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Background
The nucleosome is the basic repeating structural and functional unit of chromatin, 
which consists of 147 base pairs of DNA wrapped around eight histones. Although 
nucleosomes cover most of the genome, their locations on DNA are not random. A 
long-standing goal in chromosome biology is to understand which factors control nucle-
osome positioning and how nucleosomes interact with those factors to regulate gene 
expression. One of the determinants of nucleosome positioning is transcription factors 
(TFs) including activators and components of the preinitiation complex [1].

The traditional view on nucleosome-TF interactions is that TFs displace nucleosomes 
to gain access to their cognate binding sites. The binding of TFs to a nucleosome results 
in a ternary structure that is relatively unstable [2] because the TFs have higher binding 
affinities to free DNA than nucleosomal DNA. This difference in binding affinities leads 
to the destabilization of the ternary structure. On the other hand, a subgroup of TFs, 
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known as pioneer TFs [3], can interact with nucleosomal DNA, open chromatin, and 
establish developmental competence. We and other groups have shown that the rota-
tional setting of binding sites in a nucleosome is a critical determinant for their acces-
sibility to these pioneer TFs [4–6]. These studies show that pioneer TFs are able to bind 
nucleosomal DNA while most TFs appear not to have this ability.

A recent study systematically explored the modes of interactions between nucle-
osomes and 220 TFs that represent diverse structural families [7]. This study has identi-
fied several binding modes for the TFs including gyre spanning (GS), oriented binding 
(OB), end binding (EB), periodic binding (PB) and dyad binding (DB). Importantly, these 
modes are not mutually exclusive, meaning that a TF may have multiple nucleosome 
binding modes. These data clearly show that the binary classification of TFs based on 
their ability to bind nucleosomal DNA is not enough to capture the diversity of the inter-
action landscape between TFs and the nucleosome.

However, there are substantial experimental challenges to determine nucleosome 
binding preferences for thousands of TFs in different species. Thus, efficient compu-
tational methods capable of determining the preferences are needed. Here, we present 
ProtGauss, a machine learning (ML) model to predict nucleosome binding modes of 
TFs based on Gaussian representation for protein sequences. Our model differs from 
other ML methods by (1) using the Gaussian representation of sequences to capture the 
diversity of the subsequence representations via a covariance matrix and (2) designing 
a kernel function to capture the similarity between sequence features represented by 
Gaussian distributions. These differences are important because general ML methods 
often take vector representations of the sequences as input, which is obtained by com-
puting the average of subsequence features from ProtVec [8]. The average representa-
tion however fails to capture the variation of subsequence features, and therefore is not 
expressive enough to represent an arbitrarily long protein sequence.

In this study, we focused on 167 TFs that have at least one nucleosome binding mode 
(or label) measured experimentally (see “Methods”). We used nested cross-validation to 
train and evaluate the model. The inner cross-validation is used to optimize the hyper-
parameters of the models and the outer cross-validation estimates the performance of 
the model with optimal hyperparameters. The nested cross-validation eliminates the 
bias introduced by simple cross-validation and can thus alleviate the overfitting prob-
lem. In this multi-label classification problem, the ProtGauss model outperformed sev-
eral fine-tuned off-the-shelf ML methods including logistic regression, support vector 
machine, k-nearest neighbours, and random forest.

Then we built binary classifiers for individual binding modes and found that the classi-
fier for the EB mode is the best. Our EB classifier was superior to the ML methods with 
the area under precision-recall (minor-AUPR) curve achieving 75%. We further showed 
that the EB mode of TFs is related to decreased nucleosome occupancy around their 
bind sites in GM12878 cells mapped by ChIP-seq (ChIP-sequencing) and MNase-seq 
(micrococcal nuclease digestion with deep sequencing). The nucleosome occupancy 
profiles around TF binding sites were used as an alternative dataset to confirm the supe-
riority of the EB classifier compared to other ML methods.

Using the EB classifier, we predicted that a vast majority (88–99%) of TFs in five model 
organisms (yeast, nematode, fruit fly, mouse and human) have this binding mode with 
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mammalian TFs being the lowest and the yeast TFs being the highest. Our prediction 
showed that several TFs in the SOX family including SOX2 and SOX11 do not have the 
EB mode, consistent with experimental studies [9]. Overall, this work represents the first 
systematic analysis of nucleosome binding mode of TFs using a computational method.

Material and methods
Different components of the proposed machine learning method for predicting bind-
ing modes of transcriptions factors to nucleosomes are described below. Figure 1 shows 
the overall block diagram of ProtGauss. To learn feature matrix X , ProtVec [8] method 
is trained on the subsequences of fixed length ls . Feature matrix X is projected to mean 
vector µ and covariance matrix � of Gaussian distribution. Then, the kernel matrix is 
defined using the similarity between Gaussian distributions and a multi-label classifier is 
trained to model nucleosome-binding preferences of TFs.

Learning features from protein sequences

Amino acid sequences of TFs are the input to the proposed model. Breaking the 
sequences into fixed length overlapping subsequences (i.e. biological words) is the sim-
plest and most common technique in bioinformatics to learn features [10, 11]. If the 
length of the sequence is l and the length of the subsequence is ls , the sequences can be 
broken into l − (ls − 1) subsequences. For simplicity, let the number of subsequences be 
represented by L.

