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Abstract 

Background:  Technological and research advances have produced large volumes of 
biomedical data. When represented as a network (graph), these data become useful 
for modeling entities and interactions in biological and similar complex systems. In the 
field of network biology and network medicine, there is a particular interest in predict‑
ing results from drug–drug, drug–disease, and protein–protein interactions to advance 
the speed of drug discovery. Existing data and modern computational methods allow 
to identify potentially beneficial and harmful interactions, and therefore, narrow drug 
trials ahead of actual clinical trials. Such automated data-driven investigation relies 
on machine learning techniques. However, traditional machine learning approaches 
require extensive preprocessing of the data that makes them impractical for large 
datasets. This study presents wide range of machine learning methods for predicting 
outcomes from biomedical interactions and evaluates the performance of the tradi‑
tional methods with more recent network-based approaches.

Results:  We applied a wide range of 32 different network-based machine learning 
models to five commonly available biomedical datasets, and evaluated their per‑
formance based on three important evaluations metrics namely AUROC, AUPR, and 
F1-score. We achieved this by converting link prediction problem as binary classifica‑
tion problem. In order to achieve this we have considered the existing links as positive 
example and randomly sampled negative examples from non-existant set. After experi‑
mental evaluation we found that Prone, ACT​ and LRW5 are the top 3 best performers on 
all five datasets.

Conclusions:  This work presents a comparative evaluation of network-based machine 
learning algorithms for predicting network links, with applications in the prediction 
of drug-target and drug–drug interactions, and applied well known network-based 
machine learning methods. Our work is helpful in guiding researchers in the appropri‑
ate selection of machine learning methods for pharmaceutical tasks.

Keywords:  Data-driven drug discovery, Network link prediction, Poly-pharmacy, Poly-
pharmacy side effects prediction, Drug-target prediction
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Background
Diseases are a complex set of phenomena that include non-linear relationships 
between an individual cell and an organism [1]. To find the proper response against 
a particular disease, i.e. designing and developing appropriate drugs, requires con-
sideration of many such phenomena [2]. The traditional drug discovery processe is 
expensive involving five steps [3–8]: (1) discovery and pre-clinical research; (2) safety 
review; (3) clinical research; (4) regulatory review (e.g., by the American Food and 
Drug Administration, FDA); and (5) regulatory post-market safety monitoring. That 
makes it time-consuming [5] and costly [9]. However, data-driven computerised drug 
discovery methods offers the potential to speed up the drug discovery process. There 
are currently four categories of methods for data-driven drug discovery: (1) ligand-
based approaches; (2) docking approaches; (3) network-based approaches; and (4) 
machine learning-based approaches. Ligand-based target prediction assumes that 
similar drugs tend to bind similar targets (e.g. diseases). As this approach utilises the 
similarity of the ligands for making prediction, it requires examples of interactions 
between drugs and targets for prediction. Docking-based methods make predictions 
based on the three-dimensional structure of proteins, and is greatly limited when the 
structure of the protein is unknown. However, network-based and machine learning-
based approaches attempt to overcome the aforementioned limitations of the other 
two approaches [10]. Nevertheless, not only ligand- and docking-based prediction 
approaches require prior data, but also network- and machine-learning approaches 
depend on reliable prior data (training data for ML, relevant interaction data for net-
work approaches).

Here, we formulate a data-driven drug discovery approach that models drug-target 
interactions (DTI) as networks between two sets of nodes: the drug candidates, and the 
entities affected by the drugs (i.e. diseases, genes, and other drugs), which are referred 
to as targets. Our aim is to predict the missing nodes (i.e. drugs and targets) and links 
between them. For example, we attempt to predict which candidate drugs might treat 
a list of diseases. There is a large amount of data identifying which drugs treats which 
diseases, but some diseases have very few drugs available. Thus, discovering which exist-
ing drugs can treat them is of great importance. Further, it is critical to determine which 
drugs have side effects in the presence of other drugs as interactions among drugs may 
be harmful or lethal to patients. Therefore, drug interaction networks are considered to 
predict what is the likelihood of reactions between combinations of drugs in a patient’s 
body. Likewise, we formulate a drug-target interaction network to predict missing links 
between drugs and target diseases.

