in terms of enhancer hijacking (e.g., the positioning of an enhancer represented by one 
breakpoint in proximity to a gene nearby the other breakpoint) or in terms of disruption 
of TADs. Genomic datasets involving hundreds of cancer sample profiles can be read-
ily analyzed using our tools. SVExpress is intended to be usable for those who may not 
necessarily have programming or computational skills, as well as bioinformaticians. As 
a demonstration of SVExpress, here, we also analyze SV and expression data across 327 
cancer cell lines in the Cancer Cell Line Encyclopedia (CCLE) [10].

Implementation
Generating a gene‑to‑sample SV breakpoint matrix

Figure 1 provides a workflow diagram for the SVExpress suite of computational tools. 
In Excel, the user assembles a workbook with a table of somatic SV breakpoints (using 
the standard output from any of the commonly used SV calling algorithms) and another 
table of the coordinates for all genes. An Excel macro then generates a gene-to-sample 
SV breakpoint matrix, based on the user-specified region of interest relative to each 
gene. For example, breakpoints occurring within a given gene could involve gene fusions 

Fig. 1  Workflow diagram for the SVExpress suite of computational tools. SVExpress identifies SV 
breakpoint-to-expression associations across a set of cancer samples profiled for both SVs and gene 
transcription. Initially, SVExpress takes as input a table of SV breakpoints (which may be generated using any 
standard SV calling algorithm) and a set of gene coordinates. SVExpress then constructs a gene-to-sample 
breakpoint matrix using an Excel macro (“Generate_Gene_to_Sample_SV_Table”). The user can then take 
this breakpoint matrix and integrate it with the corresponding matrices for gene expression and gene-level 
copy number alteration (CNA) by linear regression modeling using the provided R code. This code generates 
p values and t-statistics for each gene, associating SV breakpoint pattern with expression, with or without 
correcting for CNA. Furthermore, using SVExpress Excel macros, a set of SV-gene associations identified can 
be examined in terms of enhancer hijacking (e.g., an enhancer represented by one breakpoint positioned in 
proximity to a gene nearby the other breakpoint) or in terms of disruption of TADs. SVExpress carries out the 
above using the "Generate_SV_to_Enhancer_Associations" and "Generate_SV_to_TAD_Associations" macros, 
respectively. SV, Structural Variant; CNA, copy number alteration; TAD, topologically associated domain
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or disruption of tumor suppressor genes [3], and breakpoints falling within a larger 
region (e.g., ~ 1 Mb) surrounding the gene could involve enhancer hijacking events [2, 
3]. Using a 1 Mb region surrounding each gene, the user may specify the “relative dis-
tance metric” option [2], whereby breakpoints that occur close to the gene will have 
more numeric weight in identifying SV-expression associations, while breakpoints fur-
ther away but within 1 Mb can have some influence. When not using the 1 Mb distance 
metric option, the gene-to-sample matrix entries are 1, if a breakpoint occurs in the 
specified region for the given gene in the given sample, and 0 if otherwise. The generated 
breakpoint matrix is for the linear modeling step involving the SVExpress R code (see 
below). The macro can also generate the identifiers related to the set of gene-to-SV asso-
ciations used to construct the matrix (using the SV breakpoint closest to the gene start if 
multiple breakpoints are in the given region). These gene-to-SV associations can then be 
examined for putative enhancer hijacking events or TAD disruption (see below).

Generating gene‑to‑breakpoint expression correlations

The user assembles gene-to-sample data matrices for expression, CNA, and SV break-
point pattern (the latter matrix assembled using the above SVExpress Excel macro). 
Then, R code provided as part of SVExpress carries out linear modeling to assess for 
each gene the correlation between its expression and the presence of nearby SV break-
points. Multiple linear models for each gene may be considered, including models that 
correct for gene-level CNA. As genomic rearrangements are often associated with wide-
spread CNA patterns [1–4], SV-expression associations that would remain significant in 
models incorporating CNA would likely be of primary interest. For each model consid-
ered (with or without CNA as a covariate), results provide the t-statistic and p value for 
each gene’s expression versus breakpoints correlation. Given the significance p values for 
all genes, corrections for multiple testing can use standard methods such as Storey and 
Tibshirani [11]. If any technical batch effects are present in the expression or CNA data, 
these should be corrected before the linear modeling step (e.g., using Combat [12]).