Given that a primary protein sequence can be split into overlapping subsequences 
of length ls , we used ProtVec to extract features from the protein sequence. ProtVec 
embeds each subsequence to d-dimensional vector that characterizes the biophysical 
and biochemical properties of sequences. In particular, each subsequence of length ls is 
represented by a continuous vector of dimension d = 100 . The parameter d is a hyper-
parameter for ProtVec method. For the sequence that is split into L subsequences, Prot-
Vec model learns a matrix X of shape L× d where each row represents the feature learnt 
for a subsequence. Figure 2 illustrates the details on how the sequences are projected to 
embedding matrix X using ProtVec.

Fig. 1  A model to predict nucleosome-TF binding patterns. The sequence si is projected to a multivariate 
Gaussian distribution with mean µ̃i and covariance matrix �̃i . Similarity between these multivariate Gaussian 
distributions is computed to form kernel matrix and a multi-label classifier is trained to model binding 
preferences using the kernel matrix
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Gaussian representation of sequences

A sequence of length l  is represented as the matrix X of shape L× d. The feature 
matrix X contains d dimensional feature for L subsequences. A simple approach 
to learn representation for sequences from the subsequence feature matrix X is to 
compute the mean of the representation of subsequences [8]. However, the mean of 
the subsequence matrix blurs the representation of the subsequences and may not 
be good enough to represent the sequence. To address this challenge, we proposed 
a novel approach to represent the sequence s as a multivariate Gaussian distribution 
and the biological words (subsequences) are assumed to be generated from that dis-
tribution (that is, the subsequence representations are the samples from this distri-
bution) [12]. To the best of our knowledge, our proposed model is the first work to 
represent protein sequences as Gaussian distribution. Specifically, we consider the 
embeddings of all subsequences present in the sequence as the independent and iden-
tically distributed (i.i.d) samples drawn from the distribution:

where x represents the ProtVec representation for subsequence sampled from multivari-
ate Gaussian distribution with mean µ and covariance matrix �.

Given the feature matrix X , the mean vector and the covariance matrix are set to 
their Maximum Likelihood estimates, given by the empirical mean µ̃ and the empiri-
cal covariance matrix �̃ respectively. Specifically, the sample mean of the sequence 
corresponds to the mean of the subsequence representations, i.e. the vectors of the 
subsequences in the sequence are added and normalized by the number of subse-
quences. For a sequence s with L subsequences, the mean of the distribution is given 
by:

The empirical covariance matrix is then defined as:

Since the sequence is represented as a multivariate Gaussian distribution with sample 
mean µ̃ and the empirical covariance matrix �̃ , the problem of classifying binding pref-
erences based on the sequence transforms to classifying based on the distribution [12].

(1)x ∼ N (µ,�)

(2)µ̃ =
1

L

L∑

i=1

xi

(3)�̃ =
1

L

L∑

i=1

(xi − µ̃)(xi − µ̃)T

Fig. 2  A workflow to represent an amino acid sequence as a matrix of ProtVec embeddings. A sequence si is 
split into the subsequences with length ls = 3 and the embeddings of these subsequences from the ProtVec 
model are used to obtain a feature matrix X
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Measuring similarity between sequences

To classify the multivariate Gaussian representation of protein sequences, we proceed by 
defining the similarity between the multivariate Gaussian distributions of two sequences 
for prediction of nucleosome binding modes. Here, the similarity measure between two 
distributions is proposed. The similarity between mean vectors µ̃i and µ̃j can be com-
puted using cosine similarity as:

where � · �2 denotes the Euclidean norm of the vectors. Similarly, the similarity between 
the covariance matrices ˜̃�i and �̃j can be computed as:

where ⊙ is the element-wise multiplication between the matrices and � · �F represents 
the Frobenius norm of the matrix. Then, the similarity between two sequences si and  sj 
is measured as the convex combination of the similarity between their mean vectors µ̃i 
and µ̃j and their covariance matrices �̃i and �̃j . Therefore, the similarity between two 
sequences si and  sj is given by:

where α ∈ (0, 1) is the hyperparameter that controls the relative importance of similar-
ity between mean vectors and the similarity between the covariance matrices. A kernel 
matrix K  is defined where Kij = sim

(
si, sj

)
.

Training

Training our proposed model involves two steps: (a) training ProtVec to learn represen-
tation of protein sequences and (b) converting these representations to Gaussian dis-
tributions and training Support Vector Machine (SVM) with similarity kernel between 
Gaussian distributions. First, we collected 561,568 sequences from Swiss-Prot data-
base (UniProt release 2019_11) and trained the ProtVec model on these sequences. The 
trained ProtVec model was used to obtain the feature matrix Xi for each sequence si . 
Second, the Gaussian representation for each sequence is obtained from their respective 
feature matrix and the similarities between sequences is computed to define the kernel 
for Support Vector Machine (SVM) [13]. Since the TFs can have multiple binding pref-
erences, it is a multi-label classification task. One-vs-Rest classifier is used to train on 
multi-label classification problems. We used the scikit-learn library in Python to imple-
ment the SVM classifier and nested cross-validation with 10 outer and 10 inner cross-
validation to report the results.