When considering n drugs, then there will be n ∗ (n− 1)/2 combinations of drug–
drug relationships for trials. Because a patient could be taking more than two medicines 
together, the resulting combinations are of an even higher-order and are not feasible 
to test via experiments. Thus, link prediction offers an important solution. Besides, it 
allows to find additional uses of existing drugs, with 30% of 84 drugs introduced in 2013 
being reused. Many drugs affect more than one particular protein or gene, and some 
medical conditions involve multiple genes and proteins. Modeling such situations as 
network interactions and formulating a link prediction problem enables drug-target 
gene prediction.
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Traditional machine learning approaches applied to the drug–target interaction (DTI) 
problem have many constraints, including dimensionality (for complex and large phar-
macological datasets) and incompleteness [11], sparsity, and heterogeneity (mainly in 
biological datasets). For instance, logistic regression and support vector machines suf-
fer from the high dimensionality and numerous implicit relationships in the data. These 
are the result of many factors including measurement technologies [12] and bias prob-
lems during the recording of the data [13]. Besides, the spreading speed of diseases or 
other causes of infection such as viruses evolve quickly is not considered in traditional 
machine learning methods. In addition, the hierarchical nature of biological data (con-
nections among genes, proteins, and so on) cannot be easily modeled by traditional 
machine learning approaches. Therefore, there is a need for methods and models capa-
ble of addressing these problems.

Network-based approaches are gaining attention because of their simplicity (node and 
edge representation) which effectively considers high dimensionality and heterogeneity 
as well as implicit relationships. For drug discovery, these relationships include sharing 
a common chemical formula and structure or affecting the same protein. Such ability 
supports reusing existing drugs in new ways, as with a recent breast cancer treatment 
[14]. As noted previously, this accelerates the drug discovery process, saving time and 
expense [15]. As an example, other medications such as Duloxetine, used for treating 
depression, have been found powerful in treating urine leakage issues [16]. Thus, we can 

Fig. 1  A depiction of the link prediction approach in drug discovery. This is a heterogeneous drug-target and 
drug–drug interaction network
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consider drug discovery as a missing link problem between chemicals and proteins as 
shown in Fig. 1.

This work exploits network-based link prediction models for solving the following 
pharmaceutical problems:

•	 Drug–target interaction prediction: This task is to predict which drug will affect 
which protein this is one of the application in drug repurposing.

•	 Drug–drug side effect prediction: From existing drug–drug side effect data, we can 
create a network, in which a link reflects the two drugs (nodes) has shown some side 
effects. So in this task we predict which new drug combinations can cause side effect.

•	 Disease–gene association prediction: Some disease affects the genes which is more 
lethal as it can transfer to the next generations. Therefore in this task we aim to pre-
dict which new disease can affect which particular gene.

•	 Disease–drug association prediction: Some drugs might not be pharmaceutical 
chemicals such as arsenic. So in this problem, we aim to predict which drug is associ-
ated to which disease.

We also evaluate the performance of the models using five publicly available pharmaco-
logical datasets, and report the performance of these models according to three different 
evaluation metrics.

Network‑based approaches for drug discovery

Researchers have also explored network topology-based link prediction methods for 
drug–target interaction (DTI) prediction. Pech et  al. [17] propose a sparse learning 
method for link prediction. Fokoue et al. [18] propose a knowledge graph DTI prediction 
framework called Tiresias. Chen et al. [19] presented Network-based Random Walk with 
Restart on the Heterogeneous network (NRWRH), based on random walk with restart 
on a heterogeneous network, by constructing the drug similarity, protein similarity, 
and drug–target network as a heterogenous network. Cheng et al. and Huang et al. [20, 
21] solve the DTI problem using a bipartite network and proposed three DTI predic-
tion methods: drug-based similarity inference (DBSI), target-based similarity inference 
(TBSI), and network-based inference (NBI). The drug side effect similarity inference 
(DSESI) method [22] utilises the drug–drug chemical similarity and the phenotypic side 
effect similarity. The multiple target optimal intervention (MTOI) method [23] solves 
this problem with two steps: finding the known drug–target links, and applying a multi-
ple target control inference mechanism. Luo et al. [24] combine various attributes from 
heterogeneous networks and propose a novel network integration pipeline, DTINet for 
DTI prediction. This solution utilises drug and protein distributions in each network and 
embeds the high dimensional protein and drug data into lower dimensions. Another 
proposal suggests a meta-path-based methodology to separate the semantic highlights 
of DTIs from heterogeneous networks [25].

Figure 1 shows how a drug discovery problem can be converted to a link prediction 
problem. The relationship network is heterogeneous as many entities are related, such 
as drug–drug, drug–gene, drug–disease, disease–gene, and drug–drug side effects (see 
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Fig. 1). However, we consider only monopartite and bipartite individual networks in our 
study.