Associating enhancers with gene‑to‑SV mappings

SVExpress can search a given set of gene-to-breakpoint associations (defined using the 
first SV breakpoint) for potential enhancer translocation events represented by the sec-
ond SV breakpoint. Using the provided Excel macros and an input table of SV break-
points, SVExpress can generate a set of gene-to-SV associations involving each sample. 
For each association, SVExpress examines the region 1  Mb from the other SV break-
point for any enhancers repositioned upstream in proximity to the gene. SVExpress also 
identifies any enhancers located within 1 Mb upstream of the unaltered gene. The user 
may then wish to compare the number of enhancer hijacking events found for the subset 
of gene-to-sample-to-SV associations involving gene over-expression with the number 
of enhancer hijacking events found for the entire set of gene-to-sample-to-SV associa-
tions. Previously, we have observed a significant enrichment of putative enhancer hijack-
ing events involved with the set of SVs associated with gene over-expression [1–4]. For 
the above, the user assembles a table of enhancer coordinates, which may come from 
several data sources, including the ENCODE project [13].
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Associating TADs with SVs

An SVExpress macro searches a given set of SV breakpoints and note whether each 
SV is “TAD preserving” or “TAD disrupting.” For TAD preserving SVs, both SV break-
points locate within the same TAD. For TAD disrupting SVs, the SV breakpoints span 
the boundaries of different TADs. For SVs associated with gene over-expression, we have 
previously observed a significant enrichment of TAD-disrupting SVs [2, 3]. The user 
assembles a table of TAD boundaries for the above, which may come from other studies 
[14].

Results
Global impact of SVs on gene expression patterns in cancer cell lines

As a demonstration here of SVExpress, we used it to assess gene-level associations 
between expression and nearby somatic SV breakpoints across 327 cancer cell lines in 
the Cancer Cell Line Encyclopedia (CCLE) with Whole Genome Sequencing (WGS) 
data. The CCLE datasets were from the 2019 release [10], with gene-level RSEM expres-
sion calls by RNA sequencing (RNA-seq). Somatic SV calls were previously made 
in these cell lines by SVABA algorithm [10]. For each gene with expression data, we 
assessed the pattern of nearby SV breakpoints within each of a set of region windows: 
100  kb upstream of the gene, 100  kb downstream of the gene, within the gene body, 
and 1 Mb upstream or downstream of the gene. Using the SVExpress Excel macro, we 
assembled a data matrix of breakpoint patterns for 20,153 unique named genes and 327 
cell lines. Using the SVExpress R code, we then assessed the association between expres-
sion and SV breakpoint pattern for each gene by linear models correcting for cancer type 
and gene-level CNA.

Hundreds of genes showed altered gene expression in relation to nearby SV break-
points, including breakpoints located either downstream or upstream of genes and 
breakpoints occurring in the gene body (Fig.  2a and Additional file  1: Data File S1). 
Incorporating statistical corrections for gene-level CNA decreased the overall numbers 
of significant genes, reflecting previous observations of global associations of SV break-
points with copy number gain [1, 3]. Many more genes showed positive correlations with 
SV breakpoints (i.e., expression tended to be higher when a nearby SV breakpoint was 
present) than negative correlations. When considering a 1 Mb region window upstream 
or downstream of each gene (using our previous described “distance metric” model 
[2], with corrections for tumor type and CNA), 725 genes showed positive correlations 
with SV breakpoints, independent of CNA, and 31 genes showed negative correlations 
(FDR < 10%[11]). Genes positively correlated with SV breakpoints included many known 
oncogenes, while genes negatively correlated included many known tumor suppres-
sor genes (Fig. 2b). Within-gene SV breakpoints may disrupt tumor suppressors [3], as 
observed here for such genes as TP53, RB1, and KEAP1.

