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Abstract 

Background:  Numerous studies have demonstrated that long non-coding RNAs are 
related to plenty of human diseases. Therefore, it is crucial to predict potential lncRNA-
disease associations for disease prognosis, diagnosis and therapy. Dozens of machine 
learning and deep learning algorithms have been adopted to this problem, yet it is still 
challenging to learn efficient low-dimensional representations from high-dimensional 
features of lncRNAs and diseases to predict unknown lncRNA-disease associations 
accurately.

Results:  We proposed an end-to-end model, VGAELDA, which integrates vari-
ational inference and graph autoencoders for lncRNA-disease associations prediction. 
VGAELDA contains two kinds of graph autoencoders. Variational graph autoencoders 
(VGAE) infer representations from features of lncRNAs and diseases respectively, while 
graph autoencoders propagate labels via known lncRNA-disease associations. These 
two kinds of autoencoders are trained alternately by adopting variational expectation 
maximization algorithm. The integration of both the VGAE for graph representation 
learning, and the alternate training via variational inference, strengthens the capability 
of VGAELDA to capture efficient low-dimensional representations from high-dimen-
sional features, and hence promotes the robustness and preciseness for predicting 
unknown lncRNA-disease associations. Further analysis illuminates that the designed 
co-training framework of lncRNA and disease for VGAELDA solves a geometric matrix 
completion problem for capturing efficient low-dimensional representations via a 
deep learning approach.

Conclusion:  Cross validations and numerical experiments illustrate that VGAELDA 
outperforms the current state-of-the-art methods in lncRNA-disease association pre-
diction. Case studies indicate that VGAELDA is capable of detecting potential lncRNA-
disease associations. The source code and data are available at https://​github.​com/​
zhang​labNKU/​VGAEL​DA.

Keywords:  Variational inference, Graph autoencoder, lncRNA-disease association, 
Representation learning
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Introduction
LncRNAs are RNAs longer than 200 nucleotides thus losing the function of encoding, 
while they can still influence a series of biological processes, such as gene transcrip-
tion, cell apoptosis, hormonal regulation, and immune response. Hence, lncRNAs are 
closely linked to plenty of human diseases [1–3]. For instance, lncRNA PANDAR is 
a novel biomarker of breast cancer, which upregulates proliferation of breast cancer 
cells [4]. Sun et  al. [5] found that the downregulation of lncRNA MEG3 promotes 
proliferation of gastric cancer cells. Faghihi et al. [6] reported that lncRNA BACE1-
AS can regulate mRNA BACE1, while BACE1 is associated with the generation of 
beta-amyloid, which can cause Alzheimer’s disease. Therefore, it is essential to predict 
potential lncRNA-disease associations for disease prevention, detection, diagnosis 
and treatment. However, there are only a small number of lncRNA-disease associa-
tions that have been discovered so far, and it would be ideal to predict more potential 
lncRNA-disease associations using computational approaches. Generally, computa-
tional methods, especially machine learning algorithms, are more time-efficient and 
cost-effective to detect potential lncRNA-disease associations compared with experi-
mental methods.

Previous machine learning approaches for predicting lncRNA-disease associations 
can be categorized into three types. The first type of methods is based on matrix analy-
sis. Two commonly used matrix analysis methods for predicting lncRNA-disease asso-
ciations are manifold regularization [7] and matrix completion [8], which suggest that 
lncRNA-disease association matrix follow manifold constraint or low-rank constraint, 
respectively. Manifold regularization based methods have been widely adopted for 
link prediction of biological entities [9–11]. Laplacian regularized least square (LRLS) 
method [7] integrates manifold regularization and basic least square method. Chen and 
Yan [12] proposed LRLSLDA that applied LRLS to the lncRNA-disease associations pre-
diction, after the construction of an lncRNA graph and a disease graph through comput-
ing feature similarity respectively. Based on LRLSLDA, several methods were proposed 
to improve the performance of LRLS by integrating different types of feature similarities 
[13, 14]. In addition, lncRNA-disease associations can be viewed as links on an lncRNA-
disease bipartite graph. Matrix completion algorithm [8] can solve link prediction prob-
lem by applying low-rank constraint to association matrix, and have been commonly 
applied to forecast associations among biological entities [15–17]. Lu et  al. [18] pro-
posed a matrix completion based method for predicting lncRNA-disease associations. 
Geometric matrix completion [19, 20] incorporates manifold regularization into the 
matrix completion problem, and Lu et al. [21] proposed a geometric matrix completion 
based framework for predicting lncRNA-disease associations.

The second type of methods focuses on the integration of heterogeneous fea-
tures. Applying multi-source features to learn better representations is an efficient 
technique for predicting associations among biological entities [22, 23]. Lan et  al. 
[24] developed a web server for lncRNA-disease association prediction by integrat-
ing multiple features of lncRNAs and diseases to construct lncRNA similarity net-
work and disease similarity network. Fu et  al. [25] integrated heterogeneous data 
for lncRNA-disease associations prediction by matrix factorization with low-rank 
constraint. Ding et  al. [26] inferred links on lncRNA-disease bipartite graph via 
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lncRNA-disease-gene tripartite graph. Yao et al. [27] adopted random forest for fea-
ture selection in lncRNA-disease associations prediction.

