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Background
In recent years, systems biology has developed rapidly. With the continuous develop-
ment of high-throughput analysis technologies such as proteomics and transcriptomics 
[1], it has become possible to infer gene regulatory networks (GRNs). The main pur-
pose of GRN inference is to determine causal relations between genes. Such networks 
offer important information about regulation and boost people’s understanding about 
mechanisms.
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After several decades of development, computational efficiency and accuracy of net-
work inference algorithms have increased dramatically. Large gene networks of micro-
organisms and mammals can be reconstructed using transcriptomics datasets. Methods 
with high accuracy in inferring GRNs have been proposed. For example, the TIGRESS 
[2] and fused LASSO [3] based on linear regression have exhibited superior performance 
in computational efficiency, while machine learning-based methods such as GENIE3 [4] 
and GRNBoost2 [5, 6] in boosting framework are widely used due to their advantages 
in accuracy. Mutual information-based CLR [7] and PIDC [8] can reveal the statistical 
dependencies among genes.

However, there are some limitations also exist in those GRNs inference methods. 
Inferred topologies usually lack clear biophysical explanations, limiting their applica-
tions such as disease-gene prediction and gene therapy. For GRN and protein–protein 
interaction (PPI) networks, a key character shared by biological networks is the so-called 
functional module or communities structure [9]. Each module corresponds to a sub-net-
work in which nodes are densely connected and exchange information frequently [10]. 
Besides, traditional approaches determine the casual relations between genes at a sin-
gle stage, leading to considerable computational burden. Parameter estimation of GRN 
with topological constraints had exhibited advantages in computational efficiency [11]. 
According to the regulatory module theory, inter-modular connections have a more 
tight association than the genes pairs in intra-module [12]. When the conventional infer-
ence task can be accomplished at multiple stages, the efficiency of network inference 
may be expected to be improved.

With accurately detected modules, it is feasible to develop an efficient inference frame-
work that combines inherent modular structures with established inference algorithm. 
Plenty of module identification methods have been developed to detect functional 
modules from GRN, PPI, and other biological networks. For gene module detection 
approaches including CoReg and SigMod etc[13, 14], network topologies were required 
to be known. This is a strong prerequisite that is hard to be satisfied in real applications. 
In this context, data-driven module identification methods become crucial to identify 
modules directly from transcriptomic data. Decomposition-based and clustering-based 
methods have attracted increasing attention due to the ability to detect gene mod-
ules from transcriptomic data [15]. Although gene modules can be detected, current 
researches focus on finding the biological explanations and relevant pathways to some 
extent [16]. From the viewpoint of network inference (NI), gene modules provide a con-
straint to guide the inference, leading to GRN with community structures.

Motivated by these topological characters, this study proposes a ModularBoost 
method to integrate decomposition-based module identification and boosting-based 
inference algorithm. Using ICA-FDR, ModularBoost assigned genes to regulatory mod-
ules according to their expression data. Based on the detected gene modules, casual 
relations within gene modules were inferred by GRNBoost2 that is a top-ranking infer-
ence algorithm, while the regulatory relationships between modules were detected by 
linear sparse regression. Then ModularBoost normalized the scores from subnetworks 
to obtain the final network.

Among decomposition-based methods, ICA-FDR, ICA-zscore, and PCA have been 
implemented and compared with commonly-used clustering expression datasets [9]. 
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And we selected the ICA-FDR algorithm that demonstrates the highest accuracy in 
module identification. Besides, the performance of ModularBoost method was evalu-
ated by single-cell expression and time-series data. The simulated scRNA-seq datasets 
are generated by BEELINE [17] and PIDC [8]. The three experimental scRNA-seq data 
sets are from the SCODE project [18]. And the time-series data sets are the S. aureus, E. 
coli and Yeast expression data from the Dream5 challenge [19]. As for the gold standard 
of gene modules, based on partly known gene regulatory edges, functional modules were 
extracted by graph theory or community detection methods. This work not only dis-
cusses the applicability and accuracy of ModuleBoost in network inference (NI), but also 
further analyzes the relation between data-driven module detection and NI.

Result
Modular inference of simulated scRNA‑seq datasets

Curated networks were extracted from Beeline project, which focused on GRN infer-
ence using single cell expression data. Different from traditional microarray datasets, 
single-cell data contains information about cell–cell variability and can be used to inves-
tigate behavior patterns of cell populations [20]. However, strong stochastic single cell 
expression data often lead to low accuracy in network inference. Even several algorithms 
including SCODE and PIDC have been developed [8, 18], the accuracy levels of GRN 
inference using single cell data were quietly low. Another bottleneck brought by single 
cell data was increasing computational burden, due to plenty of cell samples [21]. Cell–
cell variability information in single cell expression data play a negative role in inferring 
TF-gene relations, leading to low accuracy of inference in many cases.

