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Introduction
Whereas genome-wide association studies (GWAS) represent the primary tool for 
determining the genetic basis of a phenotype/trait of interest, quantifying the contribu-
tion of genetic factors to the variation of a phenotype plays in addition an important role 
in many studies. For this purpose, heritability is a crucial quantity [1, 2] and it is defined 
(in the narrow-sense) as the proportion of the variance of a phenotype explained by the 
(additive) genetic factors.

Current studies of heritability in the literature have usually been carried out in the lin-
ear mixed-effect model framework [3, 4]. In this framework, the effect sizes of genetic 
markers, usually SNPs, are assumed to be independent and identical distributed random 
variables, and often the normal distribution (with 0-mean) is used for computational 
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reasons. The maximum likelihood and method of moments are the most widely used 
methods for heritability inference for this family of models [3–8].

Some comparisons of different methods for estimating heritability have been recently 
conducted, for example, in [6, 9–11]. However, these works compare the performance 
of different methods on different datasets without paying much attention to the actual 
model specification. Since heritability is a concept detailing the additive variance of a 
trait which is in a certain sense based on a statistical model, heritability estimation is 
consequently dependent on the specified model [12]. For example, as reported in [9], 
there is a sizeable difference in the estimated heritability of schizophrenia ĥ2SNP that 
equals 0.56 according to [3] and only 0.23 according to [13]. These estimates have a very 
different interpretation also qualitatively and they disagree most likely because they are 
based on different statistical models of heritability.

In this paper, we focus on the high-dimensional linear regression model with fixed 
effects, where no distributional assumption on the effect sizes is made. Although lim-
ited from the computational perspective due to the extremely high-dimensional data in 
GWAS, high-dimensional linear regression is a natural model for GWAS in modelling 
the whole-genome level contributions of genetic variation. The benefit of this model over 
the classical univariate approach in GWAS has been demonstrated for example in [14, 
15]. The study of heritability estimation with fixed-effect models has been started rela-
tively recently and it has not yet gained a wide-spread attention. A method of moments 
approach is proposed in [16], a convex optimization strategy is suggested in [17] through 
a singular value decomposition, maximum likelihood estimation is studied in [18], and 
some adaptive procedures have also been theoretically studied in [19]. However, to our 
knowledge, a systematic numerical comparison of these different methods for estimating 
heritability has not been made yet.

Some two-step procedures based on high-dimensional regularized regression have 
been introduced in [11, 20] that provide an insight to obtain more reliable and stable 
estimates of heritability. In brevity, this approach is based on splitting the data into 
two subsets. In the first step, variable selection is employed through a sparsity induc-
ing regularization on one subset to select the relevant covariates. In the second step, 
these selected covariates are used to estimate heritability from the other subset of data. 
The selection step is useful to consider only a subset of the covariates that contribute to 
the variability of the trait (the response). Moreover, splitting the sample is done to avoid 
doing variable selection and heritability estimation on the same data which can cause 
overestimate [20]. Although promising, this approach depends crucially on the particu-
lar partition used to split the data, which can lead to unstable estimates.

To achieve more reliable results, we propose to use a multiple sample splitting proce-
dure so that different structures in the sample are presented in both selection and esti-
mation steps with a sufficiently high probability [21, 22]. Based on this idea, we present a 
general framework called “boosting heritability” which allows a user to plug-in their own 
favourite method of variable selection and/or heritability estimation. By repeating sam-
ple splitting, one can also obtain various estimates of the heritability and thus provide a 
meaningful interval of the estimated values.

To demonstrate our framework, we apply the procedure to bacterial GWAS for esti-
mating the heritability of antibiotic resistant phenotypes. While there are numerous 
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works concerning estimating heritability in human GWAS, the topic has not yet been 
considered widely in bacteria, for the only prominent example see [23]. This is partly 
because bacterial GWAS poses unique challenges compare to studies with human or 
animal DNA, stemming from more limited recombination and highly structured popu-
lations that result in substantial linkage disequilibrium across whole chromosomes.

The paper is structured as follows. In Section “Model and definition” we present the 
linear model that relates a trait with a genotype matrix, then narrow-sense heritability 
is defined together with some discussion regarding the fixed-effect vs. random-effect 
approach for estimation. In Section “Boosting heritability estimation”, we introduce our 
“boosting heritability” procedure. Results from a simulation study comparing the differ-
ent methods as components of the framework presented in Section “Simulation studies” 
and the application to antibiotic resistance phenotypes are presented in Section 5. We 
conclude and discuss our results in the final section.