We had previously analyzed WGS and expression data from the combined 
PCAWG-TCGA cohort of human tumors across many tissue types (2334 patients), 
to define the set of genes recurrently altered in association with SV breakpoints [2]. 
When comparing results from CCLE cell lines with results from human tumors, a 
significant number of genes overlapped in the same direction, while some genes 
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were significant in one dataset but not the other (Fig. 2c, d). Focusing on the 1 Mb 
region surrounding each gene (and correcting for cancer type and CNA), 82 genes 
with FDR < 10% for each dataset overlapped between both results sets, a highly signif-
icant overlap (p < 1E−14, one-sided Fisher’s exact test, Fig. 2d). Oncogenes that were 
significant for CCLE cell lines but not for PCAWG-TCGA human tumors included 
MYCN, NUTM1, and ESR1. Genes significant for human tumors but not for cell lines 
included oncogenes TERT, BCL2, RET, ERG, MDM2, CDK4, and tumor suppressor 
genes PTEN, STK11, and CDKN2A. However, some of the above genes not signifi-
cant using the 1 Mb region in the CCLE dataset were significant for one of the other 

ba

dc

Fig. 2  Genes with altered expression associated with nearby SV breakpoints across 327 cancer cell lines. a 
For each of the indicated genomic region windows examined, numbers of significant genes (FDR < 10%) 
showing a correlation between expression and associated SV event across 327 cancer cell lines with WGS 
and expression data [10]. Numbers above and below the zero point of the y-axis denote positively and 
negatively correlated genes, respectively. Linear regression models evaluated significant associations when 
correcting for cancer type (gray) and for both cancer type and gene-level CNA (black). For the 1 Mb region 
window, the model weights the relative gene distances of the breakpoints [2]. b Heat map of significance 
patterns for 1249 genes significant for any region window (FDR < 10%, correcting for both cancer type and 
CNA). Red denotes significant positive correlation; blue, significant negative correlation. Genes listed are 
cancer-associated [23]. c Significance of genes in cancer cell lines, as plotted (Y-axis) versus the number 
of cell lines impacted (expression > 0.4SD from sample median) by nearby SV breakpoint (within 1 Mb). d 
Significance of genes in combined PCAWG-TCGA cohort (2334 patients, x-axis) [2], as compared to their 
significance in the cancer cell line cohort (327 cell lines, y-axis) [10]. Genes in the upper left quadrant reached 
significance only in the 327-cancer cell line dataset. For parts c and d, significant genes are defined by 1 Mb 
region window, correcting for tumor type and CNA, and “cancer-related” is by COSMIC [23]. SV, Structural 
Variant; FDR, False Discovery Rate; CCLE, Cancer Cell Line Encyclopedia; PCAWG, Pan-Cancer Analysis of Whole 
Genomes; TCGA, The Cancer Genome Atlas
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regions examined (Additional file 1: Data File S1). Differences between the two sets of 
results likely originate in part from the different cancers represented in the respective 
datasets.

SV‑associated TAD disruption and enhancer hijacking events in cancer cell lines

Using SVExpress macros, we could assess the fraction of positive SV-expression correla-
tions that seem to reflect SV-mediated disruption of TADs or enhancer hijacking. From 
input data on TAD coordinates in human cells [13, 14], an SVExpress macro categorized 
all SVs in the CCLE dataset by those that were TAD disrupting versus those that were 
non-disrupting. The subset of SVs involving genes over-expressed in conjunction with 
SV breakpoints were significantly enriched for TAD-disrupting SVs (Fig. 3a p < 1E−45, 