The third type is deep learning approaches. Neural networks are competent to 
capture efficient low-dimensional representations from high-dimensional features of 
biological entities, and deep learning based methods were proposed for detecting 
potentional associations among biological entities [17, 22, 28]. Thus, several deep 
learning models applying autoencoders for representation learning of lncRNA fea-
tures and disease features were proposed [29, 30]. Graph neural networks (GNN) 
[31] were proposed in deep learning on graphs. Hence, there are some recent 
approaches for lncRNA-disease associations prediction based on GNN. Xuan et al. 
[32] integrated graph convolutional networks (GCN) [33] and CNN to learn repre-
sentations from features of lncRNAs and diseases. GCN is applicable for link predic-
tion on bipartite graph [34], and Wu et al. [35] adopted graph autoencoder to predict 
lncRNA-disease associations on lncRNA-disease bipartite graph.

In this paper, we proposed a method, VGAELDA, that integrates variational infer-
ence and graph autoencoders to improve the performance of lncRNA-disease asso-
ciations prediction. In previous works, feature inference and label propagation are 
two separated stages in these methods, and hence label propagation procedure may 
fail to make the full use of low-dimensional representations learned from high-
dimensional features. Using deep learning approaches, our method proposed an 
end-to-end framework, which fuses feature inference and label propagation under 
the variational inference algorithm of Graph Markov Neural Networks (GMNN) 
[36]. Specifically, the feature inference network in VGAELDA is designed as a vari-
ational graph autoencoder (VGAE) [37] that learns representations from feature 
matrices of lncRNAs and diseases respectively. Furthermore, the label propagation 
network in our model is a graph autoencoder (GAE) [37] that estimates the score of 
unknown lncRNA-disease pairs from known ones. These two graph autoencoders 
learn from feature and propagate label alternately, which are trained by variational 
EM algorithm, and are implemented as a representation learning framework. This 
framework minimizes the difference of the representations learned by two autoen-
coders respectively. Therefore, VGAELDA has the following advantages. (i) VGAE is 
preferable to infer low-dimensional representations from high-dimensional features 
in a graph, and these representations can better depict similarities and dependen-
cies among nodes. This would significantly enhance the robustness and preciseness 
of prediction without handcrafted feature similarities. (ii) VGAELDA implements 
the variational EM algorithm as a representation learning framework, by training 
the feature inference autoencoder and the label propagation autoencoder alternately. 
(iii) VGAELDA provides a useful solution to the geometric matrix completion prob-
lem via deep learning, because autoencoders tend to minimize the rank of outputs, 
and we suggest that manifold regularization can be obtained via the alternate train-
ing of two graph autoencoders. (iv) VGAELDA implements an efficient way to inte-
grate information from lncRNA space and disease space. Experiments illustrate that 
VGAELDA is superior to the current state-of-the-art methods, and case studies on 
several diseases illustrate the capability of VGAELDA to detect new lncRNA-disease 
associations.
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Results
Datasets

In this paper, we adopted two datasets for evaluation. Dataset1 is an lncRNA-disease asso-
ciation dataset from [26], including 540 associations among 115 lncRNAs and 178 diseases. 
Dataset2 is an lncRNA-disease association dataset from [25], including 2697 associations 
among 240 lncRNAs and 412 diseases. Both of them were collected from LncRNADisease 
[38] Database.

For each lncRNA, we adopted Word2Vec to compute the feature vector. Word2Vec [39] 
is an efficient method to learn the embedding vectors of natural language, and BioVec [40] 
(https://​pypi.​org/​proje​ct/​biovec/) applied Word2Vec for representation learning of bio-
logical sequences, including protein sequences or nucleotide sequences. In VGAELDA, the 
length of each vector was set at 300. We downloaded lncRNA sequences from the Nucleo-
tide Database of NCBI.

For each disease, we adopted its associations with 1415 genes as the feature vector on 
Dataset1. Dataset2 includes disease associated with 15527 genes. After removing genes that 
are not associated with any diseases, 10146 genes remain and are used as the feature vector 
on Dataset2. Information with respect to diseases was collected from DisGeNet [41] and 
Disease Ontology [42].

Comparison with other methods

Cross validation

We compared our proposed method, VGAELDA, with other five state-of-the-art methods:

•	 LRLSLDA: Chen and Yan [12] proposed a Laplacian regularized least square (LRLS) 
method [7] based framework to predict lncRNA-disease associations.

•	 SIMCLDA: Lu et al. [18] proposed a computational method for predicting lncRNA-dis-
ease associations based on speedup inductive matrix completion (SIMC) [43].

•	 TPGLDA: Ding et al. [26] integrated heterogeneous features by constructing lncRNA-
disease-gene tripartite graph for lncRNA-disease associations prediction.

•	 SKFLDA: Xie et al. [14] proposed SKFLDA that applied kernel fusion trick for different 
types of similarities to improve the preciseness of lncRNA-disease associations predic-
tion.