In this case, the proposed ModularBoost approach aims to improve the accuracy 
in inference by introducing topological constraints. In the proposed ModularBoost 
method, ICA-FDR based decomposition was used as inner part to detect functional 
modules directly from curated datasets. Competing methods include ICA-FDR2, ICA-
zscore, PCA-based decomposition and K-means clustering methods. Performance index 
Frr using four decomposition methods and K-means clustering were described in this 
research. Curated datasets from the GSD network had three experimental conditions, 
depending on the dropout rates. PIDC E. coli-S denotes single-cell data with 700 cell 
samples, while both E. coli-LL and E. coli-LH represent datasets with 2000 samples. In 
addition, the E. coli-LL and E. coli-LH groups correspond to single-cell data with low 
and high dropout rates respectively. Evaluation metrics of the curated GSD network and 
PIDC E. coli network were compared in Table 1.

Table 1  Module identification evaluation of the curated GSD and PIDC E. coli network using Frr

Methods GSD-1 GSD-50 GSD-70 E. coli-S E. coli-LL E. coli-LH

ICA-FDR 0.307 0.307 0.268 0.355 0.345 0.337
ICA-FDR2 0.249 0.249 0.212 0.240 0.234 0.227

ICA-zscore 0.172 0.111 0.111 0.318 0.359 0.323

PCA decomposition 0.252 0.213 0.111 0.287 0.279 0.285

K-means 0.288 0.288 0.288 0.247 0.230 0.240
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Frr values were positively related with the accuracy level in module detection. Highest 
values in each column were displayed in bold. ICA-FDR and ICA-FDR2 required the 
number of gene modules n_comp and the threshold of Q-value q_cutoff according to the 
number of genes in GRN. For the module identification evaluation of curated networks 
with 19 genes, we set consistently n_comp = 2 for five module identification methods. 
Meanwhile, PIDC E. coli network with 100 genes set n_comp = 4. And the q_cutoff of 
ICA-FDR, ICA-FDR2, and PCA was 10−3 . However, the q_cutoff of ICA-zscore decom-
position was different from ICA-FDR due to the difference in statistical principles: 
q_cutoff zscore = 1.5. To eliminate the randomness of the heuristic algorithm, we repeated 
each gene network 10 times and took the average of Frr.

A pattern that could be found in Table  1 was that ICA-FDR outperformed three 
decomposition methods and k-means clustering, showing high accuracy in module 
detection. Furthermore, Frr indexes obtained by ICA-FDR were slightly higher than 
that from ICA-FDR2. A possible explanation was that ICA-FDR2 algorithm had taken 
the direction of regulatory edges into consideration, thus influencing the accuracy of 
gene module identification. Meanwhile, dropout rate, which was regarded as noise, had 
shown negative impacts on module detection. Frr indexes from GSD-70 were lower than 
that from GSD-1 and GSD-50, using five module detection methods.

Instead of reconstructing a network as whole, the ModularBoost approach accom-
plished the GRN inference task based on the identified modules, which were densely 
connected genes and TFs. Furthermore, intra-modular and inter-modular interactions 
between genes were inferred in two stages of inference.

It can be observed from Table 2 that the proposed ModularBoost approach obtained 
highest AUROC indexes among selected inference algorithms including ridge and 
GRNBoost2 methods.  Highest AUROC and AUPR  in each column were displayed 
in bold. This phenomenon validates the effectiveness of ModularBoost as well as the 
integration of two inference strategies. The computational time of ModularBoost in 

Table 2  AUROC and AUPR indexes for curated and PIDC networks with conventional GRN inference 
and ModularBoost

Methods Curated GSD-1 Curated GSD-50 Curated GSD-70

AUROC AUPR AUROC AUPR AUROC AUPR

Ridge 0.545 0.234 0.517 0.232 0.530 0.234

Linear regression 0.520 0.225 0.507 0.220 0.467 0.204

TIGRESS 0.547 0.233 0.548 0.253 0.523 0.249

GRNBoost2 0.547 0.230 0.566 0.258 0.550 0.258

ModularBoost 0.549 0.234 0.559 0.260 0.553 0.259

Methods PIDC E. coli-S PIDC E. coli-LL PIDC E. coli-LH

AUROC AUPR AUROC AUPR AUROC AUPR

Ridge 0.667 0.065 0.594 0.024 0.540 0.015

Linear regression 0.461 0.010 0.518 0.012 0.479 0.011

TIGRESS 0.676 0.068 0.612 0.035 0.601 0.020

GRNBoost2 0.659 0.056 0.558 0.038 0.570 0.034
ModularBoost 0.678 0.074 0.624 0.039 0.618 0.028
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the three curated networks and PIDC networks are also less than that of GRNBoost2. 
ModularBoost timeGSD−1 = 85  s, timeGSD−50 = 73  s, timeGSD−70 = 78  s, GRN-
Boost2 timeGSD−1 = 119  s, timeGSD−50 = 116  s, timeGSD−70 = 100  s. Modular-
Boost timeE.coli−S = 16  s, timeE.coli−LL = 155  s, timeE.coli−LH = 137  s, GRNBoost2 
timeE.coli−S = 67 s, timeE.coli−LL = 1362 s, timeE.coli−LH = 965 s. The AUROC and AUPR 
indexes of GRNBoost2 and the proposed ModularBoost indicated that the Modular-
Boost approach was able to accomplish the inference task using reduced computational 
resource, without obvious loss of accuracy. From this perspective, the ModularBoost 
approach can be used as an efficient solution to infer TF-gene relations using single 
cell expression data. AUROC and AUPR indexes of GSD-70 group were lower than two 
other groups, suggesting negative impact of dropout rate. Especially when the drop-
out rate increase from 50 to 70, such impacts were obvious, both in module detection 
and network inference. Meanwhile, this situation was also confirmed at PIDC datasets. 
AUROC and AUPR indexes tend to decrease when the single-cell data sample sizes and 
dropout rates increase. In this study, dropout rate played the role of noise in single cell 
expression data and has a negative influence in GRN inference accuracy.