a

c

b

Fig. 3  SVs associated with disruption of TADs and translocated enhancers in cancer cell lines. a As compared 
to all SVs, fractions of SVs involving topologically associated domain (TAD) disruption and altered gene 
expression (defined as FDR < 10% for the gene using 1 Mb region window, with corrections for tumor type 
and CNA, and expression > 0.4SD or ≤ 4SD from the median for the case harboring the breakpoint). Results 
based on analysis of 327 cancer cell lines with WGS data [10]. p values by chi-squared test. b Percentages of 
SV breakpoint associations involving the translocation of an enhancer within 0.5 Mb of the SV breakpoint in 
proximity to the gene (and closer than any enhancer within 1 Mb of the unaltered gene), as tabulated for the 
entire set of SV breakpoint associations with breakpoint mate on the distal side from the gene, as well as for 
the subsets of SV breakpoint associations involving altered gene expression (defined as for part a). P values 
by chi-squared test. c By gene and by cancer type, the number of SV breakpoint associations involving the 
translocation of an enhancer, involving at least two cell lines per gene. Results involve 60 genes and 159 cell 
lines
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chi-squared test), consistent with previous observations in human tumors [3]. Using 
other SVExpress macros, we generated all SV breakpoints-to-gene associations occur-
ring within 1 Mb of each other. We then examined the translocated region represented 
by the SV breakpoint upstream of each gene for any involved enhancers [13]. SV break-
points associated with over-expressed genes were significantly enriched (p < 1E−8, 
chi-squared test) for putative enhancer translocation events, with the rearrangement 
bringing an enhancer within 500 kb of the gene (Fig. 3b), involving 181 over-expressed 
genes and 145 cell lines (Fig. 3c and Additional file 1: Data File S1).

SVs involved with predicted gene fusions in cancer cell lines

RNA-seq-based fusion predictions, based on chimeric sequencing reads, may be refined 
using somatic SV data in conjunction with SVExpress. Out of 5277 candidate fusion 
events identified by RNA-seq analysis [10] (STAR-fusion algorithm) involving the 327 
CCLE cell lines with WGS data, 2307 (44%) corresponded to SV breakpoints found 
within one or both genes (Fig. 4a), and 1636 of these involved a high expression associa-
tion by SVExpress. This set of 1636 fusion calls with the highest level of support involved 
1604 distinct gene fusions and 226 cell lines (Additional file 1: S1), as well as the major-
ity of within-gene SV breakpoint events involving over-expression (Fig. 4b). Twenty-five 
fusions were detected in more than one cell line (Fig. 4c), a number of which have previ-
ously been detected in human tumors, including RPS6KB1-VMP1 [15], WWOX-VAT1L 
[16], ASCC1-MICU1 [17], ESR1-CCDC170 [18], FHOD3-MOCOS [19], IMMP2L-
DOCK4 [19], LRBA-SH3D19 [19], PPFIBP1-SMCO2 [19], PVT1-CASC11 [20], PVT1-
CASC8 [20], PXN-PLA2G1B [21], TBC1D22A-GRAMD4 [19], and TRMT11-NCOA7 
[19]. The well-known TMPRSS2 gene fusions in prostate cancer [22] were also detected 
in CCLE data by RNA-seq STAR-fusion algorithm, in VCAP and NCIH660 cell lines, 
but these cell lines did not have corresponding WGS data for SV calling.

Evaluation of other public software for integrating SV with expression data

We examined our SVExpress results from the CCLE in the context of two other pub-
lic software tools for integrating SV with expression data: SV-HotSpot [7] and cis-X [6]. 
Each of the above tools utilizes a different data integration approach. SV-HotSpot, as 
a first step, identifies recurrent SVs and their targeted hotspot regions and then tests 
which genes associated with these SV hotspots show corresponding changes in expres-
sion. Therefore, a gene that is significant by SV-HotSpot must show both an SV hotspot 
pattern and SV-associated altered expression. On the other hand, cis-X first identifies 
candidate cis-activated genes that exhibit combined allele-specific expression (ASE) and 
outlier high expression. These candidate cis-activated genes are then associated with 
any nearby SV breakpoints. The cis-X software evaluates samples individually, whereas 
both SV-HotSpot and SVExpress analyze all the samples in the cohort together to iden-
tify patterns of recurrence. In contrast to cis-X or SV-HotSpot, SVExpress does not rely 
on ASE or SV hotspot patterns, respectively. SVExpress does not assume a mechanism 
of deregulation for SV-associated deregulated genes, and SV breakpoints not involving 
TAD disruption or enhancer hijacking, for example, may still contribute to a significant 
gene pattern by SVExpress.
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We analyzed the CCLE SV dataset using SV-HotSpot. Of the 20,153 genes in the 
CCLE dataset that we analyzed above using SVExpress, SV-HotSpot identified 4451 
genes associated with SV hotspots, defined as genomic regions with breakpoints involv-
ing more than 10% of the 327 cell lines analyzed. Of these 4451 genes, 344 overlapped 
with the 1249 genes significant by SVExpress (FDR < 10%, using 1 Mb genomic region 
window and correcting for both cancer type and CNA), this overlap being statistically 