•	 GAMCLDA: Wu et al. [35] implemented GAMCLDA, adopting graph autoencoders to 
predict lncRNA-disease associations on lncRNA-disease bipartite graph.

We adopted 5-fold cross validation to obtain the result, and the metrics were listed below.

(1)Sensitivity = TP

TP + FN
= TPR = Recall,

(2)Specificity = TN

TN + FP
= 1− FPR,

https://pypi.org/project/biovec/
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where TP denotes true positive, FN denotes false negative, TN denotes true negative, FP 
denotes false negative, TPR denotes true positive rate, FPR denotes false positive rate, 
and Mcc denotes Matthews correlation coefficient. The receiver operating characteristic 
(ROC) curve can be plotted by TPR and FPR, while the area under ROC curve (AUROC) 
and the area under precision-recall curve (AUPR) are important metrics to measure the 
performance of a binary classification model.

We plotted the ROC curves and PR curves of Dataset1 and Dataset2 on Figs. 1 and 
2, respectively. We ran our experiments for 5 times, and the mean values and stand-
ard deviations of AUROC and AUPR are listed on Table 1. The AUROC and AUPR 
values of VGAELDA in 5 times are listed in Additional file 1.

The results show that VGAELDA outperforms the other five state-of-the-art meth-
ods in both AUROC and AUPR, on both datasets. Specifically, for the AUPR values 
obtained by other five state-of-the-art methods, GAMCLDA performs best in 5-fold 
CV on both Dataset1 and Dataset2, which gives AUPR values at 0.5794 and 0.3798 
respectively. Compared with these AUPR values, VGAELDA significantly outper-
forms these previous methods by increasing the AUPR values 45% in 5-fold CV on 
Dataset1, and 116% in 5-fold CV on Dataset2.

(3)Accuracy = TN + TP

TN + TP + FN + FP
,

(4)Precision = TP

TP + FP
,

(5)F1 =
2× Precision× Recall

Precision+ Recall
,

(6)Mcc =
TP × TN − FP × FN√

(TP + FN )× (TP + FP)× (TN + FN )× (TN + FP)
,

Fig. 1  ROC and PR curves of different methods on Dataset1. In AUROC, VGAELDA (AUROC = 0.9680) 
outperforms GAMCLDA (0.9299), SKFLDA (0.9154), TPGLDA (0.7936), SIMCLDA (0.8293) and LRLSLDA (0.8157). 
In AUPR, VGAELDA (AUPR = 0.8380) outperforms GAMCLDA (0.5794), SKFLDA (0.4024), TPGLDA (0.5308), 
SIMCLDA (0.5357) and LRLSLDA (0.2035)
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Evaluation on imbalanced data

As the datasets are imbalanced, i.e., the number of negative samples is far more than 
positive samples, it is essential to evaluate the capability to retrieve true positive sam-
ples from predicted positive ones. In our experiments, the evaluation was implemented 
through the following two ways. In summary, VGAELDA performs the best in both eval-
uation ways.

Firstly, we evaluated the performance of our model at high stringency level of specific-
ity according to Eq. (23456). We fixed specificity at 0.95 and 0.99, and then computed 
sensitivity, accuracy, precision, F1-score and Mcc. The results of Dataset1 and Dataset2 
are listed on Additional file 2 and Table 2, respectively, which illustrate that VGAELDA 
outperforms other five methods at all five metrics, and in both datasets. Matthews cor-
relation coefficient (Mcc) is a comprehensive metric in binary classification on imbal-
anced data [44]. For the Mcc values obtained by the other five state-of-the-art methods, 
SKFLDA performs the best at Sp = 0.95 on Dataset1, which obtains 0.4637, GAMCLDA 
performs the best at Sp = 0.99 on Dataset1 and both Sp = 0.95 and 0.99 on Dataset2, 
which obtains 0.5804, 0.3855 and 0.4860 respectively. VGAELDA outperforms these 

Fig. 2  ROC and PR curves of different methods on Dataset2. In AUROC, VGAELDA (AUROC = 0.9692) 
outperforms GAMCLDA (0.8841), SKFLDA (0.8524), TPGLDA (0.8771), SIMCLDA (0.8146) and LRLSLDA (0.8627). 
In AUPR, VGAELDA (AUPR = 0.8203) outperforms GAMCLDA (0.3798), SKFLDA (0.2831), TPGLDA (0.3192), 
SIMCLDA (0.1189) and LRLSLDA (0.1812)

Table 1  Mean values and standard deviations of AUROC and AUPR on Dataset1 and Dataset2, 
compared with different methods

The bold number is the highest value of each column, which is achieved by our method, VGAELDA. The bold clarifies the 
superiority of our method

Method Dataset1 Dataset2

AUROC AUPR AUROC AUPR

LRLSLDA 0.8157 ± 0.0005 0.2035 ± 0.0001 0.8627 ± 0.0017 0.1812 ± 0.0021

SIMCLDA 0.8293 ± 0.0023 0.5357 ± 0.0011 0.8146 ± 0.0042 0.1189 ± 0.0076

TPGLDA 0.7936 ± 0.0054 0.5308 ± 0.0028 0.8771 ± 0.0053 0.3192 ± 0.0058

SKFLDA 0.9154 ± 0.0013 0.4024 ± 0.0017 0.8524 ± 0.0066 0.2831 ± 0.0085

GAMCLDA 0.9299 ± 0.0033 0.5794 ± 0.0143 0.8841 ± 0.0110 0.3798 ± 0.0154

VGAELDA 0.9680 ± 0.0042 0.8380 ± 0.0041 0.9692 ± 0.0080 0.8203 ± 0.0139
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methods by improving the Mcc values 13% and 28% at Sp = 0.95 and 0.99 on Dataset1, 
and 42% and 49% at Sp = 0.95 and 0.99 on Dataset2.