Model and definition
Notations: Here, we introduce the main notations used in the paper. The ℓq norm 
(0 < q < +∞) of a vector x ∈ R

d is defined by �x�q = (
∑d

i=1 |xi|
q)1/q . For a matrix 

A ∈ R
n×m , Ai· denotes its i-th row and A·j denotes its j-th column. For any index set 

S ⊆ {1, . . . , d} , xS denotes the subvector of x containing only the components indexed by 
S, and AS denotes the submatrix of A forming by columns of A indexed by S.

Model

Given a phenotype/trait y of n samples that is modelled as a linear combination of p 
genetic covariates X·j and an error term (environmental and unmeasured genetic effects)

where Xi· are independent and identically distributed (i.i.d) with distribution N (0,�) 
and are independent of εi ∼ N (0, σ 2

ε ).
Here we focus on the fixed effects encoded by β and assume that the genetic covariates 

X are random variables. Conversely, in the majority of works in the heritability literature 
assume that elements of β are considered as i.i.d. random variables following a Gaussian 
distribution i.e βj

i.i.d
∼ N (0, σ 2

β ) , while the genetic covariates X are assumed fixed.

Heritability

Under the model (1), we have for the i-th observation that

We are interested in estimating (the narrow-sense) heritability for y defined as

Technically, heritability is a quantitative measure that expresses how much of the pop-
ulation variability present in a trait is due to genetic differences. Moreover, estimating 
heritability can assist in modelling the underlying genetic architecture. A heritability 

(1)yi = Xi·β + εi, i = 1, . . . , n

Var(yi) = Var(Xi·β)+ σ 2
ε = β⊤�β + σ 2

ε .

(2)h2 =
β⊤�β

β⊤�β + σ 2
ε

.
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close to zero implies that environmental factors cause most of the variability of the trait. 
In contrast, a heritability close to 1 indicates that the variability of the trait is nearly 
exclusively caused by the differences in genetic factors.

As we have the relation

one can use ‖y‖22/n as an unbiased estimator for the denominator of the heritability. Fur-
ther, one can re-write (2) as

and use an estimate of the noise-variance σ̂ 2
ε  (see e.g. [24]) to estimate h2 rather than 

directly estimate the genetic variance β⊤�β (which requires an estimate of the covari-
ance matrix and the effect sizes).

However, it is worth noting that as a bi-product from GWAS analysis when using a 
multivariate regression approach, such as the Elastic net discussed below, one would 
already have the estimated effect sizes corresponding to the selected covariates. Using 
these effect sizes to estimate the heritability would bring insight on the heritability cor-
responding to the selected covariates and thus clearly provide useful ways to understand 
the genetic architecture of a trait.

Contrasting the fixed and random effects

In GWAS the true number of causal loci reported tend to be comparatively small com-
pared with the number of putative genetic markers p, which is usually in the order of 
hundreds of thousands at minimum. Assume that the true effect size β has s ≪ p non-
zero entries. In the random-effect model, a further assumption is made concerning these 
non-zero entries such that they are i.i.d Gaussian N (0, σ 2

β ) . Under this random effect 
assumption, the heritability is defined [20, 25] as sσ 2

β/(sσ
2
β + σ 2

ε ).

However, when employing the random-effect assumption, most methods do not 
use the sparsity constraint. This leads to the target heritability being estimating is 
pσ 2

β/(pσ
2
β + σ 2

ε ) and the resulting estimate of heritability may thus be inaccurate. More-
over, the LD structure, an important concept that represents the correlation structure of 
the covariates, is not directly addressed in the formula of heritability in random-effect 
model, which can make the estimate unjustifiable, e.g. see [8, 26]. Several attempts have 
been done recently to take into account the sparsity constraint within the random-effect 
model and some promising results have been reported in [20, 25, 27].

Boosting heritability estimation
Related works and motivation

As the number of biomarkers can be very large, it is natural to first apply some vari-
able selection or variable screening methods to remove the irrelevant variables from the 
actual heritability estimation phase. This kind of a post-selection approach has been pro-
posed in the literature, more specifically for the fixed-effect model [11, 20].