The two metrics were considered for performance evaluation of our proposed method 
as well as other baselines in this task. (1) Accuracy is also known as subset accuracy, that 
measures the percentages of test TFs that were correctly predicted (i.e. a TF is correctly 
predicted if the set of predicted binding preferences of this TF exactly matches with 
the set of its ground-truth preferences; in this case, the ground-truths are nucleosome 

(4)sim
(
µ̃i, µ̃j

)
=

µ̃i · µ̃j

||µ̃i||2||µ̃j||2

(5)sim
(
�̃i, �̃j

)
=

∑
�̃i ⊙ �̃j

||�̃i||F ||�̃j||F

(6)sim
(
si, sj

)
= α · sim

(
µ̃i, µ̃j

)
+ (1− α) · sim

(
�̃i, �̃j

)
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binding preferences of TFs that are measured experimentally [7]). (2) Micro-averaged 
area under the precision-recall curve (micro-AUPR) [14] combines the predictions 
across all binding preferences into a vector, and then the area under the precision-recall 
curve is computed based on that vector. We further considered Matthews correlation 
coefficient (MCC) as a measure of the quality of binary classifications to compare sev-
eral methods with nucleosome occupancy data. This metric addresses the concern of an 
imbalanced testing set and obtains more reliable performance. MCC can be computed 
as

For multi-label classification, ranking-based metrics such as micro-AUPR is an appro-
priate metric for class imbalance scenarios [15]. In this work, the class imbalance is 
extreme i.e. the EB mode has 121 positives, the gyre spanning mode has only 3 positives, 
the dyad binding mode has 10 positives, and the orientational binding mode has 12 posi-
tives out of 167 TFs (Table 1). Since micro-AUPR gives equal importance for all samples 
across classes, classes with relatively few positive samples should not influence the over-
all AUPR score of the model if the model is performing well on other common binding 
preferences.

When we formulate multi-label classification as multiple binary classification, accu-
racy is not an appropriate metric to compare different models. For example, there are 
10 positive and 157 negative cases for the dyad binding mode. A simple majority clas-
sifier predicts all the TFs to have no dyad preference, the accuracy of the classifier will 
be 94.01% (= 157/167). In contrast, PR curves are appropriate to classify such binding 
preferences and therefore we chose micro-AUPR for comparison.

Baselines

For the baseline methods, the mean of the feature matrix X ∈ RL×d from ProtVec was 
taken across subsequences as: x = 1

L

∑L
i Xi ∈ Rd to obtain the feature vector. The fea-

ture vector x ∈ Rd is used to train other baselines for performance comparison. Our 
proposed model was compared with Logistic Regression (LR), Support Vector Machine 
(SVM) [13], K-nearest neighbours (kNN) [16], and Random Forest (RF) [17, 18]. All of 
these methods were implemented using the scikit-learn library in Python. Table 2 shows 

(7)MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

Table 1  Datasets used in the study

Binding preferences No. of positive samples No. of 
negative 
samples

End preference 121 46

Periodic preference 98 69

Groove preference 45 122

Dyad preference 10 157

Gyre spanning 3 164

Orientational preference 12 155

Nucleosome stability 71 96
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the list of settings for tuning parameters of these baselines. We adopted grid search with 
nested cross-validation to find the optimal parameters and evaluate the performance of 
the baselines.

Datasets

TF datasets

Seven nucleosome-TF interaction patterns for 195 TFs from diverse structural families 
were determined experimentally in a prior study (Table S5 in [7]). The interaction modes 
are not mutually exclusive, and a given TF can have more than one binding modes. 
These experimentally determined binding modes are used as ground truths of the pre-
sent study. For multi-label classification, it is important for TFs to belong to at least one 
class. However, there are 28 TFs that have none of these patterns. Thus, 167 (= 195 − 
28) TFs have at least one binding mode. Moreover, 24 TFs have ChIP-seq data from 
GM12878 cells in ENCODE that were used for testing the model (see below) and 21 of 
them belong to the 167 TFs. As a result, the remaining 146 (= 167 − 21) TFs were used 
to train the model (Additional file 1: Supplementary Table S1). The full-length sequences 
of TFs were taken from Animal TFDB 3.0 [19].

The tested ProtGauss model was applied to all TFs from five model species, includ-
ing 1,664 TFs from human (Additional file 1: Supplementary Table S2), 1,636 TFs from 
mouse (Additional file  1: Supplementary Table  S3), 651 TFs from fruit fly (Additional 
file 1: Supplementary Table S4), 748 TFs from nematode (Additional file 1: Supplemen-
tary Table S5), and 296 TFs from yeast (Additional file 1: Supplementary Table S6). The 
full-length sequences of the TFs, except those from yeast, were downloaded from Ani-
mal TFDB 3.0 [19] in the FASTA format. The human TF protein sequences file contained 
a total of 1,675 sequences which included repeated TF entries for “HOPX” (10 times), 
“ZNF177” (2 times), and “LCOR” (4 times). Note that HOPX and LCOR each have two 
unique sequences. Thus, these three TFs have five unique sequences that were retained. 
The remaining entries (11 sequences) were omitted, which results in the human dataset 
containing 1664 (= 1675 − 11) TF sequences. Among these 1,664 TFs, two sequences 
have no TF name. Their names (H3BRB8/H3BSE6 and PAWR) were extracted using 
the Ensembl ID provided in the fasta file. The DNA-binding domains of the TFs were 