Secondly, we evaluated recall score (i.e. sensitivity) via counting the num-
ber of true positive samples at different top-k cutoffs, according to Eq. (1), where 
k ∈ {20, 40, 60, 80, 100} . The bar charts depicting the number of true positive samples 
at different top-k cutoffs on Dataset1 and Dataset2 are shown on Additional file 3 and 
Fig. 3, respectively. VGAELDA retrieves the most true positive samples at all 5 cutoffs on 
both Dataset1 and Dataset2.

Table 2  Binary classification metrics of different methods on Dataset2

The bold number is the highest value of each column, which is achieved by our method, VGAELDA. The bold clarifies the 
superiority of our method

Sp specificity, Sn sensitivity, Acc accuracy, Pre precision, F1 F1-score, Mcc Matthews correlation coefficient

Sp Method Sn Acc Pre F1 Mcc

0.95 LRLSLDA 0.4572 0.9369 0.2051 0.2831 0.2777

SIMCLDA 0.2128 0.9299 0.1066 0.1421 0.1169

TPGLDA 0.5565 0.9394 0.2384 0.3338 0.3380

SKFLDA 0.5284 0.9385 0.2286 0.3191 0.3206

GAMCLDA 0.6377 0.9415 0.2635 0.3729 0.3855

VGAELDA 0.9329 0.9495 0.3434 0.5020 0.5490
0.99 LRLSLDA 0.1591 0.9676 0.3145 0.2113 0.2086

SIMCLDA 0.1020 0.9658 0.2223 0.1398 0.1348

TPGLDA 0.2673 0.9703 0.4279 0.3291 0.3238

SKFLDA 0.2354 0.9694 0.3976 0.2958 0.2913

GAMCLDA 0.4472 0.9752 0.5558 0.4956 0.4860

VGAELDA 0.7831 0.9843 0.6868 0.7318 0.7254

Fig. 3  True positive samples at different cutoffs on Dataset2
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Case studies

To further evaluate the capability for detecting unknown lncRNA-disease associa-
tions of VGAELDA, case studies were adopted. We predicted the unknown disease-
related lncRNAs of some specific diseases on the datasets, which can be validated by 
PubMed literature. The unknown disease-related lncRNAs of a disease are ranked by 
VGAELDA-predicted score. In this paper, we adopted case studies on lncRNAs asso-
ciated with breast cancer and colon cancer.

On Dataset 1, the top 10 VGAELDA-predicted lncRNAs associated with breast 
cancer and colon cancer were listed in Tables  3 and 4, respectively. PMID denotes 
the PubMed ID of the supporting literature for the corresponding disease-related 
lncRNAs detected by VGAELDA. Table  3 indicates that all the top 10 VGAELDA-
predicted lncRNAs associated with breast cancer have been confirmed by previous 
literature. Table 4 indicates that 8 of the top 10 VGAELDA-predicted lncRNAs asso-
ciated with colon cancer have been confirmed as well.

On Dataset 2, the top 10 VGAELDA-predicted lncRNAs associated with breast cancer 
and colon cancer were listed in Additional files 4 and 5. Additional file 4 demonstrates 
that 8 of the top 10 VGAELDA-predicted lncRNAs associated with breast cancer have 

Table 3  Top 10 predicted lncRNAs associated with breast cancer on Dataset1

Rank lncRNA name PMID

1 DNM3OS 27693451

2 CCAT1 31310241

3 BANCR 29565494

4 PANDAR 26927017

5 MNX1-AS1 30697072

6 FOXCUT​ 25516208

7 WRAP53 26460974

8 TUG1 30098551

9 MIR17HG 25680407

10 IGF2-AS 33175607

Table 4  Top 10 predicted lncRNAs associated with colon cancer on Dataset1

Rank lncRNA name PMID

1 UCA1 30652355

2 GAS5 27951730

3 PVT1 30504754

4 SNHG16 31502038

5 XIST 29679755

6 DNM3OS Unconfirmed

7 TUG1 27634385

8 IGF2-AS 28534511

9 HULC 30551459

10 SPRY4-IT1 Unconfirmed
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been confirmed by previous literature. Additional file 5demonstrates that 9 of the top 10 
VGAELDA-predicted lncRNAs associated with colon cancer have been confirmed.