Deep learning based approaches for drug discovery

Duvenaud et  al. [26] present a deep learning model for generating molecular features 
based on convolutional neural networks. Gilmer et  al. [27] propose a deep learning 
framework using a message passing neural network for molecular property prediction. 
You et  al. [28] propose a Reinforcement Learning-based Graph Convolutional Policy 
Network (GCPN) as a goal-directed graph generation model. This approach is highly 
applicable to both chemistry and drug discovery where the goal is to find new molecules 
with given molecular properties such as drug similarity and synthetic accessibility. Cao 
et al. [29] propose a Generative Adversarial Network (GAN) generative approach that 
supports creating molecules with desired molecular properties. Coley et  al. [30] and 
Kearnes et al. [31] solve molecular graph representation problems by applying a graph 
convolutional network to an undirected molecular graph. Along with molecular graph 
structural attributes, they also consider other factors such as atom and bond attributes, 
neighbouring atoms, and radii. Xie et  al. [32] propose a Crystal Graph Convolutional 
Neural Network framework that is able to learn material properties from the crystal 
atomic link structure, which can be very helpful in new material design. Ktena et al. [33] 
use graph convolutional neural networks for graph similarity prediction to identity brain 
disorders. Parisot et al. [34, 35] use a graph convolutional network for brain disease pre-
diction. Assouel et al. [36] propose a conditional graph generative model.

Genomic and phenotypic study for drug discovery

Advances in the study of genomes have generated huge volumes of genomic and tran-
scriptomic data, including a diverse set of disease samples, standard tissue samples, and 
cell lines. Gene expression data from these studies have been widely adopted for research 
purposes. One of the widely adopted genomic datasets is the Library of Integrated Net-
work-based Cellular Signatures (LINCS) [37] that contains extensive data from cancer 
cell lines treated under different conditions. One benefit of using genomic data is ’signa-
ture reversion’ that enables the study of reverse relationships as well, i.e., drug–disease 
and disease–drug. The other area of study of computational drug discovery is pheno-
typic information, in which a study of the phenome is performed to identify the genetic 
association with disease [38]. This is also known as a phenome-wide association study. 
For example, Bisgin et al. [39] use phenotypic information from the Side Effect Resource 
(SIDER) database [40] and applied Dirichlet Allocation Model for drug re-positioning 
discovery. Phenotype information can be used to make other kinds of association pre-
dictions also. For example, some researchers used phenotypic link prediction between 
drug–gene and phenotype–disease information [41].

Role of drug chemical structure in drug discovery

Another computational method for drug discovery is examination of the chemical 
structure of drugs by representing the molecular structure as a network. Hence, this 
approach is based on the assumption that compounds with similar structures will act 
similarly against the same proteins. Other methods make use of the molecular structures 
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themselves, as with 2D topological fingerprints and 3D informatics. Researchers such 
as Swamidass et  al. [42] study which chemical structures modulate which disease rel-
evant phenomes. This helps predict what other drugs will affect the same protein or 
disease. Tan et al. [43] employ chemical structures along with semantic gene similarity 
to construct a drug similarity network, which can be then used to find novel drug–tar-
get relations. Further, Ng. et al. [44] propose ligand Enrichment of Network Topological 
Similarity (ligENTS) to identify novel drug–target relations by using the chemical struc-
ture of the drug for drug repurposing task.

Study of drug combinations in drug discovery

Another area of work is drug combination prediction as many diseases are the results of 
complex events involving many complex molecular structures. Predicting interactions 
between multiple molecules and processes is thus important. In many cases, more than 
one drug is used to treat diseases, such as diabetes, cancer, and bacterial infections, as 
the drug combinations are found to be more effective than single drug therapies [45, 46]. 
For example, B-cell lymphoma (DLBCL) is a malignant cancer requiring multiple tar-
geted drugs, some or all of which are administered at one time. However, the presence of 
one drug sometimes increases or decreases the effects of other drugs. Combinations can 
even cause fatalities from Adverse Drug Reactions (ADRs), which are the fourth lead-
ing cause of death in the United States [47]. Such interactions are usually not observed 
during clinical trials of individual drugs as testing of combinations in vivo is both time 
consuming and expensive.

Therefore, the problem of drug combinations can be formulated as two types of the 
link prediction problem, namely treating disease, and side effects and reactions. In Fig-
ure 1 shows these links with red and green colors, respectively. Drug–drug side effect 
prediction is an important task in its own right, but some researchers like Campillos 
et al. [22] use drug side effects as features for predicting novel target prediction. Further, 
Zitnik et  al. [48] propose Dacagon, a graph convolutional network-based framework, 
to predict which drug combinations cause which side effects in patients. Li et  al. [49] 
develop a bipartite drug–target network to find similar drugs using a graph node similar-
ity approach. Li et al. [50] develop a multilayered network of gene–disease and drug–tar-
get network to identify new therapeutic uses of existing drugs. Wu et al. [51] formulate a 
drug–disease heterogeneous network to identify similar drug and disease pairs. Jin et al. 
[52] develop a novel method to identify similar drugs for cancer by exploiting off-target 
effects which act on important cancer cell signalling pathways. This approach employs 
a model called the Bayesian Factor Regression Model (BFRM), introduces a new net-
work component called Cancer Signalling Bridges (CSB), and integrates the two into a 
hybrid method called CSB-BFRM. The researchers have applied this approach to breast 
and prostate cancer cells.