To show the superior network prediction of ModuleBoost2, we compared Modular-
Boost with the ridge regression based inference method from the perspective of degree 
distribution [22]. The degree distribution pk of GRNs follows approximately the power-
law [23], and it is given by:

where k denotes degree, α represents scaling coefficient and c is a constant.
The power-law distributions of PIDC E. coli-S and E. coli-LL were shown in Fig.  1. 

For simulated single cell expression datasets, Ecoli-S and Ecoli-LL share the same gold 
standard networks. These two cases may lead to different inferred structures, due to var-
ious complexity levels. When the sample size of expression data increases, the inference 
indexes tend to decline while the mismatch degree between inferred networks and gold 
standards has become more significant.

Under this circumstance, the proposed ModularBoost method can obtain GRNs that 
are higher topologically similar with gold standards, compared with ridge regression 

(1)log pk = −α log k + c

Fig. 1  The power-law distributions of PIDC E. coli. Comparison of the power-law distribution and log10-log10 
degree for gold standard network, ModularBoost-inferred network, and Ridge-inferred network of E. coli 



Page 6 of 21Li et al. BMC Bioinformatics          (2021) 22:153 

inference algorithm. In other words, ModularBoost is able to improve the interpretabil-
ity of inferred networks to some degree.

Modular inference of experimental scRNA‑seq datasets

In this section, experimental single cell RNA sequencing(scRNA-seq) datasets were used 
as the major information source in GRN inference. In biomedical and genomic research, 
scRNA-seq datasets has played a crucial role in exploring dynamics of cell population 
and differentiation. Three scRNA-seq datasets and relevant gold standard networks 
were provided by the SCODE project. In Table 3, PrE (primitive endoderm cells), MEF 
(mouse embryonic fibroblast cells), DE (definitive endoderm cells) denote various cell 
types from mouse and human respectively. Regulatory edges in gold standard covered a 
subset of 100 genes, ranging from 40% to 60% . Based on known regulatory edges, gene 
modules were detected using graph theory-based methods, i.e. community detections 
methods. Those modules were intersected, corresponding to overlapping phenomenon.

The basic idea of module standards is to explore strongly interconnected components 
where nodes are mutually connected. In module 2 of PrE network, ETS1, EGR1 and 
SMAD7 formed a connected component. ETS1 and EGR1 are hub nodes due to high 
out-degrees. In known regulatory relations, the SMAD7 gene owns 12 out-degrees and 
16 in-degrees, indicating that this gene play a bridge node in the PrE network.

For the MEF network, those TFs such as KLF4 had high out-degrees and were believed 
to have high topological importance in information flows. According to known modules, 
overlapping existed, allowing part of genes belong to two or more functional modules.

In Fig. 2, gene modules were colored and visualized by the Gephi software to illustrate 
the topological positions. In the directed graphs, the physical sizes of nodes were posi-
tively related with their topological importance. Meanwhile, functional and topological 
neighborhoods were related but different. It can be observed from Fig. 2 that nodes in 
the same gene modules tend to densely connected and had topological relations. In this 
study, gene modules were determined by data-driven ICA-FDR method, leaving a part of 
genes uncolored.

Table 3  The list of gene module gold standard for three SCODE networks

Network module Genes

PrE module 1 XBP1 GATA6 MYBL2 RHOX6 JUN

module 2 ETS1 EGR1 POU5F1 ELF3

module 3 DNMT3A SIX1 SMAD7

module 4 EPAS1 BHLHE40 POU5F1

MEF module 1 HMGA2 ASCL1 FOS ATF3 ETS1 PRRX1 JUN NFIC FOSB

module 2 FOS EBF1 PLAGL1 FOSB SOX9 KLF4

module 3 NFIC NFIA NR2F2

DE module 1 CDX1 JUND

module 2 PRDM1 HAND1 FOXF1 HOXB6 SOX5 SOX17 TCF7 MAF

module 3 OTX2 NFIB ZIC3 CDX1 LEF1 ZFX TFAP2A ZEB1

module 4 GATA6 T EOMES GATA4 SOX2 MSX1 PITX2 POU5F1 NANOG

module 5 T CDX1 JUND ZFP42 ARID3A GATA6 HAND1 ZFX



Page 7 of 21Li et al. BMC Bioinformatics          (2021) 22:153 	

For PrE, MEF, DE networks, the numbers of gene modules were assigned as 3, 4, 4, 
according to prior information.