Breast cancer is the most commonly diagnosed cancer and the main threat of health 
among females worldwide [45]. VGAELDA has been applied to predict potential 
lncRNAs related to breast cancer. For instance, DNM3OS downregulates Vitamin D 
receptor (VDR), and VDR is capable of upregulating Suppressor of fused gene (SuFu), 
while SuFu is an inhibitor of progression of breast cancer [46]. CCAT1 promotes 
proliferation and migration of triple-negative breast cancer cells via downregulating 
miRNA miR-218 and activating the expression of protein ZFX [47]. BANCR is signifi-
cantly correlated to the growth of breast cancer cells [48].

Colon cancer is a major malignant cancer in digestive system [45]. Among the top 10 
lncRNAs predicted by VGAELDA, UCA1 facilitates the progression of colon cancer 
through upregulating miRNA miR-28-5p and HOXB3 [49]. It is found that GAS5 is posi-
tively correlated to colon cancer as well [50]. Also, previous research suggests that PVT1 
can sponge miRNA miR-26b and promote proliferation and metastasis of colon cancer 
[51].

Besides, we listed the predictions of potential lncRNA-disease associations with 
respect to all diseases of Dataset1 and Dataset2 in Additional files 6 and 7, respectively.

Discussion
Previous methods for predicting lncRNA-disease associations modeled dependent rela-
tionship from features based on some handcrafted measurements of similarity, then 
propagated labels of samples on the graph constructed via feature similarities. However, 
it is difficult for those measurements to capture similarities among high-dimensional 
features directly. Hence, the hyperparameters in these measurements would signifi-
cantly affect the performance of prediction, which decreases the preciseness of label 
propagation.

To address this issue, VGAELDA designed representation learning framework that 
fuses the feature inference network and the label propagation network, to solve graph 
semi-supervised learning Problem 1 (see Methods). Our Assumption 1 (see Methods) 
clarifies the capability of an autoencoder to obtain low-rank solution. Based on Assump-
tion 1, an autoencoder with manifold loss as we defined in Definition 1 (see Methods), 
is competent to obtain the optimal solution of geometric matrix completion problem. 
Considering the manifold constraint and low-rank constraint that the lncRNA-disease 
association matrix should satisfy, we adopted VGAE to implement feature inference net-
work GNNq, and GAE to implement label propagation network GNNp. With the alter-
nate training via variational EM algorithm, two GAEs with manifold loss to measure the 
smoothness of manifold, would significantly strengthen the robustness and preciseness 
of label propagation through the representations learned by VGAE. Hence the feature 
similarities, i.e. the topological relationship of the graph, only need to be estimated 
roughly. The experiments demonstrate that VGAELDA outperforms various kinds of 
matrix completion based or manifold regularization based methods.

Furthermore, VGAELDA provides an efficient way to integrate information from 
lncRNA space and disease space. By applying co-training loss as we defined in 
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Definition 2 (see Methods), information from lncRNA space and disease space are cap-
tured collaboratively. Finally, the association matrix Fl computed from lncRNA space 
and Fd computed from disease space, can be integrated simply, since Assumption 1 sug-
gest that both Fl and Fd follow low-rank property.

Conclusion
The prediction of potential lncRNA-disease associations is of great importance to dis-
ease prognosis, diagnosis and treatment. In this paper, we proposed a deep learning 
model, VGAELDA, which integrates variational inference and graph autoencoders to 
detect potential lncRNA-disease associations. VGAELDA designed a representation 
learning framework to fuse the feature inference network and the label propagation net-
work. Specifically, VGAELDA adopts variational graph autoencoder GNNq for feature 
inference, and graph autoencoder GNNp for label propagation. These two graph autoen-
coders are trained alternately in end-to-end manner via variational EM algorithm. This 
has significantly improved the efficiency of feature representation learning and label 
propagation. Further discussion demonstrates the validity of VGAELDA to find an opti-
mal solution to the geometric matrix completion problem, and to integrate information 
from both lncRNA space and disease space. Experiments illustrate that VGAELDA is 
superior to the current state-of-the-art prediction methods, and case studies indicate 
that VGAELDA is competent in detecting potential lncRNA-disease associations. The 
results of evaluation demonstrate that VGAELDA is competent to capture efficient low-
dimensional representations from high-dimensional features of both lncRNAs and dis-
eases, and predict unknown lncRNA-disease associations robustly and precisely.

Compared to previous lncRNA-disease associations prediction methods, VGAELDA 
adopts an end-to-end framework based on variational inference in graph neural net-
works. VGAELDA is a data-driven end-to-end deep learning approach with a high 
flexibility. Therefore, VGAELDA is competent to be a general model for graph semi-
supervised learning and association prediction tasks for other biological entities.

Methods
Problem formulation

Suppose the number of lncRNAs and diseases are m and n respectively, and Ym×n 
denotes the association matrix. Yij = 1 if the association between lncRNA i and disease 
j is known, otherwise Yij = 0 . An algorithm predicting lncRNA-disease associations 
requires Y and corresponding feature matrix X as input, then outputs a score for each 
pair of lncRNA and disease. F denotes the score matrix, Fij ∈ [0, 1] , i.e. the prediction 
result.