E[�y�22/n] = Var(y) = β⊤�β + σ 2
ε ,

(3)h2 = 1−
σ 2
ε

Var(y)
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The HERRA method proposed in [11] is based on a screening method (e.g. as in [28]) 
to reduce the number of covariates below the sample size. Given the remaining covari-
ates, the sample is randomly divided into two equally sized parts. A lasso-type esti-
mator is employed on the first subset to select a small number of important variables. 
After that, the least squares estimator is used on the second subset of data using only 
the selected covariates (from the lasso-type estimator) to get an estimate of the noise-
variance. The role of the first and second subsets are switched to obtain another estimate 
of the noise-variance. Finally, heritability is calculated as in the formula (3) where the 
noise-variance is the mean of the two estimated noise-variances.

Another “two-stage” approach with sample-splitting has also been proposed in the 
paper [20]. The data is randomly split into two disjoint equal sample size. On one half of 
the data, they use a sparse regularization method based on Elastic net to first select the 
relevant variables. Then, on the other half of the data, they only use the selected vari-
ables to estimate the heritability through a method of moments based approach [16].

Both these approaches clearly suffer from some limitations. Firstly, when the num-
ber of covariates is very large, it is expensive to fit a sparse regularization directly as in 
the “two-stage” approach described above. Using a screening method, as in HERRA, 
to reduce the dimension of the problem is thus a pragmatic approach for applications. 
However, as the true number of causal biomarkers is not known, as well as their LD 
structure is not given, reducing the number of variables below the sample size (as in 
HERRA) introduces another problem from the practical perspective. Secondly, it is 
clear that both of these approaches crucially depend on the particular sample splitting 
employed. One can avoid this dependence by performing the sample splitting and infer-
ence procedure many times (e.g. 100 times) and aggregating the corresponding results 
[21, 22]. This is to ensure that the different latent structures possibly residing in the sam-
ple are properly taken into account in both the selection and estimation steps.

The idea of aggregating different estimates to yield an estimate with improved statis-
tical properties is the central feature of the generic boosting approach widely used in 
machine learning, such as AdaBoost [29]. The multiple sample splitting approach has 
previously been proposed in statistics community as in [21, 22], and successfully used in 
GWAS [30, 31].

Boosting heritability: multi sample splitting and aggregation of heritability

We propose a strategy that uses multiple sample splitting to estimate heritability, called 
Boosting heritability detailed in Algorithm 1.
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It is noted that the initial step (Step 0) is a screening step that can use a simple meas-
ure of association, such as the sample correlation, to remove covariates that are only 
weakly correlated with the trait of interest. This step is similar to the one used in HERRA 
[11] and in [27], however, we do not propose to reduce the number of covariates below 
the actual sample size. This is motivated by the fact for real data we do not know the 
true number of causal variates as well as the correlation structure of the variables. If too 
many covariates are removed, this can have a detrimental effect on the subsequent steps 
in the estimation procedure. Moreover, the initial screening step can be seen as optional, 
and necessary only for situations where the high dimensionality of the covariate space 
makes regularized model fitting tedious or practically impossible for practical purposes.

The sample splitting performed in Step 1 is a useful method that can help to avoid 
overfitting when variable selection and subsequent estimation is considered [20, 22, 31]. 
Step 2 corresponds to a variable selection phase where we suggest to use Elastic Net as 
a default alternative, given its ability to deal with highly correlated covariates. Switching 
the roles of the data subsets help us to obtain a more stable estimate of the heritability. 
Note that by repeating sample splitting, various estimates of the heritability are obtained 
and thus provide a meaningful interval of the estimated values (for example see Fig. 1).

We note that the main cost for Boosting Heritability procedure is fitting a penalized 
regression (Step 2) for variable selection in the setting where p ≫ n . However, fast com-
putation methods for penalized regression on large GWAS data have been recently pro-
posed see e.g. [32]. Moreover, the B repetitions can be easily implemented in parallel. 
When the trait of interest is dichotomous, one can use the Robertson transformation [33] 
to transfer the heritabilty calculated on an observed scale (on 0 or 1) to a heritability on 
the liability scale. As we largely follow the approach presented in the HERRA method, the 
details for obtaining heritability for a binary trait can be found in [11] or in [34].