From Table 4, high Frr indexes with bold obtained by ICA-based decomposition sug-
gested their advantages in detection accuracy, compared with PCA-decomposition and 
k-means clustering. And Frr indexes of ICA-FDR2 were lower than that of ICA-FDR. 
This pattern was consistent with that in microarray datasets from curated subsection.

Based on the detected modules, the proposed ModularBoost approach accomplished 
the network inference using two kinds of regression: ridge regression and ensemble 
inference algorithm. This study chose cutting-edge ensemble inference named GRN-
Boost2 to determine intra-modular casual interactions. Table  5 shows AUROC and 
AUPR indexes obtained by the ModularBoost method and three candidate inference 
algorithms. And highest AUROC and AUPR in each column were displayed in bold.

SCODE PrE and MEF datasets are single-cell expression data measured from 
mouse cells, while SCODE DE dataset denotes expression data of human cell 

Fig. 2  The gene module gold standard of SCODE PrE network. The overlap signifys POU5F1 was both 
involved in module 2 and module 4. The edges in the network represented the regulations between genes

Table 4  Comparison of module identification methods using experimental using scRNA-seq 
datasets

Frr indexes were computed by four decomposition based methods and K-means clustering

Methods SCODE PrE SCODE MEF SCODE DE

ICA-FDR 0.244 0.215 0.272
ICA-FDR2 0.241 0.210 0.141

ICA-zscore 0.233 0.257 0.267

PCA decomposition 0.100 0.180 0.216

K-means 0.102 0.138 0.129
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populations. For PrE and MEF datasets, the proposed ModularBoost method 
obtained improved inference performance with reduced computational cost 
(ModularBoost timePrE = 17s, timeMEF = 24s, timeDE = 11  s, GRNBoost2 
timePrE = 335s, timeMEF = 230s, timeDE = 539 s).

Figure  3 depicts both the PR and the ROC curves of four inference algorithms, 
during reconstruction of three SCODE networks. For PrE and MEF networks, the 
proposed ModularBoost approach outperforms three candidate inference methods 
in terms of AUPR and AUROC values. Moreover, the shape of the PR curve shows 
that the predicted lists inferred by ModularBoost method contains more true edges 
than other algorithms. For the DE dataset, the accuracy indexes of ModularBoost 
were lower than that of existing GRNBoost2. One possible explanation is the com-
plex physiological process of gene regulation in human cell populations.

Modular inference of DREAM5 networks

As a typical kind of time-series expression data, microarray datasets have long been 
used as information source in GRN inference. DREAM5 provided four networks as 
benchmarks for network inference research [19]. Considering the huge number of 
nodes and regulatory edges, the accuracy indexes obtained by existing methods were 
relatively low and the computational time was considerable. Among four DREAM5 
networks, S. aureus, E. coli and Yeast networks had been used as benchmarks in this 
sections.

In DREAM5 challenge, ‘true’ regulatory relations were used as so-called gold stand-
ards to judge the accuracy degree of inference algorithms. Specially, the modular gold 
standard of DREAM5 was from Saelens [9]. As for the labels of gene modules, Sisima 
and Macisaac et. al provided two groups of incomplete module sets to quantitatively 
evaluate performance of candidate module identification methods [24]. Based on 
ICA-FDR, the ModularBoost approach firstly detected gene modules directly from 
DREAM5 datasets. The comparison of ICA-FDR with the other methods were shown 
in Table 6.

Minimal, Strict, and Interconnected denote three definitions of gene modules, 
according to connectivity patterns. The Minimal modules can be regarded as the 
overlapping sets of genes that shared at least one TF. And Strict modules corre-
spond to the gene sets that are regulated by the same regulators. For Interconnected 
modules, genes in the same module are strongly interconnect. For the same gold 

Table 5  AUROC and AUPR for SCODE with classical GRN inference and ModularBoost

Methods SCODE PrE SCODE MEF SCODE DE

AUROC AUPR AUROC AUPR AUROC AUPR

Ridge 0.529 0.076 0.502 0.074 0.496 0.041

Linear regression 0.524 0.072 0.516 0.076 0.505 0.041

TIGRESS 0.501 0.062 0.487 0.066 0.502 0.042

GRNBoost2 0.466 0.058 0.474 0.067 0.503 0.046
ModularBoost 0.532 0.077 0.540 0.088 0.503 0.044
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standard network, the Interconnected standard usually obtains the least number of 
gene modules.

For E. coli network with 4511 genes and Yeast network with 5950 genes , 
we set n_comp = [10, 20, . . . , 100] and qcutoff = [10−1, 10−2, . . . , 10−13] , lead-
ing to 130 parameter combinations. The parameter q_cutoff of ICA-zscore and 
PCA decomposition algorithms were settled as q_cutoff zscore = [0.5, 1, . . . , 6.5] , 
q_cutoff pca = [1, 0.75, 0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.0075, 0.005, 0.0025, 0.001]   . 
To reduce the stochastic impacts, decomposition-based module detection algorithms 
detected modules ten times for each parameter combination, and computed the 

Fig. 3  Performance on three SCODE networks. The area under ROC and PR is positively related with the 
accuracy in network inference
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average Frr indexes. In Table 6, the values Frr were obtained by taking the maximum 
value among 130 combinations.