Methodology and data
Problem description: the drug discovery problem

We investigate the drug discovery problem by applying various contemporary models 
to different pharmacological situations to see how well the prediction models are able 
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to facilitate drug discovery process. To carry out our task, we first build the networks, 
either mono-partite or bipartite, and ensured they were undirected. We convert bipar-
tite datasets into the corresponding biadjacency matrix, and then apply the link predic-
tion models to solve the following drug discovery problems: 

1.	 Drug–Target prediction: The aim is to predict which drug will affect which unknown 
proteins, considering the bipartite networks of drugs and their target proteins.

2.	 Drug–Disease prediction: The aim is to study drug chemical structures and target 
proteins (as the disease and drugs both affects proteins) to find similarities between 
drug structures. It has been found that similar drug structures affect similar proteins. 
We represent each chemical structure as a network. Once a similar drug is found, it 
can be used to target similar proteins. There is currently a lack of systematic research 
in this area.

3.	 Drug–Drug reaction prediction: This problem examines the search for combina-
tions of drugs for conditions that require targeting more than one protein, as with 
degenerative neurological conditions, such as Alzeheimer’s and Parkinson’s. We 
incorporate known combinations that cause adverse side effects (headaches, vomit-
ing, rashes, etc.) to predict which additional combinations might cause reactions in 
patients.

4.	 Disease–Gene association prediction: Thanks to high-throughput screening technol-
ogies, we have large volumes of genomic data. Yet, there are many diseases for which 
a genomic basis is unknown. Genomic alleles and malignant mutations are continu-
ously sequenced, which is why most of them are identified or annotated. Tradition-
ally, linkage analysis has been done to find non-experimental disease-gene associa-
tions, and it has been based on the likelihood of observing alleles. However, this kind 
of analysis fails for a multifactorial and heterogeneous diseases. Considering genomic 
data association is a newer approach to solve this problem, but with the downside of 
producing hundreds of candidates for complex diseases, which hinders experimen-
tal validation. Therefore, we present a network approach for genomic data analysis. 
In addition to existing network approaches, such as common neighbour, path-based 
and random walk-based methods, recent developments in network-based learning 
technologies, such as geometric deep learning, offer the prospect of using genomic 
data to find gene-disease associations that are still unknown.

Link prediction models for drug discovery

Given a set of nodes V and a set of edges E, the corresponding network is G(V, E) at 
time t. The graph G can be effectively represented by a ( |v| × |v| ) adjacency matrix A 
where the entry Aij = w is non-zero if there is a link between node i and j, and 0 oth-
erwise. Many problems in drug discovery can be modelled as mono-partite undirected 
networks (e.g., drug–drug networks), but some such as drug–target networks require 
bi-partite models, i.e. having two different sets of nodes: drugs and targets. In this case, 
the link relationship can be represented as a Br×k biadjacency network [53] whose two 
parts have r and k number of nodes. The corresponding adjacency matrix can then be 
represented as the biadjacency matrix [54]



Page 8 of 21Abbas et al. BMC Bioinformatics          (2021) 22:187 

The link prediction problem is then defined as predicting the unobserved link between 
two nodes during the time interval t +�t . Most of the existing methods solve the link 
prediction problem by calculating a likelihood score between two nodes ( Sij ). To validate 
the models’ performance, we randomly select links from the test set, ET = E − EP and 
use the remaining set as a training set. The training and test sets are mutually exclusive, 
i.e., ET ∩ EP = �.

In this section, we present the link prediction techniques for drug discovery. Our ini-
tial steps included the use of existing models meant to solve problems in other domains 
like social networks. The various models we considered, both old and new, are as follows: 

	 1.	 Common Neighbours (CN): Two nodes are more likely to be connected if they have 
more common neighbours. If Ŵ(i) represents the vector associated with node i that 
includes the neighbours of node i, we express this relationship as [55] 

	 2.	 Salton index (Cosine similarity): This is another measure of commonality that meas-
ures the cosine of the angle between two vectors of the adjacency matrix, corre-
sponding to given nodes i and j. It is calculated as below: 

 where ki is the total degree of node i [56].
	 3.	 Jaccard index [57]: This method from the early 20th century is the proportion of 

common neighbours between two nodes i and j in the total number of neigbours 

	 4.	 Sorensen index [58]: This index was developed especially for ecological community 
data and is defined as 

	 5.	 Hub Promoted Index (HPI) [59]: This index was developed for considering meta-
bolic networks. Under this model, links adjacent to hub nodes (high degree nodes) 
are assigned a high score, as the denominator depends on the minimum of the 
degrees of the two nodes. It is defined as 

	 6.	 Hub Depressed Index (HDI) [60]: This index is similar to the Sorensen index, but it 
also considers the measurement of the opposite effect: 

(1)A =
[

0 B

BT 0

]

.