a

c

b

Fig. 4  Identification of gene fusion events in cancer cell lines by both RNA-seq and WGS. a Out of 5277 
candidate fusion events identified by RNA-seq analysis (using STAR-fusion algorithm) involving 327 cell 
lines with WGS data [10], numbers of events with support from somatic SV analyses. As indicated, for 2307 
candidate fusion events, SV breakpoints were found within one or both genes, with and without a high 
expression association. A high expression association is defined here as one of the following: (1) for fusion 
events occurring in one or two tumors, whether for each tumor the expression of either gene was > 0.4SD 
from the median; or (2) whether a significant association between SV breakpoints and increased expression 
(p < 0.01, linear model incorporating tumor type and CNA) was found for either gene, either by distance 
metric method or by genomic region window within the gene body. b Of the 853 gene body SV breakpoint 
events associated with overexpressed genes (over-expression defined as > 0.4SD from the sample median, 
events involving the set of 192 genes from Fig. 2a with FDR < 10%, correcting for tumor type and CNA), the 
fractions of events associated with either gene fusion by combined RNA-seq and SV analysis or high-level 
gene amplification are indicated. c Gene fusions with both RNA-seq and SV support (i.e., breakpoints 
detected for at least one of the two genes) with high expression association (part a) and involving more than 
two cell lines are represented. Cancer type is indicated along the top and in the coloring of the fusion event
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significant (p = 1.6E−6, one-sided Fisher’s exact test, Fig. 5a). Notably, most genes signif-
icant by SVExpress would not be considered significant by SV-HotSpot, as these genes 
may involve fewer than 10% of cell lines and would therefore not pass SV-HotSpot’s hot-
spot filter. Taking chromosome 2 as an example (Fig. 5b), 17 out of 61 genes significant 
by SVExpress involved hotspots, including COSMIC [23] genes LRP1B and ERBB4, and 
COSMIC genes not involving hotspots included MYCN and ALK. The highest hotspot 
peak on chromosome 2 involved LRP1B, though other high hotspot peaks identified 
using SV-HotSpot did not involve any genes of interest.

An association between SV breakpoints and altered cis-regulation may be further 
evidenced by ASE patterns, whereby the allele with the somatic variant is the one that 
presumably has the aberrant expression. We used cis-X to focus here on MYCN, a can-
cer-associated gene significant by SVExpress but not SV-HotSpot. Using cis-X and the 
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Fig. 5  Evaluation of SVExpress results in the context of SV-HotSpot and cis-X SV analysis tools. a From results 
using the CCLE datasets, Venn diagram represents the overlap between the genes significantly correlated 
with SV breakpoint by SVExpress (FDR < 10%, using 1 Mb region window and correcting for cancer type and 
CNA) with the set of genes associated with nearby SV hotspot peaks by SV-HotSpot [7]. P-value by one-sided 
Fisher’s exact test. Genes listed, involving the overlap between the SVExpress and SV-HotSpot results sets, also 
have a previous cancer association by COSMIC [23]. b Survey of SV hotspot peaks across chromosome 2, by 
genomic position. SV-HotSpot uses a default threshold of 10% of cell lines for calling SV hotspot peaks. Along 
the top of the plot, the genomic positions of the genes significant by SVExpress are represented. Asterisks 
indicate significant SVExpress genes that also are associated with an SV-HotSpot peak. c For cancer cell lines 
with SV breakpoint within 500 kb of MYCN, allele-specific patterns associated with increased expression. P 
values by binomial test using cis-X [6]
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RNA-seq BAM files of the 17 cell lines with an SV breakpoint occurring within 500 kb 
of MYCN, we could observe that SV-associated up-regulation of MYCN appeared allele-
specific (Fig. 5c). Cell lines with high MYCN expression tended to show ASE for MYCN. 
MYCN-altered cell lines included lung, autonomic ganglia, stomach, bone, and pan-
creas. Recently, we also used cis-X to validate ASE patterns for two genes (TERT and 
MYB) with SV-associated altered expression by SVExpress in a cohort of pediatric brain 
tumors [4]. The cis-X ASE analysis is somewhat limited by the availability of genetic 
markers in the region of interest.