Table 6  Module identification evaluation of the DREAM5 networks

Frr indexes were calculated by comparing the predicted and known modules. High Frr values demonstrate high consistency 
between the predictions and module gold standards. Three types of gene modules, i.e. Minimal, Strict and Interconnected 
were taken into consideration. Highest values in each type of gene modules for networks were displayed in bold

Methods Module gold DREAM5 E. coli DREAM5 Yeast

Sisima Macisaac

ICA-FDR Minimal 0.206 0.102 0.107
Strict 0.193 0.090 0.073
Interconnected 0.199 0.102 0.094

ICA-FDR2 Minimal 0.203 0.093 0.099

Strict 0.190 0.082 0.069

Interconnected 0.189 0.094 0.087

ICA-zscore Minimal 0.192 0.086 0.096

Strict 0.202 0.070 0.064

Interconnected 0.183 0.081 0.086

PCA decomposition Minimal 0.101 0.047 0.047

Strict 0.100 0.046 0.042

Interconnected 0.097 0.047 0.048

K-means Minimal 0.173 0.070 0.076

Strict 0.178 0.059 0.055

Interconnected 0.146 0.063 0.066

Fig. 4  Module identification of  DREAM5 E. coli network by ModularBoost algorithm. The network topology 
was derived from the DREAM5 E. coli gold standard, and showed clear topological modules. Multiple gene 
modules were marked with different colors according to the decomposition results of ModualrBoost. 
ICA-FDR algorithm was employed in the decomposition part to detect functional modules from time-series 
expression data
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It can be observed from Table  6 that decomposition-based approaches identify 
gene modules with enhanced accuracy than K-means method, under three module 
definitions. Among three module definitions, Frr indexes of the Minimal and Strict 
groups were higher than that of Interconnected criteria. This phenomenon indicated 
that Minimal co-regulation can be a suitable definition to evaluate module detection. 
To demonstrate the decomposition of ICA-FDR, regulatory modules were colored in 
DREAM5 E. coli gene networks shown in Fig. 4.

In Fig.  4, nodes in the graph represent TFs or genes and edges denote regulations. 
Those nodes colored with the same color were assigned to the same functional module, 
according to ICA-FDR decomposition in the ModularBoost method. With annotations, 
gene modules are crucial to deepen the understanding about regulation mechanisms 
with a given network. From this perspective, the ModularBoost method offered a data-
driven solution to unveil functional modules directly from expression data, even with-
out accurate annotations. Different from raw module identification, the ModularBoost 
method detects gene at the first stage, then infer inter-modular and intra-modular reg-
ulations at the second stage. Directed regulatory edges between TF-gene pairs will be 
necessary to further analyze information flow and potential biophysical explanations.

In systems biology, densely connected nodes usually are related with specific cel-
lular functions or diseases [25]. Under this circumstance, the ModularBoost method 
aims to provide reconstructed GRN topologies with clear community structures. 
This is an important character owned by the ModularBoost method. Other candidate 
inference algorithm including ridge regression based TIGRESS and ensemble-based 
GRNBoost2 majorly focus the whole network structure [2].

From the gene module detection outcomes of two DREAM5 networks, the ICA-
FDR part in the ModularBoost method accomplished the first stage of task efficiently. 
In the subsequent inference of subnetworks, the AUROC and AUPR indexes were 
compared in Table 7. And the highest values in each column were marked in bold.

It can be observed from the Table  7 that the ModularBoost approach obtained 
higher AUROC and AUPR indexes than standard ridge and GRNBoost2 in two 
DREAM5 networks. The proposed ModularBoost approach integrates ensemble-
based GRNBoost2 and ridge inference methods by introducing gene modules as 
topological constraints. The core of TIGRESS algorithm was regularized regression, 
leading to higher AUPR indexes than conventional linear regression methods. Net-
work inference tasks were performed on a computer with 8 GB RAM, Intel i7-9750H 
2.60  GHz. GRNBoost2 algorithm took 1  h 57  min to complete the inference of the 
DREAM5 S. aureus network, while ModularBoost only needed 7  min for the same 

Table 7  Comparison of AUROC, AUPR indexes in DREAM5 networks

Methods DREAM5 S. aureus DREAM5 E. coli DREAM5 Yeast

AUROC AUPR AUROC AUPR AUROC AUPR

Ridge 0.667 0.004 0.610 0.067 0.529 0.019

Linear regression 0.657 0.004 0.606 0.056 0.530 0.019

TIGRESS 0.627 0.021 0.595 0.069 0.517 0.020

GRNBoost2 0.644 0.007 0.642 0.101 0.531 0.020

ModularBoost 0.671 0.010 0.624 0.069 0.532 0.021
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task. GRNBoost2 algorithm took 41  h 46  min on DREAM5 E. coli network, while 
ModularBoost took 1  h 8  min, reducing approximately 96% computing efforts. The 
DREAM5 Yeast network took 33  h 36  min with GRNBoost2 inference, while only 
used 1 h 9 min with ModularBoost. Obviously, compared with GRNBoost2, Modular-
Boost significantly improved the speed of network inference, and did not cause a sig-
nificant decrease in the accuracy of network inference. One advantage of introducing 
topological constraints is to improve inference accuracy. Another benefit is to reduce 
computational burden, especially for GRN with thousands of regulatory edges.