Table 2  The parameters and set of values for various off-the-shelf baselines

Method Tuning parameters

Logistic regression The norm used in the penalization: none, L1, L2, elastic net
Regularization coefficient: 100, 10, 1, 0.1, 0.01
Subsequence length: 3, 4, 5, 6

k-nearest neighbors Number of neighbors to use: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21
Contribution of members in the neighborhood: uniform, distance
Distance metric: Euclidean, Manhattan, Minkowski
Subsequence length: 3, 4, 5, 6

Support vector machine Kernel: Linear, Polynomial, RBF, Sigmoid
Regularization parameter (C): 50, 10, 1.0, 0.1, 0.01
Subsequence length: 3, 4, 5, 6

Random forest The number of features to consider when looking for the best 
split: sqrt(num features), log2(num features)

The number of trees in the forest: 10, 100, 200, 500, 1000
Subsequence length: 3, 4, 5, 6
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also retrieved from the same file. However, some of the entries had "Miscellaneous" as 
a domain. Thus, Pfam batch sequence search [20] utility from EMBL-EBI was used to 
determine the unknown TF domains in batch. The same process was incorporated to 
extract the unknown TF domains in the other 4 species. Finally, yeast DNA-binding 
TFs were taken from literature [21] and their full-length sequences were retrieved from 
UniProt.

Nucleosome (MNase‑seq) datasets

The MNase-seq short reads for in  vivo nucleosomes in the GM12878 cell line (hg19) 
were downloaded from the University of California Santa Cruz (UCSC) Genome 
Browser HTTP server [22]. A total of nine BAM files that are in Gene Expression Omni-
bus (GEO) ID GSM920558 with names wgEncodeSydhNsomeGm12878AlnRepX.bam, 
where X is between 1 and 9 were downloaded, merged, and sorted based on chromo-
somes using SAMtools [23]. The reads in each chromosome file were extended to 147 bp 
in the 5′ to 3′ direction.

The normalized nucleosome occupancy of a TF was calculated at each nucleotide 
position in the genome by dividing the total number of nucleosomal DNA sequences 
surrounding the ChIP peak position by the average number of nucleosomal sequences 
across the genome as described in the paper [24]. The normalized values were smoothed 
with a 61-bp window.

ChIP‑seq datasets

Out of the 1,664 human TFs, 106 TFs have ChIP-seq data available in the GM12878 
cell line, which were deposited in ENCODE database [25]. The GM12878 cell line was 
chosen because (1) it is a Tier 1 cell line in the ENCODE project in which a number 
of ChIP-seq datasets are available and (2) it is derived from normal cells that have no 
global aberrant epigenetic modifications and chromatin reorganization, which are often 
observed in cancer chromatin [26].

The ChIP-seq peaks (i.e., the ‘optimal’ set) of the 106 TFs in the human genome hg19 
were downloaded from ENCODE. Among 106 TFs, 24 TFs have known E-MI penetra-
tion (lig147) values [7] (Additional file 1: Supplementary Table S7) and 82 TFs do not 
have E-MI values (Additional file 1: Supplementary Table S8). E-MI stands for enriched-
sequence-based mutual information, which provides information about the relative 
location of TF binding in nucleosomal DNA [7]. TFs with E-MI < 20 indicate that the TFs 
prefer to bind nucleosome ends, whereas TFs with E-MI > 20 indicate that the TFs do 
not have this preference. Note that there is no overlap between the 106 TFs with the 146 
TFs used to train the ProtGauss model. The overlap between the 106 TFs and the 195 
TFs with E-MI values [7] is the set of 24 TFs that was used as the test set.

Calculation of nucleosome occupancy around TF binding sites

For a given TF with ChIP-seq data available in the GM12878 cell line, the nucleosome 
occupancy profile was calculated around the ChIP peak centre (± 1000 bp). Two groups 
of human TFs in GM12878 cells were used to calculate the nucleosome occupancy 
profiles: one contains 24 TFs with both ChIP-seq data and known EMI penetration 
(lig147) values (Additional file  1: Supplementary Table  S7), and the other includes 82 
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TFs with ChIP-seq data but not EMI penetration values (Additional file 1: Supplemen-
tary Table S8). For TFs in both groups, the nucleosome occupancy patterns around ChIP 
peak center were divided into three types: ‘peak-at-centre’, ‘dip-at-centre’ and ‘question-
able’ (see detailed below). Note that 5 TFs have the ‘questionable’ pattern (Additional 
file  1: Supplementary Table  S8), resulting in 101 (= 24 + 82 −  5) TFs that have either 
‘peak-at-centre’ or ‘dip-at-centre’ nucleosome occupancy patterns (Additional file  1: 
Supplementary Table S7 and S8).