Plug‑in Lasso type estimators for heritability

From the formula of heritability (2), direct approaches to estimate heritability can be 
obtained using estimates of the effect sizes β and of the covariance matrix. By using a 
lasso type method, one can obtain the non-zero estimated effect sizes of the selected 
covariates, and one can also use these covariates to obtain an sample covariance matrix. 
More precisely, let S =

{

j : β̂ �= 0
}

 where β̂ is an estimate from a lasso-type method, we 

can calculate the heritability as in equation (2) with �̂S = XSX
⊤
S /(n− 1),
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The elastic net has been shown to be especially useful when the variables are dependent 
[35] (LD structure), which is often the case with genetic marker data and this feature is 
especially highlighted in bacterial genome data. The corresponding estimator is defined 
as

Here ℓ(a, b) is the negative log-likelihood for an observation e.g. for the linear Gauss-
ian case it is 12 (a− b)2 and for logistic regression it is −a · b+ log(1+ eb) . Elastic net is 
controlled by α ∈ [0, 1], that bridges the gap between lasso ( α = 1 ) and ridge regression 
( α = 0 ). As the true genetic basis of a given trait is generally unknown as well as the LD 
structure is hard to estimate, we suggest to use a small value for α , e.g. 0.001. The tuning 
parameter � > 0 controls the overall strength of the penalty and we use 10-fold cross-
validation to choose suitable value for � . Elastic net approach is implemented in the soft-
ware ’pyseer’ [36, 37] focusing on GWAS for bacterial data.

Simulation studies
We use a real data set of 616 Streptococcus pneumoniae genomes collected from Mas-
sachusetts, denoted MA data, to create semi-synthetic datasets that incorporate levels 
of population structure and LD occurring in natural populations (see Fig. 2). The data 
are publicly available through the article [38]. After initial data filtering with standard 
population genomic procedures (using a minor allele frequency threshold and removing 
missing data), we obtain a genotype matrix of 603 samples with 89703 SNPs. Using this 
observed genotype matrix, we simulate the responses/phenotypes through the linear 
model defined in (1).

Availability of data and code: The R codes and data used in the numerical experiments 
are available at: https://​github.​com/​tienmt/​boost​ingher .

ĥ2 =
β̂⊤
S �̂S β̂S

Var(y)
.

β̂Enet := arg min
β

1

n

n
∑

i=1

ℓ(yi,β
Txi)+ �

[

0.5(1− α)||β||22 + α||β||1

]

.

0.
35

0.
45

0.
55

h2aprx HERRA B_herra

Fig. 1  A violin plot for estimates of heritability from the simulation with MA data with 100 random covariates 
chosen as causal. We obtain an interval of heritabilities through the multiple sample splitting method (B_
herra, with B = 50 ). See Section “Simulation studies”

https://github.com/tienmt/boostingher
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Experimental designs

We consider the following designs for choosing the causal SNPs (non-zero effect sizes):

•	 sparse setting: 100 SNPs are randomly chosen.
•	 polygenic setting: 5000 SNPs are randomly chosen.
•	 Penicillin resistance -like setting ( [39]): 100 SNPs are randomly chosen from 3 genes 

(pbpX,pbp1A,penA).

Given the SNPs, the regression coefficients β0 are sampled from the normal distribu-
tion N (0, 1) . As the true covariance of the genotype matrix is not known, we need to 
re-normalize the coefficient β0 as β = β0

√

σ 2
ε h

2/(β0⊤�̄β0(1− h2)) to assure that the 
true corresponding heritability is approximating our target. Here h2 is the target her-
itability and �̄ is the sample covariance matrix of the genotype matrix and the noise 
variance is fixed as σ 2

ε = 1.
The target heritability is fixed as h2 = 0.5 . We remind that as true covariance matrix 

of the genotype matrix is not known, one can only simulate phenotypes from model 
(1) that approximately target the considered heritability. Therefore, we propose to use 
the “oracle” estimator, denoted by h2aprx, that is calculated through the formula (3)

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2  Sample covariance matrix of the first 100 SNPs covariates in the genotype matrix shows the complex 
dependence structure present in the S. pneumoniae data
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as a benchmark for comparison. As in simulations the true covariance matrix is not 
known in our setup, whereas the noise variance is given and thus this estimator provides 
a solid basis for approximating the true heritability. It is noted that the “h2aprx” estima-
tor is based on the true simulated values and cannot be used with real data.