For three types of GRNs, degree distributions were fitted by the power-law distri-
bution, as shown in Fig.  5. Compared with ridge-based inference algorithm, GRNs 
obtained by the ModularBoost approach showed closer similarity with the gold 
standard networks. These results show that ModularBoost-inferred networks are 
more similar with the ‘true’ network topology. The linear fitting parameters are shown 
in Table 8.

Discussion and conclusions
This work aims to develop a seamless framework to perform GRN inference based on 
module identification. In order to detect modules from expression data, ICA-based 
decomposition algorithms have been applied in the proposed ModularBoost algorithm. 
Among several candidate decomposition methods, ICA-FDR had shown advantages 
in detection accuracy. In this case, ModularBoost employs the ICA-FDR algorithm to 
detect gene module from transcriptomic data. In the subsequent network inference part, 

Fig. 5  The power-law distributions of E. coli and Yeast. Comparison of the power-law distribution and log10
-log10 degree for gold standard network, ModularBoost-inferred network, and Ridge-inferred network of E. 
coli and Yeast

Table 8  The linear fitting parameters α and c for power-law distribution

DREAM5 Network α c

E. coli Gold standard 1.225 −2.064

ModularBoost 1.466 −0.956

Ridge 1.418 −0.733

Yeast Gold standard 1.226 −2.381

ModularBoost 1.397 −0.940

Ridge 1.280 −1.030
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intra-modular and inter-modular interactions were determined by ensemble-based and 
sparse regression-based algorithms respectively. The idea behind the ModularBoost is to 
introduce topological constraints to conventional network inference. Such topological 
constraints consider inherence community structures in GRN and other biological net-
works and can be introduced by data-driven approaches.

The proposed ModularBoost method can be also regarded as a low-weight solution to 
deal with time-series and single cell expression data. Based on experimental outcomes 
about curated and scRNA-seq datasets, the ModularBoost method is able to improve 
inference accuracy as well as to reduce computational time. It can be understood that 
decomposition of network inference can reduce the computational burden, since an 
original task was transferred to multiple sub-tasks. The purpose is to obtain topologies 
with better biophysical or biomedical explanations. To evaluate the effectiveness of iden-
tified regulatory modules, relevant annotations called Module gold will be necessary. 
This study applies module labels and compute Frr index to quantitatively evaluate the 
performance of data-driven gene module identification.

ModularBoost methods
ICA‑FDR based gene module identification

Gene module correspond to the group of genes with similar expressive patterns and bio-
logical functions. Researches about gene module help researchers better understand dis-
ease modules and gene-disease relations.

In general, the intent of the independent component analysis (ICA) is to find the hid-
den ‘independent component’ that refers to the gene module in this research [26]. When 
applied in the field of gene module detection, ICA usually splits express data matrix X 
into two matrices: a source matrix S and a mixing matrix A, which means X = AS is 
shown in Fig. 6.

Fig. 6  An overview of the ICA-FDR decomposition method. FastICA splits the expression X into a mixing 
matrix A and a source matrix S. Contained in the rows of S, the components reflect hidden biological 
processes influencing gene expression. The level of genetic influence on components are reflected by 
the heat color map, from dark (minimum) to red (maximum). FDR estimation determines which genes are 
assigned to each module
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For single cell expression matrix X, this study assumes that the columns and rows of 
X correspond to genes and cell samples respectively. The expression value xij of gene j at 
sample i is shown as

where aik reflects the contribution of cell sample i in component k and skj denotes the 
contribution of component k on gene j [16]. ICA-decomposition algorithms are differ-
ent in adopting optimization standards for component independence. In this study, we 
chose an efficient ICA algorithm—FastICA. The goal of FastICA is to find an orthog-
onal rotation of prewhitened data through a fixed-point iteration frame [27]. FastICA 
iteratively maximizes non-Gaussian of the rotated components until convergence, and k 
independent signals that corresponded k gene modules are found in this process.

FastICA algorithm tries to find gene components in the source matrix that own non-
Gaussian characteristics. Each modular signal in the source matrix generally obeys a 
heavy-tailed normal distribution. Under this circumstance, those genes at the tails have 
a significant contribution to those components, while the majority of genes in peak have 
weak impact. In the next step, we applied the false discovery rate (FDR) estimation to assign 
genes to various functional modules.

The basic procedure of the ICA-FDR algorithm is shown as Algorithm 1.

Input parameters include the number of gene modules n_comps , the maximum itera-
tions max_iter = 20,000 in this research, and the threshold of Q-value q_cutoff. The pro-
cess of whitening was defined as Eq.3.

(2)xij =
∑

k

aik skj
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where E denotes the orthogonal matrix of eigenvectors of E{xxT } and D is the diago-
nal matrix of its eigenvalues. The first goal of ICA-FDR is maximizing non-Gaussianity, 
and non-Gaussianity is measured by the approximation of negentropy JG(w) given in the 
Eq.4.