Results
Extensive exploration of subsequence length ls
ProtVec method learns the representation of sequence by breaking the sequence into 
subsequences (i.e. biological works) of length ls . The length ls is a hyperparameter that 
plays a key role in learning representation of the protein sequences and thus significantly 
impacts the performance of proposed model that uses features learned by ProtVec as 
input.

Thus, to determine the optimal subsequence length ls , the impact of the subsequence 
length on the performance of the proposed model was systematically evaluated. This is 
because the length of subsequence plays an important role to learn the representation 
using ProtVec (see “Methods”). For this experiment, two different settings were consid-
ered for subsequence lengths of 3, 4, 5, or 6 amino acids. First, multi-label classification 
was performed to compare various subsequence lengths (Fig. 3a). Second, binary clas-
sification was performed for individual binding modes (i.e., DB, EB, GB, OB and PB, as 
well as nucleosome stability) across subsequence lengths (Fig. 3b, Additional file 2: Sup-
plementary Figure S1-S3). For both experiments, micro-AUPR was used as a compari-
son metric since it indicates how the model performs overall for all binding preferences 
and is not sensitive to the predictive performance for individual binding preferences.

For the multi-label classification task, the model trained with the subsequence 
length ls = 4 achieved superior performance compared to other subsequence lengths. 
In particular, the model trained using ls = 4 achieved 0.61 on micro-AUPR and 0.224 
on accuracy. The model trained with ls = 3 achieved similar performance i.e. 0.613 on 
micro-AUPR and 0.176 on accuracy. Furthermore, we observed that using longer sub-
sequence length (5 or 6) substantially decreases the performance of the model (Fig. 3a).

Fig. 3  Performance comparison of the model trained on full-length sequences of TFs. a Micro-AUPR and 
accuracy comparison between models trained on all binding patterns with different subsequence lengths. 
b Micro-AUPR and accuracy comparison between models trained with subsequences with the length of 4 
residues for individual binding patterns
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For the binary classification task, among the five binding modes and nucleosome 
stability, we observed that the classifier performed best for the EB mode compared to 
other nucleosomes-binding modes (Fig. 3b, Additional file 2: Supplementary Figure S1–
S3). The performance of the binary classifiers generally follows a decreasing trend with 
increasing subsequence lengths from 3 to 6, in which the classifier with subsequence 
length 4 outperforms other subsequence lengths (Fig. 3b, Additional file 2: Supplemen-
tary Figure S1–S3). Thus, we selected the subsequence length ls = 4 for the following 
experiments.

Optimization of the hyper‑parameter α

To optimize the hyper-parameter α in Eq. 6, the impact of different α values on the per-
formance of our model was measured by two metrics, micro-AUPR (Fig. 4a) and accu-
racy (Fig.  4b). An appropriate value of α that controls the relative importance of the 
mean and covariance matrix is crucial for our model. For this experiment, the model was 
trained with subsequence length ls = 4 . The model achieved the best micro-AUPR when 
the value of α is 0.3. Furthermore, when the similarity between covariance matrices was 
removed (with α = 1), our method considers only the similarity between the mean vec-
tors of sequences and the performance dropped significantly (Fig. 4a, b). These results 
support the idea of representing the protein sequences as Gaussian distributions instead 
of representing them as mean vectors of subsequence representation.

Comparison between ProtGauss and off‑the‑shelf methods on binding preferences of TFs

To evaluate the performance of our model on all nucleosome-binding preferences of 
a given TF, we compared it with four off-the-shelf ML methods that are used as base-
lines (see “Methods”). Because the off-the-shelf ML methods are often not tuned for our 
prediction tasks, to get a fair comparison with our model, we fine-tuned the baselines 
using a set of parameter values (Table  2). For this experiment, we used subsequence 
length ls = 4 together with α = 0.3 for our method, and compared with other meth-
ods trained with optimized parameters. We found that our ProtGauss model outper-
formed the baselines in two metrics, micro-AUPR, and accuracy (Table 3). Specifically, 
our model achieved 0.61 on micro-AUPR and 0.224 on accuracy. By contrast, an opti-
mized SVM model rendered 0.544 on micro-AUPR and 0.155 on accuracy. Compared 

Fig. 4  Impact of α on the performance of proposed methods measured by various performance metrics 
such as a micro-AUPR, b accuracy. α ∈ [0, 1] controls the impact of similarity between mean vectors and 
covariance matrices. If α = 0 , only the similarity between covariance matrices is considered. In contrast, the 
only similarity between mean vectors is considered when α = 1
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with the SVM model, the ProtGauss model achieved improvements of 12.1% on micro-
AUPR, and 44.5% on accuracy. The results showed that the proposed similarity-based 
kernel achieves significant improvement over the SVM classifier that does not consider 
the variance of the features. Overall, we demonstrated the effectiveness of our pro-
posed method and the benefit of using multivariate Gaussian distributions to represent 
sequences for measuring similarity between a pair of sequences.

Binary classifier for the EB mode outperforms those for other binding modes

To identify which individual binding mode the ProtGauss model performs the best, we 
built a binary classifier for each binding mode and nucleosome stability. The perfor-
mance of the classifiers trained on the full-length sequences of TFs was evaluated with 
the subsequence length ls = 4 together with α = 0.3. It has been shown that the highest 
micro-AUPR was achieved for the EB mode (Fig. 3b), indicating that the ProtGauss clas-
sifier for the EB mode prediction outperforms the classifiers for other binding modes.