(2)Sij = |Ŵ(i) ∩ Ŵ(j)|.

(3)Sij =
|Ŵ(i) ∩ Ŵ(j)|
√

ki ∗ kj
.

(4)Sij =
|Ŵ(i) ∩ Ŵ(j)|
|Ŵ(i) ∪ Ŵ(j)| .

(5)Sij =
2× |Ŵ(i) ∩ Ŵ(j)|

ki + kj
.

(6)Sij =
|Ŵ(i) ∩ Ŵ(j)|
minki, kj

.
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	 7.	 Leicht–Holme–Newman Index (LHN-I) [11]: This model assigns a high score to 
common neighbour nodes while penalizing according to the degree of each node: 

	 8.	 Preferential Attachment (PA) [61]: This is based on the assumption that nodes with 
higher links will form more links. Therefore, the PA-based link prediction model is 
simply a product of the degree of the two nodes: 

	 9.	 Adamic-Adar (AA) [62]: AA uses the assumption that less-connected nodes should 
be given more weight for future link prediction: 

	10.	 Resource Allocation Index (RA)[63]: This is inspired by the resource allocation pro-
cess, and measures how much resource is transmitted between th etwo nodes i and j: 

	11.	 Local Path Index (LP) [64, 65]: This index considers the local paths between the two 
nodes considering neighbours of second order, which makes it fairly inexpensive to 
compute. For the adjacency matrix A of the network, the LP-based score is 

 where ǫ is a free parameter and when 0, the LP index is equal to CN. (An)ij repre-
senting the number of paths of length 3 between nodes i and j.

	12.	 Katz global path indicator [66]: Theis index considers the number of paths, their 
lengths, and their weights (shorter paths counting more heavily), which is computed 
as: 

 where pathslij is set of all paths with lenght l which connects node i and node j, β is 
the weight attenuation factor. In order to ensure the convergence of the series, the 
value of β must be less than the reciprocal of the largest eigenvalue of the adjacency 
matrix A.

	13.	 Average Commute Time (ACT) [67]: This metric determines closeness by commute 
time. The smaller the average commute time between the two nodes, the closer the 

(7)Sij =
|Ŵ(i) ∩ Ŵ(j)|
max{ki, kj}

.

(8)Sij =
|Ŵ(i) ∩ Ŵ(j)|

ki.kj
.

(9)Sij = ki · kj .

(10)Sij =
∑

z∈Ŵ(i)∩Ŵ(j)

1

log kz
.

(11)Sij =
∑

z∈Ŵ(i)∩Ŵ(j)

1

kz

(12)SLPij = A2+ ∈ A3.

(13)Sij =
∞
∑

l=1

β l
∣

∣

∣
pathslij

∣

∣

∣
= βAij + β2

(

A2
)

ij
+ β3

(

A3
)

ij
.. = (I − βA)−1 − I



Page 10 of 21Abbas et al. BMC Bioinformatics          (2021) 22:187 

nodes are. It considers the average number of steps required by a random walker 
starting from i to reach j and vice versa. It can be calculated as: 

 Where l+ij  entry of Laplacian matrix L = D − A . Where D is the degree matrix.
	14.	 Cosine Similarity Based on Random Walk (Cos+) [68]: This method uses the inner 

product. Letting ei be the N × 1 vector with the ith entry= 1 , then 

 If U is the orthonormal matrix made of eigenvectors of the Laplacian matrix L, � = 
diag(�i ), and 

 where symbols have usual meaning.
	15.	 Random Walk with Restart (RWR)[69]: This is inspired by the Google PageRank 

algorithm. Suppose a random walker at node i takes a random step towards any of 
the neighbours of i with probability α . Therefore the probability of returning to node 
i again is ( 1− α ). Thus, the probability that the random walker reaches node j can be 
given as �Pi = αLT �P + (1− αLT )ei , where LT is the transition matrix Lij= 1

ki
 if node i 

and j are connected other wise Lij = 0 . 

 where pij is the jth element of vector pi.
	16.	 Local Random Walk (LRW) [70]: A random walker starts at node i and reaches node 

j within some number of random steps. The initial density vector is 
−−→
�(0) = −→ei  . The 

LRW similarity index at any time t can be formulated as 

 where P is the initial configuration function.
	17.	 SimRank (SimR) [71]: This is a general similarity measure that considers two nodes 

are similar if their neighbours are similar (connected to similar nodes): 

	18.	 CN based on Transferring Similarity (TSCN) [72]: This method uses the CN index 
but considers the transference similarity deined as 

 where STrvj  is the transferring similarity.