The entropy H(·) can be defined as Eq.5 in the ICA-FDR:

where υ is a Gaussian variable of unit variance and zero mean, and G(·) is the non-quad-
ratic function that is used to improve the robustness of estimation, such as:

The g(·) that in Algorithm. 1 is the derivatives of the function in Eq.6:

FDR represents the number of false discoveries in an experiment divided by the total 
number of discoveries, and the discovery is statistical test that provides an acceptance 
threshold. Using hypotheses tests, this study first evaluated the statistical significance 
of genes in each modular signal. This yielded a p value for genes in each module, and a 
ranked list in descending order. Correction for multiple testing was performed by cal-
culating a “Q-value” from the p values and estimating FDR values [28]. The formula for 
calculating a Q-value is defined by Eq.8

where pik is the ith smallest p- alue out of n gene p values for the k modular signal.
The fundamental principle of post-process is assigning the genes with lower 

Q-value than q_cutoff to a module, and the process was shown in Fig.  6. According 
to the number of genes and modules, the value of q_cutoff was selected from the set 
{10−1, 10−2, . . . , 10−13}.

The ICA-based decomposition also has several derivatives, including ICA-FDR, ICA-
FDR2 and ICA-zscore. ICA-FDR2 is similar to ICA-FDR but divides each component 
into two modules according to the signs of gene regulations, while ICA-zscore replaces 
FDR indexes with z-scores to detect module from source signals. As a tool to reduce 
dimension, the principal component analysis (PCA) can be used to visualize the similari-
ties among the biological samples [29]. We tested the performance of these methods in 
the experiments to compare with the ICA-FDR.

(3)x̃ = ED
−1/2

E
T
x

(4)JG(w) = H(wgauss)−H(w)

(5)JG(w) = [E{G(wT
x̃)} − E{G(ν)}]2

(6)G1(u) =
1

a1
log cosh a1u, G2(u) = −exp(−u2/2)

(7)g1(u) = tanh(a1u), g2(u) = u exp(−u2/2)

(8)qik =
pikn

i
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Decomposition‑based GRN hybrid inference

Different NI algorithms have their unique characteristics, and the combination of multi-
ple algorithms can provide a possible strategy to obtain networks with sparse and dense 
interactions [11]. The ICA-FDR algorithm has divided genes into different modules. 
For GRNs, functionally correlated genes or TFs form gene modules in which the intra-
modular connections are tenser than of inter-modular relations. In this section, based 
on the detected gene modules, we proposed an algorithm that uses GRNBoost2 to infer 
intra-modular interactions and ridge regression to determine inter-modular regulations, 
which conforms to community structures. Before calculating the inter-modular connec-
tions, the proposed ModularBoost approach removes those gene pairs that are in the 
same module to reduce computational burden. The workflow of ModuleBoost is shown 
in Fig. 7.

Fig. 7  The workflow of ModularBoost. (a) Input: time-stamped single-cell gene expression data; (b) Step 1: 
based on expression patterns, ICA-FDR assigns the genes into several modules with various colors; (c) Step 2: 
GRNBoost2 infers GRN for each gene module separately and sorts n_comps groups of scores in descending 
order; (d) Step 3: the inter-modular interactions are computed by sparse regression; (e) Step 4: normalization 
of inference scores separately, and computation the amalgamated edge predictions of the GRN
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Infer intra‑modular interactions using GRNBoost2

Based on a similar concept as GENIE3, GRNBoost2 infers regulators for every target 
gene purely from the gene expression matrix [4]. The conventional GRNBoost2 infer-
ence algorithm was based on Gradient Boosting Machine (GBM) regression that focuses 
on efficiency and had been a top-ranking algorithm in GRN inference. One character of 
GRNBoost2 is global estimation of decision tree number with a self-tuning mechanism.

The set of n_comps modules that decomposed by the ICA-FDR is defined 
as M = {m1,m2, . . . ,mk , . . . ,mn_comps} , where the mk = {gk1 , g

k
2 , . . . , g

k
kn
} , 

k = 1, 2, . . . , n_comps , and there are kn genes assigned in mk . In what follows, we 
applied GRNBoost2 at each module mk and separately inferred the intra-modular 
connections. Learning samples can be constructed as LSk = {x1, x2, . . . , xs, . . . , xN } , 
where N is the number of samples or experiments in the gene expression matrix, and 
xs = (x1s , x

2
s , . . . , x

kn
s )T is a vector of genes expression data in sth sample.