For each setup, we generate 30 simulation runs and report the mean and the stand-
ard deviation of heritability estimates for each method across the simulation runs. We 
compare Elastic net (Enet), HERRA and the boosting versions of HERRA denoted by “B_
herra” and GCTA method. More specifically, GCTA [40] is a widely used method based 
on a linear mixed model and maximum (restricted) likelihood estimation. The number 
of repeated sample splitting is performed with B = 50 times. The Enet is used with fixed 
parameter α = 0.01 and 10-fold cross validation for choosing the tunning parameter �.

Results for estimating heritability

From the results in Table 1, it is clear that the “oracle” approximates well the target herit-
ability in all designs. Generally, the boosting procedure tends to reduce the variability of 
the original underlying method it is used in conjunction with, see Tables 1, 2 and 3.

Elastic net underestimates the target, which can be explained by the downward bias 
known to influence the naive plug-in lasso-type approaches, such as the Elastic net. 
The effect is due to shrinkage of some of the coefficients corresponding to weak effect 
towards zero, while such weak effects may still be significant in terms of the total genetic 
trait variability. However, we would like to note that estimating heritability through Elas-
tic net provides a good lower bound for the heritability, as indicated by the results.

On the other hand, HERRA and its boosting version return stable estimates. More 
specifically, with a proper choice of the screening step (Step 0) as in Table 2, HERRA and 
B_herra can lead to accurate estimates.This can be anticipated as this approach follows 
the spirit of the ’oracle’ estimator. More specifically, it aims at providing a consistent esti-
mate of the noise variance and thus the corresponding heritability estimate would be 
also consistent and stable [11]. For this reason, the boosting HERRA will be our main 
focus method in real application in the next section.

In our simulations, GCTA generally did not perform well, most likely due to the sam-
ple size being too small for random effects based approaches such as GCTA. We note 

h2aprx = 1−
σ 2
ε

Var(y)
,

Table 1  Simulation results with MA data using linear model and the target heritability h2 = 0.5

The mean and the standard deviation (in parentheses) of the estimated heritabilities between the simulation replicates are 
presented

100 causal SNPs, σ 2
ε = 1 5000 causal SNPs, σ 2

ε = 1 100 causal SNPs from 3 
genes, σ 2

ε = 1

h2aprx 0.5004 (.0245) 0.5085 (.0256) 0.4966 (.0227)

Enet 0.3585 (.0348) 0.3770 (.0500) 0.3546 (.0386)

HERRA​ 0.5619 (.0507) 0.5583 (.0366) 0.5204 (.0483)

B_herra 0.5551 (.0350) 0.5588 (.0294) 0.5184 (.0371)

GCTA​ 0.3592 (.0309) 0.3005 (.0270) 0.3338 (.0430)
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that, for unrelated individuals and common SNPs in human studies, GCTA method is 
recommended with at least 3160 unrelated samples, see [40]. In studies of bacterial phe-
notypes, it would be uncommon to have access to such large numbers of samples that 
are at least approximately unrelated.

The effect of multiple data splitting

Clearly, choosing the number of data splittings B is a crucial factor in practice. Here we 
exemplify that as B increases, the resulting estimated heritabilities concentrate around 
their mean, see Fig. 3. Thus, we suggest to use at least B ≥ 30 in practice and B = 100 
would be a reasonable choice, computational resources permitting.

0.
35

0.
50

0.
65

Number of repetitions
he

rit
ab

ili
ty

B=5 B=25 B=50 B=100 B=500

Fig. 3  Simulation results with MA data, 100 randomly selected SNPs, σ 2
ǫ = 1 and the target heritability 

h
2
= 0.5 . Violin plot depicts the distribution of heritability estimates for each chosen B, the number of data 

splittings

Table 2  Simulation results with MA data, 100 randomly selected SNPs, σ 2
ǫ = 1 and h2 = 0.5

The mean and the standard deviation (in parentheses) of the estimated heritabilities between the simulation replicates are 
presented

Remove 60% covariates Remove 90% covariates Keep (n+ 1) covariates

Enet 0.4600 (.0320) 0.4428 (.0337) 0.3262 (.0189)

HERRA​ 0.4921 (.0267) 0.4788 (.0384) 0.4063 (.0270)

B_herra 0.4945 (.0229) 0.4740 (.0318) 0.4046 (.0274)