(14)SACTij = 1

l+ii + l+jj − 2l+ij

vi =
√
� ·UT⇀

e i,

lij
+ = vi

T vj ,

(15)vi =
√
� ·UT⇀

e i.

(16)Scos+ij = cos (i, j)+ =
l+ij

√

l+ii l
+
jj

.

(17)SRWR
ij = Pij + Pji,

(18)SLRWij (t) = Pi�ij(t)+ Pj�ji(t),

(19)sSimR
ij = C

∑

z∈Ŵ(i)
∑

z′∈Ŵ(j) S
SimR
zz′

kikj
.

(20)STrij = ε
∑

v

SCNij STrvj + SCNij ,
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	19.	 Superimposed Local Random Walk Indicator (SRW) [70]: This method is based on 
LRW, summing the t step and its previous results to obtain the value of SRW: 

	20.	 Local Naive Bayes form of CN (LNBCN) [73]: 

 where S = P(A0)
P(A1)

 , and A0 and A1 are the connection and disconnection variables, 
respectively. RW  is the role function of node w.

	21.	 Local Naive Bayes form of RA (LNBRA) [59]: This method is based on Naive Bayes 
and formulated as follows 

 where S = P(A0)
P(A1)

 , and A0 and A1 are the connection and disconnection variables, 
respectively. RW  is the role function of node w.

	22.	 Leicht–Holme–Newman (LHN2) Index [11]: This index is based on the assumption 
that two nodes are similar if their neighbours are also similar. It is an extension of the 
Katz index. The LHN2 likelihood score can be given as 

 where D is the degree matrix with Dij = �ijki , and �ε(0, 1) is the free parameter.
	23.	 Cosine based on L+ (CosPlus): This similarity measure is based on the inner prod-

uct measure and cosine similarity between node vectors i and j. It is given as 

	24.	 Matrix Forest Index (MFI) [74]: The MFI index similarity between nodes i and j 
can be given as ratio of the number of spanning rooted forests so that nodes i and 
j belong to the same tree rooted at i to all spanning rooted forests. This similarity 
index is expressed as 

	25.	 Prone [75]: This method first initialises the embedding by sparse matrix factoriza-
tion and further uses spectral analysis for local and global structural information of 
the node.

	26.	 DeepWalk [76]: This model learns node low dimensional embeddings based on ran-
dom walks. It has two hyper parameters: the walk length l and the window size w.

	27.	 Node2vec [77]: Node2vec is an application of the Word2vec model for graphs [78]. 
Word2vec is a state-of-the-art framework for word embedding. Based on similar 

(21)SSRWij (t) =
t

∑

l=1

SLRWij (l) = qi

t
∑

πij(l)+ qj

t
∑

l=1

πji(l).

(22)SLNBRAij =
∑

w∈Ŵ(i)∩Ŵ(j)

1

kw
(log Rw + log S),

(23)SLNBRAij =
∣

∣Ŵ(i) ∩ Ŵ(j)
∣

∣ log s +
∑

w∈Ŵ(i)∩Ŵ(j)
log Rw ,

(24)SLHN2
ij = 2m�1D

−1

(

I − �A

�1

)−1

D−1,

(25)SCos+ij = VT
i · VT

i

|Vi| ·
∣

∣Vj

∣

∣

.

(26)SMFI
ij = (I + L)−1.
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skip-gram concept Node2vec works on neighbourhood nodes and generates low 
dimensional embeddings. Node2vec can be generalised according to need, such as 
if one wants to embed similarity based on distance or based on role of the node in 
network.

	28.	 LINE [79]: This model generates low-level node embeddings considering first order 
and second order of the nodes’ similarity. Further, this model samples based on edge 
weight, improving performance for large scale networks. It is special case of Deep-
Walk when the size of the vertices’ context is kept at 1.

	29.	 NetMF [80]: Similar to DeepWalk and Line, this method also employs the skip-gram 
technique for low dimensional embedding. In fact, this model unifies the LINE, PTE 
[81], DeepWalk, Node2vec, and the proposed matrix factorization framework.

	30.	 High-Order Proximity-preserved Embedding (HOPE) [82]: This method draws from 
PageRank and the Katz index and uses singular value decomposition for making low 
rank approximations.

	31.	 NetSMF [80]: Network Embedding as Sparse Matrix Factorization (NetSMF) is 
based on spectral sparsification, and is an improved extension of NetMF. It is costly 
for large networks as it requires a large number of random walks.

	32.	 GraRep [83]: Grarep depends on singular value decomposition. It uses nodes’ co-
occurrence information by exponentiating the matrix with different powers, making 
it unsuitable for large graphs.