GRNBoost2 assumes that the expression levels of the genes in mk can be repre-
sented by the other genes in the module with random noise. This indicates that x−j

s  
can be defined as the vector of genes except gene j in s-th observation samples, i.e. 
x
−j
s = (x1s , x

2
s , . . . , x

j−1
s , x

j+1
s , . . . , xkns )T . Therefore, expression behaviors of the target gene 

j are controlled by the other genes, shown by Eq.9:

where εs is a random noise with mean of zero. The function fj(·) exploits the expres-
sion of direct regulators of gene j, and it is trained from the learning sample 
LSkj = {(x

−j
s , x

j
s), s = 1, . . . ,N } . Meanwhile, the feature selection computes the confi-

dence level wij(i  = j) for the regulatory edge from gene i to gene j. For the tree regres-
sion-based GRN inference method, the function fj(·) is determined by an ensemble of 
decision trees. At each tree node φ , the total reduction of the variance for the output 
variable is computed as:

where S is the set of samples at the tree node φ , Sl and Sr denote the left and right sub-
trees, Var(·) represents the variance during splitting.

For GRNBoost2, each decision tree is trained by a random subset of samples that cover 
approximately 90% of raw data, and 10% others are called out-of-bag samples that improve 
the loss function [5]. Trees stop growing up when the loss function meets the early-stop-
ping rule that the average loss improvement drops to 0.

Therefore, gene modules correspond to subnetworks with multiple topological impor-
tance levels. Gathering regulatory associations and sorting in descending order, the intra-
modular inference finalizes the output as shown in Fig. 7c.

Infer inter‑modular connections using sparse regression

The regulatory associations between regulators and target genes in the same module were 
inferred by ensemble-based GRNBoost2 algorithm, while the relationships controlled by 
regulators that outside the module are still unknown. The combination of sparse regres-
sion algorithms with biologically meaningful constraints may provide a promising solution 

(9)x
j
s = fj(x

−j
s )+ εs, s = 1, 2, . . . ,N

(10)I(φ) = SVar(S)− SlVar(Sl)− SrVar(Sr)
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to enhance accuracy of GRN inference. Based on this hypothesis, we recovered regulatory 
relations among genes in different modules by adopting regularized linear regression (ridge 
regression) and used a pre-treatment to reduce computational complexity. The visualiza-
tion of inter-modular inference is available in Fig. 6d.

In the following, given n genes, m samples, and the expression matrix Em×n , the linear 
regression problem can be defined as:

where Et is a expression value vector of target gene 
gt ∈ G = {g1, g2, . . . , gn}, t = 1, 2, . . . , n . The potential regulators of gt that not in the 
same module with gt are denoted by G−t = {gr1 , gr2 , . . . , grt } , and Er1 ,Er2 , . . . ,Ert are the 
expression of G−t . Detailed representation is:

where αrt ,t is a regression coefficient describing the influence of regulator grt on the tar-
get gene gt , and β is a vector of noise in regression. For obtaining the solution vector α of 
each target gene, the objective function of ridge regression is defined as:

where the quadratic penalty term ‖α‖22 makes the loss function convex and leads to a 
unique minimum.

After the inference of subnetworks and inter-modular connections, a total of 
n× (n− 1) causal relations and importance scores were computed. Then the regu-
latory edge scores of intra-modular and inter-modular relations were standardized 
using maximum-minimum normalization:

According to the normalized important scores, the regulatory associations are combined 
and ranked in descending order. Therefore, we can calibrate those associations with the 
gold standard, as shown in Fig. 7e, and use AUROC index to examine whether the real 
regulatory relationships enrich at the top of the ranking.

Evaluation metrics

Evaluation metrics are used to quantitatively evaluate the performance of data-driven 
module identification methods. As indexes F measure, Rand index, and the normal-
ized mutual information face the problem of detecting overlapping modules [9]. This 
study selects Recovery, Relevance, and Frr to evaluate the accuracy of ICA-FDR-based 
module identification methods for their high accuracy and efficiency in handling 

(11)Et = αr1,tEr1 + αr2,tEr2 + . . .+ αrt ,tErt + βt
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overlap. The three indexes are in the range of [0, 1], and reach the value 1 only when 
the observed module and the known module are exactly equal.
M̂ and M are the set of known and observed modules. In this first stage, a distance 

(similarity) matrix is computed by the Jaccard index between two modules sets.

The Recovery is used to match known modules with observed modules, and the Rele-
vance index reflect the extent to which observed modules match with known modules.

Afterwards, the similarity score Frr is summarized by mapping the known modules to 
detected ones and vice versa. A score quantifying the false negatives (Relevance) is calcu-
lated by averaging the similarities of known modules and picking out the best represent-
atives in the detected modules. Another score that is related to false positives (Recovery) 
is computed in a similar style. An asymmetric method for module similarity is given by 
averging Relevance and Recovery as shown in Eq. 17

This study uses the values of area under receive operator curve (AUROC) and area 
under precision-recall curves (AUPR) to reveal accuracy levels of the ModularBoost 
network inference algorithm. ModularBoost outputs a descending list of putative regu-
latory interactions. Picking only the top K edges in this list, we compared them with 
gold standards to assess the number of false positives (FP), true positives (TP), false 
negatives (FN), and true negatives (TN). ROC curve shows the trade-off between false 
positive rate (FPR) and true positive rate (TPR) across different K thresholds, while PR 
describes the relationship between recall and precision. FPR, TPR, recall, and precision 
are expressed as:

Finally, the AUROC and the AUPR are respectively assessed by computing the area 
under ROC and PR curves.
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