To check if the ProtGauss classifier for the EB mode is better than other fine-tuned ML 
models, we applied these models to the 24 TFs with E-MI data (Additional file 1: Supple-
mentary Table S7). We found that our model achieved the highest micro-AUPR (0.75), 
accuracy (0.776) and MCC (0.352), compared to other models (Table 4). This result indi-
cates that, in addition to the multi-label classification problem (Table 3), our model out-
performs other models in the binary classification problem (Table 4).

End preference of TFs is related to low nucleosome occupancy around TF binding sites

For a given TF, its genome-wide binding sites are measured by ChIP-seq assays, whereas 
nucleosome locations across the genome can be determined by MNase-seq assays. 
Nucleosome occupancy reflects the fraction of cells from a population in which a given 
region of DNA is occupied by a histone octamer [1]. TF binding sites at nucleosomal 

Table 3  Performance comparison of our proposed method  (in bold) with other baselines for all 
binding mode data

Method m-AUPR Accuracy

LR 0.536 ± 0.013 0.129 ± 0.011

kNN 0.532 ± 0.007 0.132 ± 0.012

SVM 0.544 ± 0.018 0.155 ± 0.026

RF 0.558 ± 0.022 0.157 ± 0.016

ProtGauss 0.61 ± 0.008 0.224 ± 0.012

Table 4  Performance comparison of the proposed method (in bold) and various baselines for end 
binding mode data

Method m-AUPR Accuracy MCC

SVM 0.739 0.764 0.322

RF 0.718 0.713 0.122

LR 0.738 0.726 0.269

KNN 0.716 0.709 0.075

ProtGauss 0.75 0.776 0.352
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DNA ends become more accessible due to a process known as “breathing” [27–29], in 
which DNA is detached from histones. Thus, if a TF preferentially binds to the ends of a 
nucleosome, its binding sites are likely to have a relatively lower nucleosome occupancy, 
compared to a TF that binds to the central region of a nucleosome.

To link the nucleosome EB mode of TFs measured in  vitro with nucleosome occu-
pancy around TF binding sites measured in  vivo, we assessed 106 TFs in GM12878 
cells, which have both ChIP-seq and MNase-seq data (Additional file 1: Supplementary 
Table S7 and S8). For each TF, the average nucleosome occupancy was calculated for the 
genomic regions around the centre of ChIP fragments. Three types of nucleosome occu-
pancy profiles were identified: (1) dip at centre (Fig. 5a); (2) peak at centre (Fig. 5b); and 
(3) questionable, in which no clear dip or peak is shown (Fig. 5c). Out of the 106 TFs, 86, 
15 and 5 TFs has the ‘dip-at-centre’, ‘peak-at-centre’ and ‘questionable’ profiles, respec-
tively (Additional file 1: Supplementary Table S7 and S8).

Detailed analysis of the 24 (out of 106) TFs with both ChIP-seq data and E-MI pen-
etration (lig147) values (Additional file  1: Supplementary Table  S7) revealed a clear 
trend (Fig. 6). That is, TFs with the EB mode, which have EMI penetration values < 20 
as defined in [7], tend to have the ‘dip-at-centre’ nucleosome occupancy profile. By 

Dip at center Peak at center Questionablea b c

Fig. 5  Profiles of nucleosome occupancy around a RFX5 ChIP clusters showing dip at centre (dip), b NFATC1 
ChIP clusters showing peak at centre (peak), and c FOXK2 ChIP clusters showing no clear peak or dip at centre 
(questionable)

Fig. 6  Categorization of nucleosome occupancy profiles for 24 TFs with known E-MI penetration (lig147), in 
terms of peak (red), dip (green), and questionable (orange) nucleosome occupancy profiles. TFs with an E-MI 
penetration (lig147) less than 20 are defined as having end preference (7)
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contrast, TFs without the end preference (with E-MI penetration values > 20) tend to 
have the ‘peak-at-centre’ nucleosome occupancy profile. The higher E-MI penetration 
value a TF has, the more likely it has the ‘peak-at-centre’ profile. Our data establish 
a clear correlation relationship between nucleosome occupancy profiles around TF 
binding sites and the EB mode of TFs. The nucleosome occupancy of TFs can be used 
as an alternative dataset to test our ProtGauss model as well as other baselines.

Use of nucleosome occupancy data as an alternative test dataset

To further illustrate our ProtGauss model outperforms fine-tuned baselines, we used 
the 86 TFs with the ‘dip-at-centre’ profile and 15 TFs with the ‘peak-at-centre’ profiles 
as an alternative test set. The 5 TFs with the ‘questionable’ profile are not included. 
Note that the 101 (= 86 + 15) TFs are not in the training set. The performance on this 
test set indicates the ability of various models to be generalized to new sequences 
that were not the part of the training procedure. We found that our model is supe-
rior to other models in the alternative test set (Table  5). We also provided a sum-
mary of prediction results on the nucleosome occupancy data as a confusion matrix 
(Table 6). Specifically, our method identified more true positives and true negatives 
combined (i.e., 85 + 3 = 88) and less false positives and false negatives combined (i.e., 
1 + 12 = 13), compared to other methods. The second best model is KNN (Table 5). 
It identifies all TFs to have end preference; it has 86 true positives and true negatives 
combined (i.e., 86 + 0 = 86) and 15 false positives and false negatives combined (i.e., 
15 + 0 = 15). Furthermore, random forest achieves similar performance to kNN but 
identifies 81 true positives and true negatives combined (i.e., 78 + 3 = 81) and 20 false 
positives and false negatives combined (i.e. 8 + 12 = 20). These results indicate that 