In the view of machine learning, an lncRNA-disease pair is labeled if it has been proved 
to be associated. Usually, there are only few samples labeled in an lncRNA-disease data-
set, and the other tremendous amount of associations need to be detected. Therefore, 
the prediction for lncRNA-disease associations can be viewed as propagating labels to 
plenty of unlabeled pairs from few labeled ones, which is classified as semi-supervised 
learning.



Page 11 of 20Shi et al. BMC Bioinformatics          (2021) 22:136 	

Variational inference for graph semi‑supervised learning

Graph semi‑supervised learning

Semi-supervised learning is based on manifold assumption [52]. Manifold assumption 
clarifies that samples are distributed on a manifold, samples with higher feature similari-
ties are closer on the manifold, and tend to share the same labels. The manifold of data 
can be depicted by graph structure constructed through feature matrix, which leads to 
graph semi-supervised learning. This type of methods first computes adjacency matrix 
from features to construct a graph, then propagate labels from labeled samples to unla-
beled ones on this graph iteratively [53, 54].

Suppose L denotes normalized Laplacian matrix of the graph, minimizing trace(FTLF) 
can obtain the label matrix F following manifold assumption [52, 55]. Belkin et al. [7] 
added this manifold constraint to least square problem, then derived Laplacian regular-
ized least square (LRLS) method

where � · �F denotes Frobenius norm of a matrix, and η is a hyperparameter. Eq. (7) 
is a trade-off between the accuracy based on labeled data, and the smoothness of the 
manifold. This is classified as manifold regularization [7]. Label propagation follows the 
framework of manifold regularization as Eq. (7) [53, 54]. Xia et al. [9] derived that asso-
ciation matrix F follows manifold assumption, and can be obtained via solving Eq. (7).

Graph Markov neural networks

The motivation of VGAELDA is begun with graph semi-supervised learning from prob-
abilistic perspective. Through this perspective, label propagation can be viewed as maxi-
mizing p(yu|yl , xv) [56], where yu and yl denote labels from unlabeled and labeled nodes 
respectively, and xv denotes attributes of objects on the graph. As the number of yu is 
often much larger than yl , it is difficult to maximize p(yu|yl , xv) . Qu et al. [36] proposed 
Graph Markov Neural Networks (GMNN), suggesting that variational inference for 
graph semi-supervised learning leads to Problem 1.

Problem 1  Variational inference for graph semi-supervised learning adopts the varia-
tional distribution q(yu|xv) to approximate p(yu|yl , xv) , which leads to optimize evidence 
lower bound (ELBO)

Remark of Problem 1 is in the Additional file 8. Since labeled and unlabeled samples 
are observations and latent variables in conditional random field (CRF), and according 
to Markov property in CRF, the label of an unlabeled node is only related to its neigh-
borhood. Hence, label propagation procedure aggregates messages from neighborhood, 
which is intrinsically related to graph neural networks [33].

GMNN adopted two GNNs, GNNq and GNNp, to depict q(yu|xv) and p(yl , yu|xv) 
respectively, since GNNs are successfully adopted in graph semi-supervised learning 
[33]. Problem 1 can be solved by variational EM (expectation maximization) algorithm 

(7)min
F

�F − Y �2F + ηtrace(FTLF),

(8)Eq(yu|xv)[log q(yu|xv)− log p(yl , yu|xv)].
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[57] (see Additional file 8), GNNq and GNNp are trained by variational EM algorithm, 
which executes the following two steps alternately until convergence.

•	 E-step: fix GNNp, and train GNNq by attributes of objects, to obtain the pseudo-
labels,

•	 M-step: fix GNNq, and input pseudo-labels into GNNp for training.

Geometric matrix completion

Except for manifold assumption, the association matrix also follows the low-rank 
assumption that it lies in a smaller subspace, this leads to the matrix completion [8] 
problem.

where � is the set of all known lncRNA-disease associations. The projection operator 
P�(·) : Rm×n → R

m×n of matrix M is defined as

Eq. (9) is an NP-hard and nonconvex problem, thus it is usually relaxed as the following 
convex surrogate

where � · �∗ denotes nuclear norm, i.e. the sum of singular values of a matrix.
Geometric matrix completion [19, 20] incorporates manifold constraint trace(FTLF) 

into low-rank constraint, that is to solve

VGAELDA

Method overview

We proposed our model, VGAELDA, which designed representation learning frame-
work to fuse the feature inference network and the label propagation network, and 
is trained through variational EM algorithm using GMNN [36] that integrated vari-
ational inference and GNN. VGAELDA executes the following two steps alternately 
until convergence.

•	 E-step (feature inference): fix GNNp, and train GNNq by high-dimensional fea-
tures, to obtain low-dimensional representations,

•	 M-step (label propagation): fix GNNq, and input lncRNA-disease association 
matrix into GNNp for training.

(9)min
F

rank(F) s.t. P�(F) = P�(Y),

(10)P�(M)ij =
{

Mij (i, j) ∈ �

0 otherwise
.

(11)min
F

�F�∗ + µ�P�(F − Y )�2F .