SVExpress may be considered more user-accessible than either SV-HotSpot or cis-X, 
by SVExpress being compatible with Windows or macOS. Both SV-HotSpot and cis-X 
require BEDTools, among other dependencies, which is designed for UNIX [5]. The 
requirement of cis-X for RNA-seq BAM files (as part of the ASE analysis step) makes 
this software resource-intensive, and a high-performance computing environment 
is needed here. The original cis-X study featured an analysis of just 13 T-lineage acute 
lymphoblastic leukemias [6], but carrying out an analogous study of 327 cancer cell lines 
using cis-X would represent a major endeavor. In contrast, potential users of SVExpress 
may not be limited to highly skilled computational biologists with easy access to high-
performance computing. Essentially anyone with a Windows or macOS desktop may use 
SVExpress. As demonstrated here, SVExpress can identify SV-associated genes of inter-
est, which optionally can then be further examined using cis-X or SV-HotSpot, as each 
software represents its unique approach with associated strengths.

Discussion
The SVExpress tools presented here enable general users to carry out integrative anal-
yses of somatic SVs and gene expression data in cancer samples. As recent efforts by 
the Pan-Cancer Analysis of Whole Genomes (PCAWG) consortium and others have 
demonstrated [24], combined whole-genome DNA and RNA sequencing of cancers is 
becoming a standard component of cancer genomics studies. As compared to results 
from pan-cancer analyses, individual cancer types may show a different set of genes 
with altered expression in association with somatic SV breakpoints [2]. Therefore, future 
studies may use SVExpress to explore individual cancer types, as greater numbers of 
patient samples with profiling data are available.

Through analysis of cell line data, we found here that the overall phenomenon of 
somatic SV-mediated cis-regulatory alterations, as previously observed in human 
tumors of various types [1–4], is also at work in cell lines, though with a somewhat dif-
ferent set of altered genes. Aspects of this phenomenon, as observed now in both cell 
lines and human tumors, include the following: hundreds of genes recurrently impacted, 
SV breakpoints as far as 1 Mb from the gene contributing to deregulation, rearrange-
ments involving widespread CNA patterns, many more genes with increased over 
decreased expression associated with SV breakpoints, and over-expressed and under-
expressed genes respectively representing known oncogenes and tumor suppressor 
genes. As intended, our analytical approach does not assume the specific mechanism 
of altered expression, as there may be multiple mechanisms involved for any given 
gene across multiple samples. SVExpress may reveal correlations, though correlation 
does not necessarily demonstrate causation or point to a specific mechanism. Still, the 
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ability of SVExpress to identify translocated enhancers involving some altered expres-
sion events may provide clues as to the mechanism of altered cis-regulation. However, 
such enhancer associations might warrant experimental confirmation.

Conclusion
Our SVExpress tools allow computational biologists with a working knowledge of R to 
identify SV events that may involve gene fusions (e.g., a breakpoint within a given gene 
associated with its over-expression), gene disruption (breakpoint within a gene associ-
ated with loss of expression), enhancer hijacking, or TAD disruption. SVExpress is freely 
available for academic or commercial use at https://​github.​com/​chadc​reigh​ton/​SVExp​
ress. Provided with the SVExpress macros and R-code are example data from the Can-
cer Cell Line Encyclopedia [10], along with instructions for use. All source code (R and 
Visual Basic for Applications) is available.

Availability and requirements

Project name: SVExpress.
Project home page: https://​github.​com/​chadc​reigh​ton/​SVExp​ress.
Operating systems: Windows or macOS.
Programming languages: R and Excel Visual Basic for Applications (VBA).
Other requirements: none.
License: open-source.
Any restrictions to use by non-academics: none.
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