Model performance evaluation metrics

We convert the link prediction problem to a binary classification problem by using a 
positive class from the test set ( ET ). Further, we generate negative samples for training 
and test sets. To sample negative links for training and test data set, we assume all the 
testing links were known, and thus sample negative train links only from other unknown 
links. This enables us to evaluate the accuracy of link prediction methods based on 
binary classification evaluation metrics. To evaluate performance we used three stand-
ard machine learning metrics as follows:

Precision Precision measures the proportion of true positives against all positives. For 
TP items predicted correctly as positive and FP are predicted incorrectly as positive (i.e., 
false positives). Precision is calculated as:

To measure the misclassification of actual positives, we use the Recall metric, penalis-
ing the score with false negatives. If FN is the number of false negatives, then recall is 
defined as

Finally, a combined scoring mechanism called the F1-Score is a harmonic mean between 
precision and recall. It is also known as the True Positive Rate (TPR):

(27)Precision = TP

TP + FP
.

(28)Recall = TP

TP + FN
.
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The False Positive Rate (FPR) is calculated as

where FP is the number of false positives, and TN is the number of true negatives.
AUROC The Area Under the Receiver Operating Characteristics (AUROC) value is the 

area under the plot between True Positive Rate (TPR) and the False Positive Rate (FPR). 
It represents the trade-off between TP and FP prediction rates. The TPR is also known 
as sensitivity, recall, or probability of detection. AUROC measures the separability of the 
classifier and is therefore a vital metric.

AUPR The area under the Precision and Recall (AUPR) curve estimates the combined 
accuracy of precision and recall simultaneously. In other words, precision–recall pair 
points are obtained by considering different threshold values. This measure estimates 
the efficiency in the presence of unbalanced classes and indicates the models’ ability to 
cope with skewed distributions.

Datasets used

We used several publicly available datasets for pharmacological problems:

•	 Disease–Gene Association network (DGA): This is a disease-gene association net-
work dataset from the Stanford SNAP group and contains disease and gene associa-
tion information [84].

•	 Drug–Disease Association network (DDA): There are two kinds of nodes in this net-
work: drugs and diseases. Some nodes in the drugs class are non-pharmaceutical 
chemicals such as arsenic. Diseases include skin disease and myocardial infarction. 
These interactions predict which drug treats which diseases.

•	 Disease–Target Interaction network (DTI): This source is from the Stanford SNAP 
online data repository with DTI information similar to MATADOR. We use the pro-
tein and chemical identifiers as the two kinds of nodes in a bipartite network [85].

•	 MATADOR database: This is a manually annotated drug and target database freely 
available [86] and containing 15,843 Drug–Target interactions (DTIs). The original 
data set contains 13 fields, but in this study we only used two as a sample: chemical 
identifier, and protein identifier.

(29)F1−score = Precision ∗ Recall
(Precision + Recall)

(30)FPR = FP

(TN + FP)
,

Table 1  Some properties of the data sets used in our experiments

Dataset |V| |E| From nodes To nodes

MATADOR 3702 15,843 801 2901

DTI 3932 18,690 284 3648

DDI 1514 48,514 1514 1514

DGA 7813 21,357 519 729

DDA 7197 466,656 5535 1662
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•	 Drug–Drug Interaction network (DDI): This source is also from the Stanford SNAP 
group, containing information about drug–drug interactions approved by the United 
States Food and Drug Administration. It is a mono-partite network as compared to 
the previous bipartite datasets. A drug–drug relationship is formed when the phar-
macological effect of one drug is affected by another drug [85].

The Table 1 summarises the contents of the datasets.

Analysis and results
As cross-validation is a standard technique to test the generalizing ability of models or 
algorithms, we performed a 10-fold cross-validation. We randomly selected a percent-
age of edges and removed them from the network, and used those removed edges as 
test data in each model. Using these two sets, we then evaluated the performance of the 
models. Table 2 shows the results, where the best results are highlighted in each case. 
For several models we considered a variation of hyper-parameters which gives better 
results such as random walk length etc. For instance, the numbers after LRW model 
name (i.e. LRW3 , LRW4 , LRW5 ) reflects the number of random-walk steps. We make the 
following points in our own analysis:

•	 On the Disease-Gene associate (DGA) dataset, the Average Commute Time (ACT) 
model achieved the best AUROC score, the LRW3 (Local Random Walk) model with 
3 steps achieved the best AUPR score, and the LHN2 (Leicht–Holme–Newman) 
with parameter 0.95 achieved the best F1-score. All the three models are considering 
global similarity measures.

•	 On the Drug-Disease association (DDA) dataset, again the ACT achieved the best 
AUROC score, LRW with 5 steps achieved the best AUPR score, and LHN2 with 
parameter 0.95 had the best F1-score.