Table 3  Simulation results with MA data using GCTA model with the true heritability h2 = 0.5

The mean and the standard deviation (in parentheses) of the estimated heritabilities between the simulation replicates are 
presented

100 causal SNPs 5000 causal SNPs 100 causal 
SNPs from 3 
genes

GCTA​ 0.3176 (.0268) 0.2890 (.0358) 0.3614 (.0395)

Enet 0.4014 (.0393) 0.4018 (.0538) 0.3965 (.0474)

HERRA​ 0.5248 (.0342) 0.5142 (.0586) 0.5246 (.0427)

B_herra 0.5217 (.0260) 0.5150 (.0447) 0.5192 (.0339)

Enet (remove 60% covariates) 0.4541 (.0364) 0.4614 (.0371) 0.4408 (.0403)

HERRA (remove 60% covariates) 0.4988 (.0356) 0.4941 (.0469) 0.4966 (.0338)

B_herra (remove 60% covariates) 0.5015 (.0260) 0.4892 (.0426) 0.4965 (.0306)
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The effect of the screening step

We further investigate the effect of reducing the covariates by using the screening step. 
Different scenarios for 100 randomly selected SNPs with target heritability h2 = 0.5 
and σ 2

ǫ = 1 are examined, see Table 2. More precisely, we further consider 3 scenarios: 
remove 60% of the covariates, remove 90% of the covariates, and only retain top n+ 1 
covariates.

It is revealed that using the screening step to reduce the irrelevant covariates not only 
reduces the dimension of the data, but can also improve the heritability estimation, in 
particular for the scenario of removing 60% of the covariates. This fact has also been 
reported before in the linear mixed model approach in [27], where the authors show an 
improvement of the maximum likelihood estimation. However, if too many covariates 
are removed, heritability estimation can be inaccurate as in the scenario of keeping only 
top n+ 1 covariates.

On the running time

The running times for default B_herra on MA data with the splitting step parallelized on 
10 CPU cores was 2.335 mins. More specifically, the screening step took 5.25 secs of the 
total runtime. In the case of removing 60% covariates, the running time is significantly 
reduced to 1.319 mins. The R codes were run on Linux (Redhat 64-bit) with R version 
3.6.0 .

Simulation results using GCTA model

We further examine the performances of Enet, HERRA, B_herra and GCTA method 
when the phenotypes are instead simulated from the GCTA model. We remind that 
GCTA model is a random effect model that is different to the linear model (1) and thus 
we cannot use the ’h2aprx’ estimator. The settings for choosing the causal SNPs remain 
the same as before.

The results, Table 3, reveal that HERRA, B_herra yeild unbiased estimates in GCTA 
model. Although underestimate, Elastic net still provides a good lower bound for the 
true heritability. Once again, GCTA method underestimates the heritability as the sam-
ple is too small.

Heritability of antibiotic resistance in Maela data
To further illustrate the boosting based approach, we apply our procedure to Maela 
data which represent 3069 Streptococus pneumoniae genomes from an infant cohort 
study conducted in a refugee camp on the Thailand–Myanmar border [39, 41]. After 
some data filtering with standard population genomic procedures (using a minor 
allele frequency threshold and removing missing data), we obtain a genotype matrix 
with 121014 SNPs. We consider resistances to five different antibiotics as the pheno-
types: chloramphenicol, erythromycin, tetracycline, penicillin and co-trimoxazole.

The heritability of the antibiotic resistance phenotype is expected to be high, mean-
ing that the variability stems primarily from the observed genetic differences among 
these bacteria and that the SNPs available for this particular species/dataset and 
would include majority of the underlying causal mechanisms for resistance. However, 
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despite that the bacterial isolates are related, it cannot be concluded that the reported 
estimates refer to total heritability, since unmeasured genetic factors are likely to 
contribute partially to the measured phenotypic variation. We use two different types 
of resistance phenotypes to investigate their heritability. First we use the binary phe-
notype corresponding to the labels ’R’ or ’S’ (stand for ’Sensitive’ or ’Resistant’) for 
each bacterial isolate in the cohort. Second, we use a continuous phenotype corre-
sponding to the inhibition zone diameters measured in the lab. These inhibition zone 
diameters are in practice used to defined whether a sample is sensitive or resistant to 
an antibiotic. It is however worthwhile noting that the transformation from inhibition 
zone diameters to labelling a sample ’S’ vs ’R’ is nonlinear due to the way the inhibi-
tion mechanism dynamics in the bacterial culture.