(12)min
F

�F�∗ + µ�P�(F − Y )�2F + ηtrace(FTLF).
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In VGAELDA, feature inference network GNNq is a variational graph autoencoder 
(VGAE) [37], and label propagation network GNNp is a graph autoencoder (GAE) 
[37]. Assumption 1 and Definition 1 suggest that the application of these two autoen-
coders solves the geometric matrix completion problem Eq. (12), for capturing effi-
cient low-dimensional representations via VGAELDA. Furthermore, VGAELDA 
adopts co-training [58] that integrates information from lncRNA space and disease 
space. The framework of our model is shown on Fig. 4.

Implementing graph autoencoders

Each layer of a graph autoencoder is graph convolutional layer. The formula of the l-th 
(l > 0) graph convolutional [33] layer is

where Ã is adjacency matrix with self-loop, i.e. Ã = A+ I . D̃ is a diagonal matrix called 
degree matrix, D̃ii =

∑

j Ãij , ρ(·) denotes nonlinear activation function, �(l) denotes 
weight of the l-th layer of network, and H (0) is the initial input feature matrix.

Assumption 1  Autoencoder GNNp with Y as input and F as output can obtain the 
optimal solution of Eq. (11).

Definition 1  (manifold loss) Suppose Z and Z′ are representations of autoencoder 
GNNq and GNNp, respectively, then, to optimize manifold constraint trace(FTLF) can 
be viewed as optimizing the following manifold loss

(13)H (l) = ρ(D̃−1/2ÃD̃−1/2H (l−1)�(l)),

LncRNA features Xl
(Embeddings of

lncRNA sequences)

Constructed
lncRNA graph Gl

GNNql

Known 
lncRNA-disease
associations Y

M-Step

E-Step

GNNpl

E-Step

M-Step
GNNqd GNNpd

Output score Fd
T

Prediction result

Disease features Xd
(Disease-gene
associations)

Constructed
disease graph Gd

Known 
lncRNA-disease
associations YT

Output score FlRepresentation Zl

Representation Zd

Co-training

Fig. 4  Framework of VGAELDA. Step 1: lncRNA features Xl are embeddings of lncRNA sequences computed 
by Word2Vec, while disease features Xd are associations with genes. Step 2: constructing graph Gl and Gd 
through Eq. (16) for lncRNAs and diseases, respectively. Step 3: GNNql and GNNpl are applied to Gl , that they 
require Xl and Y as inputs, while GNNqd and GNNpd applied to Gd require Xd and YT  as inputs. Step 4: training 
GNNq and GNNp alternately via variational EM algorithm, while training GNNql and GNNqd collaboratively. 
Step 5: final result fusion by Eq. (28)
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Remarks of Assumption 1 and Definition 1 are in Additional file 8. In the view of the 
alternating direction method of multipliers (ADMM) [59], solving the geometric matrix 
completion problem Eq. (12) can be viewed as optimizing Eq. (7) and Eq. (11) alternately. 
Therefore, autoencoder GNNp with the addition of manifold loss as we defined in Defi-
nition 1, obtains the solution of Eq. (12).

However, to enhance the efficiency of adding manifold loss Eq. (14), we imple-
mented a variational graph autoencoder as GNNq to capture representation Z. Sup-
pose the feature matrix of the graph is X, the encoder learns mean µ and standard 
deviation σ . The representation Z can be computed by applying reparameterization 
trick [60], which means

where ǫ is sampled from standard Gaussian distribution. Then, the decoder reconstructs 
a feature matrix X ′.

The adjacency matrix of graph G can be constructed simply in this way. Firstly, 
sort the Euclidean distances among different feature vectors of nodes. Secondly, for 
each node i, select the 10-nearest nodes except itself. Thirdly, suppose the set of these 
nodes for node i is N (i) , matrix C satisfies that Cij = 1 if j ∈ N (i) , otherwise Cij = 0 . 
The adjacency matrix with self-loop of the constructed graph G is

where ⊙ denotes Hadamard product.
Network structures of GNNq and GNNp are shown on Additional file 9. As shown 

on Additional file 9, GNNp is a basic GAE that takes initial label matrix Y as input, 
the dimension of hidden vector is 256, output of hidden layer is Z′ , and output of 
decoder is prediction F. GNNq is a VGAE, that each layer of the variational autoen-
coder [60] is a graph convolutional layer, the dimension of output vectors of each hid-
den layers in GNNq are 256.

Variational EM algorithm

The variational EM algorithm is implemented through minimizing the losses of 
GNNq and GNNp alternately. Similar to other variational graph autoencoders, the 
loss function of GNNq is the sum of reconstruction error Lqr , and KL divergence LKL.

Kingma and Welling [60] derived that in a variational autoencoder:

•	 If the features follow Gaussian distribution, the reconstruction error is mean 
square error. 

(14)Lm = 1

2
�Z − Z′�2F .

(15)Z = µ+ σǫ,

(16)Ã = CT ⊙ C + I ,

(17)Lq = Lqr + LKL.
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•	 If the features follow Bernoulli distribution, the reconstruction error is cross 
entropy loss. 

•	 KL divergence loss can be computed through 

In VGAELDA, the features of lncRNAs are computed from sequences by Word2Vec 
[39], and features of diseases are computed through associations with disease-related 
genes. Thus, lncRNA features follow Gaussian distribution, and disease features follow 
Bernoulli distribution. Therefore, Lqr in GNNql and GNNqd are computed by Eq. (18) 
and Eq. (19), respectively.