Table 5  Performance comparison of proposed method  (in bold) and other baselines for 
nucleosome occupancy data

Method m-AUPR Accuracy MCC

SVM 0.864 0.822 -0.073

RF 0.86 0.851 0.14

LR 0.863 0.733 0.072

KNN 0.863 0.851 0.14

ProtGauss 0.898 0.871 0.34

Table 6  Comparison of confusion matrix for proposed method (in bold) and other baselines on 
nucleosome occupancy data

Method True positives True negatives False negatives False positives

SVM 76 2 10 13

RF 78 3 8 12

LR 68 4 18 11

KNN 86 0 0 15

ProtGauss 85 3 1 12
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our ProtGauss model not only correctly predicts end binding modes of TFs but also 
reduces the number of incorrect predictions.

Predicted nucleosome‑binding modes in TFs of eukaryotes

To gain insights into the EB modes of eukaryotic TFs, we applied the ProtGauss model 
to thousands of TFs in five model species including yeast, nematode, fruit fly, mouse 
and human (Table 7). Examination of the fraction of TFs with predicted end preference 
reveals an interesting trend in eukaryotes. That is, the fraction of TFs with predicted EB 
mode achieves the highest in yeast (98.98%) and becomes lower in higher eukaryotes 
such as nematode (95.59%), fruit fly (96.01%), mouse (86.43%) and human (88.34%). This 
result indicates that compared to yeast, higher eukaryotes like mammals contain more 
TFs that do not have end binding preference and potentially target the central region of 
nucleosomes.

Human TFs not having end preference are enriched in the SOX and HOX families

To characterize the human TFs with no EB preferences, we first focused on the 13 
pioneer TFs [3] that are capable of binding nucleosomal DNA (Additional file 1: Sup-
plementary Table S9). It was found that 9 out of the 13 TFs are predicted to have end 
preference including OCT4/POU5F1 and p53. This result is consistent with previous 
studies that these two proteins interact with the end of nucleosomal DNA [30, 31].

A detailed analysis of the 1,664 human TFs showed that the TFs from a protein fam-
ily are likely to share the same DNA-binding domain (Additional file 1: Supplementary 
Table S10). Grouping the TFs based on their DNA-binding domains rendered 74 unique 
domain families, in which 10 domain families have at least 20 TFs (Additional file 1: Sup-
plementary Table  S11). Analysis of these 10 domain families revealed that the HMG 
domain (52 TFs) and the homeobox domain (198 TFs) stand out, with 11 and 67 TFs not 
having the EB mode, respectively (Additional file 1: Supplementary Table S12).

Further analysis showed that the SOX family, one of HMG-containing TF fami-
lies, contains a large fraction of TFs (10 out of 19, 53%) not having the end preference, 
including SOX2 and SOX11 (Additional file 1: Supplementary Table S12). This result is 
consistent with the cryo-electron microscopy (cryo-EM) structure of SOX2 or SOX11 
in complex with a nucleosome, in which SOX2 and SOX11 interact with nucleosomal 
DNA at the superhelical location 2, which is close to the center (dyad) of the nucleosome 
[9]. On the other hand, TFs without the EB mode are also enriched in the HOX family, 
one of the homeobox-containing TF families, with 23 out of 39 (59%) TFs having no end 

Table 7  Summary of EB mode prediction for transcription factors (TF) in different species

Species Predicted end preference Total

Yes No

Human 1470 (88.34%) 194 (11.66%) 1664

Mouse 1414 (86.43%) 222 (13.57%) 1636

Fruit fly 625 (96.01%) 26 (3.99%) 651

Nematode 715 (95.59%) 33 (4.41%) 748

Yeast 293 (98.98%) 3 (1.01%) 296
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preference (Additional file 1: Supplementary Table S13). These data are in accordance 
with recent work showing that the HOX family proteins have strong binding selectivity 
to less accessible chromatin regions [32]. Note that most members of two well-estab-
lished pioneer TF families, FOX and GATA, are predicted to have the EB mode, with 
only 17 (out of 49) and 0 (out of 10) TFs not having the EB mode, respectively (Addi-
tional file 1: Supplementary Table S13), indicating that TFs from these two families tend 
to interact with the end of nucleosomal DNA.

Discussion
In this paper, we develop a novel sequence-based machine learning model, ProtGauss, to 
predict nucleosome binding modes of TFs identified in previous studies [7]. Our model 
splits a protein sequence into overlapping ls-length subsequences, and the embeddings 
of these subsequences are learned with the ProtVec model [8] to obtain a feature matrix. 
With extensive exploration of subsequence lengths, we found that the length of 4 amino 
acids is optimal for predicting nucleosome binding modes of TFs. We also tuned the 
hyper-parameter α to achieve a high performance. With the optimal subsequence length 
and α, our model outperformed four off-the-shelf machine learning methods.