We apply Enet, HERRA, boosting version of HERRA and GCTA method [40] to this 
data. The results are given in the Tables 4 and  5 for the two data types, respectively.

As a broad summary, heritabilities of these five antibiotic resistances are high, as 
expected, whether using binary or continuous phenotypes. However, we would like 
to note that the results for binary responses are on the observed scale (0/1 resistance 
status), as we are not able to transform them into the underlying threshold model, see 
[11]. The Elastic net method yields an important insight by providing a lower bound 
on the heritability of these antibiotic resistances. For continuous phenotypes, it is at 
least 51% for chloramphenicol, at least 73% for erythromycin, at least 73% for tetracy-
cline, at least 80% for penicillin and at least 71% for co-trimoxazole.

Table 4  Heritabilities of antibiotic resistance (binary) phenotypes in Maela data (standard deviation 
is given in parentheses)

Enet HERRA​ B_herra GCTA​

Chloramphenicol 0.4623 0.7489 0.7617 (.0413) 0.8257 (.0132)

Erythromycin 0.7979 0.9150 0.9140 (.0119) 0.7990 (.0141)

Tetracycline 0.8217 0.8899 0.8928 (.0113) 0.8260 (.0127)

Penicillin 0.7369 0.8237 0.8280 (.0138) 0.6695 (.0228)

Co-trimoxazole 0.5324 0.6093 0.6340 (.0368) 0.6005 (.0249)

Table 5  Heritabilities of antibiotic resistance phenotypes using inhibition zone diameters in Maela 
data (standard deviation is given in parentheses)

Enet HERRA​ B_herra GCTA​

Chloramphenicol 0.5133 0.6364 0.6337 (.0267) 0.6837 (.0226)

Erythromycin 0.7350 0.8413 0.8383 (.0140) 0.7282 (.0196)

Tetracycline 0.7364 0.8072 0.8435 (.0135) 0.7514 (.0178)

Penicillin 0.8092 0.8445 0.8462 (.0132) 0.7123 (.0202)

Co-trimoxazole 0.7104 0.7840 0.7571 (.0210) 0.7826 (.0157)
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Interestingly, B_herra yields consistent results with GCTA method. However, the 
result for heritability of penicillin by GCTA is lower than the one from Enet method 
while boosting HERRA is not, see Table 5.

Discussion and conclusions
In this paper, we provide a general framework ’boosting heritability’ for making infer-
ence about heritability. The main ingredient of ’boosting heritability’ is a multiple 
sample splitting strategy. This strategy allows one to employ a variable selection step 
to remove irrelevant covariates that do not contribute to the variability of a trait and 
thus produce a reliable estimate of heritability. Moreover, by repeating sample split-
ting many times, this strategy makes sure that different latent structures are taken 
into account in both selection and estimation steps.

Numerical comparisons of different methods together with our proposal for esti-
mating heritability in linear (fixed-effect) model draw a systematic picture on the 
behaviour of the current approaches when focusing on an application to bacterial 
GWAS. The results on real data suggest that the observed variability of the five stud-
ied antibiotic resistances is mainly due to the variability in the observed genetic fac-
tors, while some unexplained variation still remains.

Succeeding in improving and stabilizing HERRA [11], “boosting heritability” frame-
work still preserves its advantages that are able to deal with the dichotomous, time-
to-event or age-at-onset traits. Moreover, boosting heritability procedure is also 
applicable for random-effect model where the heritability estimation step (Step 3 in 
Algorithm 1) is done by using a random effect method as in [20]. These would be pos-
sible new research directions for the future.

Furthermore, our boosting heritability procedure uses a simple aggregation to com-
bine the estimates that is to use their arithmetic mean. Other types of aggregation, 
see e.g. [30, 31], could also be used and further examined in future works.

Appendix
See Table 6.

Table 6  Simulation results with MA data using linear model and the target heritability h2 = 0.5 
(standard deviation is given in parentheses)

100 causal SNPs, σ 2
ε = 10

2

h2aprx 0.5026 (.0226)

Enet 0.3724 (.0455)

HERRA​ 0.5527 (.0494)

B_herra 0.5467 (.0378)

GCTA​ 0.3272 (.0386)
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On details on running time
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