The outputs of encoder and decoder are scaled into (0,1) through applying sigmoid 
activation function. Meanwhile, following Eq. (7) , the loss function of GNNp is the sum 
of reconstruction error and manifold loss.

The reconstruction error of GNNp is the cross entropy between prediction and true 
label

Then, F is obtained after adopting variational EM algorithm to train GNNq and GNNp 
alternately until convergence, and is finally scaled into interval [0, 1] by

where Fmin and Fmax denote minimum and maximum element in matrix F.

Integrating information from lncRNA space and disease space

As shown on Fig. 4, the constructed lncRNA graph Gl and disease graph Gd are different. 
Eq. (17) and Eq. (21) can compute loss from Gl and Gd respectively, but it is important to 
integrate the information capturing from lncRNA space and disease space. Therefore, we 
adopt co-training [58] to train GNNql and GNNqd collaboratively.

Definition 2  (co-training loss) Suppose Zl and Zd are representations learned from 
lncRNA space and disease space, respectively, then co-training loss

(18)Lqr =
1

2
�X − X ′�2F ,

(19)Lqr = −
∑

i,j

Xij logX
′
ij .

(20)LKL = −
∑

i,j

1

2
(1+ 2 log σij − µ2

ij − σ 2
ij ).

(21)Lp = Lpr + γLm.

(22)Lpr = −
∑

i,j

Yij log Fij .

(23)Fij ←
Fij − Fmin

Fmax − Fmin
,

(24)Lc =
1

2
�ZlZ

T
d − Y �2F .
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can measure the performance of co-training.

Remark of Definition 2 is in Additional file 8. Then GNNql and GNNqd are trained 
simultaneously by optimizing the total loss of GNNq

where Lql and Lqd denote losses of GNNql and GNNqd computed through Eq. (17) 
respectively, and α ∈ (0, 1) is the weight parameter that balances information capturing 
from lncRNA space and disease space. Similarly, the total loss of GNNp is

where Lpl and Lpd denote losses of GNNpl and GNNpd computed through Eq. (21) 
respectively. Then, the variational EM algorithm is implemented through optimizing Lq 
and Lp alternately. After training procedure, GNNpl outputs Fl while GNNpd outputs 
Fd . Since both Fl ∈ R

m×n and Fd ∈ R
n×m are low-rank provided by autoencoders, and 

through the rank-sum inequality that

the final result

is low-rank.
The procedure of VGAELDA is summarized in Algorithm  1, where 

X ′,Z ← GNN(G,X) summarizes the computing procedure of a GAE.

Hyperparameters tuning

In VGAELDA, there are three hyperparameters, α,β and γ , that need to be tuned. 
Hyperparameter α depicts a balance between lncRNA space and disease space. However, 

(25)Lq = αLql + (1− α)Lqd + βLc,

(26)Lp = αLpl + (1− α)Lpd ,

(27)rank(aFl + bFTd ) ≤ rank(Fl)+ rank(FTd ),∀a, b,

(28)F = αFl + (1− α)FT
d .
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after evaluating our model at each α ∈ {0.1, 0.3, 0.5, 0.7, 0.9} , we found that VGAELDA 
is robust to the choice of α , and the results are shown on Additional file 10. Hence we 
simply set α = 0.5.

Since manifold loss Lm and co-training loss Lc depend on the computation of represen-
tations of GNNql and GNNqd, the capabilities of manifold constraint and co-training 
constraint are related to the effectiveness of representation capturing by GNNq. Hence, 
we need to set hyperparameter β in Eq. (25) and γ in Eq. (21), increasing as training goes, 
to enhance the robustness of representation learning, and the convergence of EM algo-
rithm. So here we set β = γ = e/en at e-th epoch, where en = 500 denotes the number 
of epochs.

We adopted PyTorch [61] (https://​pytor​ch.​org/) to construct VGAELDA, and 
applied Adam optimizer [62], where learning rate is 0.01, weight decay is 10−5 , and we 
set dropout=0.5 [63]. Our model was trained on a single NVIDIA GeForce GTX 2070 
GPU with 8GB memory. we evaluated the performance of VGAELDA through vary-
ing learning rate in {0.001,0.01,0.1,1}, and the results are shown on Additional file 11. 
The figure depicts that the best value of learning rate is 0.01.

Moreover, we evaluated our model at different dimension of hidden vectors, and the 
results are shown on Additional file 12. The figure depicts that the performance of our 
model is enhanced with the increase of hidden vector dimension. However, when the 
dimension is more than 256, there is little increment and the performance remains 
stable. Hence, we set the hidden vector dimension at 256 to save the time and space 
cost of our model.

Besides, we also evaluated our model at different dimension of lncRNA embed-
ding vectors adopted by Word2Vec, and the results are shown on Additional file 13. 
The figure shows that a larger dimension of lncRNA embedding vectors tends to per-
form better. However, when the dimension is more than 150, there is little increment 
and the performance remains stable. Hence, we simply set the dimension of lncRNA 
embedding vectors at 300.
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