For comparison with the four machine learning algorithms, we used two differ-
ent metrics that capture the performance of the models from different perspectives. 
Accuracy is not appropriate for this task because of the imbalanced experimental data 
(Table  1). Also, accuracy is a strict metric that requires all the binding preferences to 
be predicted correctly to classify TFs as correctly classified. Thus, other metrics such as 
micro-averaged AUPR score are better alternatives for imbalanced data and multi-label 
classification. Moreover, micro-AUPR is used to compare the performance of different 
configurations of our models because micro-AUPR is not sensitive to the performance 
of the model on individual classes. Furthermore, in case of binary classification, we used 
MCC to compare models for predicting end binding preference. Since the number of 
positive samples are relatively larger than negative samples, micro-AUPR may be biased 
and may lead to overestimated performance for binary classification.

With the Gaussian representation of the sequences and the multi-label binding prefer-
ences, we adopted nested cross-validation to train and evaluate our proposed approach. 
We note that our model is robust with the random splitting of the dataset into folds over 
multiple runs. Furthermore, nested cross-validation allows us to tune the hyper-param-
eters using inner cross-validation and evaluate the performance of optimized models 
using outer cross-validation to alleviate the problem of overfitting.

We built binary classifiers based on full length sequences of TFs to identify which 
binding mode our method works best, and found that the classifier for the EB mode is 
superior to other classifiers. Testing this classifier with 24 TFs in the test set and 101 TFs 
in the alternative test set based on nucleosome occupancy data showed that the Prot-
Gauss model outperformed 4 baselines (Tables  4, 5). We further applied the classifier 
for end preference to thousands of TFs in five model organisms. Based on the results, 
we proposed a model for the EB mode of TFs (Fig. 7). That is, more than 88% of all TFs 
are likely to bind to the ends of a nucleosome or free DNA. This model is consistent 
with a well-known observation that most TFs are located in genomic regions with low 
nucleosome occupancies [33]. Interestingly, the fraction of TFs with end preference is 
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decreased in higher eukaryotes, compared to yeast. Furthermore, we found that most 
known pioneer factors have the EB mode, and the TFs having no end preference are 
enriched in the SOX and HOX protein families.

These observations have important implications. First, the number of TFs predicted not 
having the EB mode is increased in higher eukaryotes suggesting that these TFs may play 
an important role in differentiation and development. Second, the vast majority of known 
pioneer TFs (9 out of 13) have the EB mode, suggesting that the end preference is one of 
the main features of pioneer TFs. Third, many SOX and HOX family proteins have no end 
preference and can potentially target the central region of a nucleosome [7], suggesting that 
these TFs possess specific structural motifs that allow them to recognize cognate binding 
sites located inside of a nucleosome. It remains to be determined if they represent a new 
class of TFs that function differently from known pioneer TFs.

It is intriguing that some TFs (e.g., SOX14) are classified as having end-binding prefer-
ences and other TFs in the same protein family (e.g., SOX2 and SOX12) are predicted to 
bind internal sequence of a nucleosome. In our view, TFs in the same protein family may 
work in a coordinated manner. The TFs that are able to bind the central region of a nucle-
osome may act as a pioneer TFs to open chromatin. After that, this TF may be replaced 
by other family members that can only bind nucleosome ends or free DNA to initiate a 
developmental process. One example supporting this interpretation comes from the GATA 
family. GATA1/2/3 factors are required for the differentiation of mesoderm-derived tis-
sues, including the hematopoietic system [34]. In particular, GATA2 is uniquely induced by 
BMP4 signaling during the establishment of hematopoietic stem/progenitor cells (HSPC) 

nucleosome TF 

with end 
binding/free DNA 

binding

without end 
binding mode

>88% <12%

Fig. 7  A model for the end binding mode of TFs to a nucleosome. Over 88% of TFs in five model species are 
predicted to bind nucleosomal DNA ends or free DNA, whereas less than 12% of the TFs are predicted not to 
have the end binding preference. The fraction of the TFs binding to nucleosomal DNA ends or free DNA is the 
highest in yeast (~ 99%) and the lowest in mammals (~ 88%)
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[35–37] and is suppressed during the differentiation of HSPC to proerythroblasts (ProE). 
This suppression is mediated by the displacement of GATA2 from its upstream enhancer by 
GATA1, a process referred to as the ‘GATA switch’ [38].

Conclusions
ProGauss is a powerful machine learning method that learns features from protein 
sequences by mapping short subsequence representations as Gaussian distributions. 
The similarities between these distributions are used to define the kernel for training a 
SVM classifier. This method has been successfully applied to predict nucleosome bind-
ing modes of TFs, outperforming four other machine learning approaches. A binary 
classifier for the EB mode of TFs was applied to TFs in five model species, and it was 
found that about 88% of human TFs have this mode. Human TFs not having this mode 
are enriched in SOX and HOX TF families. Understanding whether these TFs have pio-
neering activities will shed new light on mechanisms underlying chromatin opening and 
developmental competence.
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