•	 On the Disease–Target Interaction (DTI) dataset, NetMF performed the best on all 
three metric scores.

•	 On the MATADOR dataset, NetMF performed best on all three metrics.
•	 On the Drug–Drug Interaction (DDI) dataset, as the only mono-partite network, the 

Prone model performed best on all three metrics.

Overall, the models that performed best on the five benchmark datasets were 
Prone, ACT​ and LRW5 are the top 3. The Freidman test results are presented in Table 3.

Advatanges and disadvantages of these methods

No doubt the graphs are state-of-the art tools being utilised to solve problems of com-
plex systems. But as they give strength to model any real world problem they also have 
weaknesses specially in our case. As graphs are representations of nodes and edges. 
A node alone carries less or no information at all. The node of the graph carries more 
information if it is the part of bigger networks or graphs. Consequently our model will 
perform worse for node/s which are either alone or connected to small subgraphs. 
For example in case of drug–drug side effect prediction if we have more examples of 
side-effect interaction examples with other drugs then the unknown interaction can be 
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predicted with better accuracy. The same logic goes with drug-target interaction predic-
tion and so on. Consequently we can say the more edges we have the better the predict-
ibility of a model. So network based methods will fail to predict interaction for novel 
node/s which has no prior interaction say it is new drug or new target.

Statistical test

After running the Friedman test [87] for model comparison we have found the follow-
ing mean ranking of models’ across the datasets. To achieve this we have only con-
sidered one evaluation metric i.e. AUROC and converted into error using formula 
AUROCerror = 1− AUROC . According to Table  3 analysis we can say on an average 
Prone, ACT​ and LRW5 are the top 3 best performers over all five data-sets. The p-value is 
found 1.11022E − 16 . Rest of the tests we have reported in Additional file 1.

Conclusion and discussion
This study highlighted the need for utilising data-driven approaches for enhancing drug 
discovery processes particularly using the drug-target interactions (DTI) forming bio-
medical networks. This allows us to utilise network-based techniques and in particular 
link prediction approaches to predict the interactions (links), or missing links, between 
drugs and their targets including diseases, proteins or other drugs. This approach has 
been already shown promising outcomes in reusing existing drugs for treating breast 
cancer [14], or identifying a new drug for urine leakage issues treatment [16]. We fur-
ther discussed more advanced network-based approaches are required to addresses the 
existing challenges in using traditional machine learning approaches such as data related 
issues (e.g. dimensionality, incompleteness, sparsity, heterogeneity, and the hierarchical 
structure), and incapability of consideration of the spreading speed of diseases.

In this work, we have compared several state-of-the-art link prediction models on 
five different drug-related data-sets modeling drug–disease, drug–drug, drug–gene, 
and drug–target interactions to see the implications for drug discovery. We compared 
the results of the models using three evaluation metrics namely AUROC, AUPR, and 
F1-score. The results indicate that Prone, ACT​ and LRW5 are the top 3 best performers 
on all five data-sets. These models are important as they only need prior link or relation-
ship information, which avoids the cost of feature engineering. The statistical models 
are effective particularly on graphs as the graph is basically a non-Euclidean data rep-
resentation. Traditional machine learning tools were intended for Euclidean data sets, 

Table 3  Average performance of all models across datasets

Model CN Salton Jaccard Sorens HPI HDI LHN AA RA PA

Mean rank 28.6 34.6 34.6 34.6 28.6 34.6 34.6 28.6 28.6 38

Model LNBCN LNBAA LNBRA LocalP Katz.01 ∼.001 LHNII.9 ∼.95 ∼.99 ACT​

Mean rank 28.6 28.6 28.6 16.6 21.8 21.8 21.8 14.4 15.4 3

Model CosPlus RWR.85 ∼.95 SimR LRW_3 ∼_4 ∼_5 SRW_3 ∼_4 ∼_5

Mean rank 11 18.8 17.8 9.8 12.4 8.8 5.7 13.4 7.8 5.7

Model MFI TSCN prone netmf node2vec Deepwalk hope netsmf grarep

Mean rank 19.8 23.8 2 8.6 13.2 13.6 8.2 19.6 34
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thus explaining the performance. There are excellent opportunities for future work to 
represent and solve network-based biological and pharmaceutical problems using state-
of-the-art deep learning techniques.

Methodological limitations

In our analysis we have considered positive links only from examples we had in the 
data-set. Rest of the space is considered as negative links which is acceptable for math-
ematical algorithmic perspective. This techniques is well utilised by machine learning 
community. The negative link space is all the unknowns for which we don’t have any 
examples. So one of the limitations for our methodology is that if we have lesser number 
of examples the algorithmic predictive ability will be negatively affected. In other words 
the more examples we have the better the predictability of the algorithm will be.
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