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Background
Liver cancer represent currently the sixth most frequent malignancy and the second 
mortality of cancer-related deaths, with more than 85,000 new cases annually in the 
world. HCC accounts for approximately 85–90% of liver cancer(1). The majority of 
HCCs occur in patients with underlying chronic liver disease and the main risk factors 
are the presence of hepatitis virus, alcohol abuse, obesity, nonalcoholic steatohepatitis 
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tic model, which separated HCC patients from TCGA dataset into high- and low-risk 
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low-risk group represented a survival advantage. Univariate and multivariate regression 
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traditional clinical indicators.
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and metabolic syndrome(2). Currently available treatments for HCC include surgical 
resection, liver transplantation, chemotherapy, radiofrequency ablation and the multiki-
nase inhibitor sorafenib(3). However, only a small part of patients are eligible for these 
therapies, and the clinical efficacy is also variable and very limited for advanced HCC 
due to the inherent biological and genetic heterogeneity(4). Given the high incidence 
and mortality of HCC, which lead to serious health problems and heavy social burden, 
identifying new biomarkers to further reveal pathogenesis, predict clinical prognosis and 
provide individualized treatment for HCC patient are critical and urgently demanded.

The rapid development of high-throughput technology make the researches of dis-
ease-related biomarker more and more feasible and reliable(5). Generally, the occur-
rence and further development of tumors are caused by multiple gene abnormalities, so 
it is difficult for a single gene to accurately reflect the tumor characteristics. Recently, 
there was a view that using multiple genes to predict tumor biological features seems 
more convincing(6, 7). The purpose of this study was to use the gene expression data in 
Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database to 
develop a multigene model to predict the prognosis of patients with HCC.

In this study, three GEO datasets were used to screen out hub genes. Then, a prog-
nostic model was constructed using TCGA data on the basis of these hub genes and the 
predictive performance of this model was evaluated. Finally, an independent GEO data-
set was further used to validate the significance of this model. All processes of this study 
were based on R, Perl software and several online tools.

Methods
Dataset preparation

In this study, three raw gene expression profiles (GSE121248, GSE40873, GSE62232) 
were downloaded from GEO database (https://​www.​ncbi.​nlm.​nih.​gov/​geo) (8). GPL570 
(HG-U1331_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array was performed 
for these datasets. The fragments per million (FPKM) expression profile of 424 HCC 
samples were retrieved from TCGA database (https://​cance​rgeno​me.​nih.​gov/). In addi-
tion, GSE14520 was used as validation cohort. Table  1 listed the sample size of each 
dataset.

Data preprocessing and identification of DEGs

The raw data of gene expression profiles from GEO were preprocessed for background 
correction, log2 transformation, quantile normalization and then probeset summari-
zation to gain gene expression matrix by using the Robust Multi-array Average (RMA) 

Table 1  Sample size of each dataset

Data set Non-tumor samples Tumor samples

GSE121248 37 70

GSE40873 49 0

GSE62232 10 81

GSE14520 241 247

TCGA​ 50 374

https://www.ncbi.nlm.nih.gov/geo
https://cancergenome.nih.gov/
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algorithm of the “affy” R package(9). GSE62232 and GSE40873 were merged into an 
merged dataset by Perl due to the scant nontumor samples in GSE62232, and no tumor 
samples in GSE40873. Given the batch effects in two datasets, the ComBat algorithm 
of the “sva” R package was employed to remove batch effects(10). The DEGs of the 
merged dataset and GSE121248 were analyzed through the Empirical Bayes function in 
“limma” R package(11), with the thresholds of adjust p < 0.05 and log fold changes (log 
FC) > 2.0. Visualization of the overlapping genes among the DEGs of the merged dataset 
and GSE121248 was achieved by online software VENNY (https://​bioin​fogp.​cnb.​csic.​es/​
tools/​venny/).

Construction of PPI network and identification of hub genes

The Search Tool for the Retrieval of Interacting Genes database (STRING, http://​string-​
db.​org) was utilized to construct PPI network with interaction score >  = 0.7 based on the 
DEGs(12). The subnetworks were generated by Molecular Complex Detetion (MCODE) 
with default parameters, a plugin for Cytoscape software used for clustering a significant 
subnetwork in the PPI network to screen hub genes(13).

Differential expression and functional enrichment of hub genes in TCGA cohort

HCC samples in TCGA cohort were uesd to perform differential expression analysis, 
Gene Ontology (GO) enrichment analysis (achieved by “enrichiplot” and “org.Hs.eg.db” 
R packages) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analy-
sis (achieved by “digest” and “Goplot” R packages), which aimed to explore the possible 
functions of the hub genes. Functional categories with FDR < 0.05 and log FC > 2.0 were 
considered as significant pathways.

Construction of the prognostic model and predictive performance evaluation

Hub genes that could predict prognosis independently (P < 0.05) in univariate hazard 
regression analysis, were used to construct the prognostic model through COX hazard 
regression. The initial construction of the model employed coxph function of the “sur-
vival” R package, and the subsequent optimization of the model used the step function. 
Genes with P < 0.1 were included in the model, and risk score was equal to the sum of 
the product of the expression value of each gene and its correponding hazard coefficient. 
The risk scores of TCGA samples were calculated and these samples were divided into 
high- and low-risk groups according to the median of risk score for subsequent evalu-
ation of the model performance. KM survival curve, risk score analysis, independent 
prognostic analysis and ROC curve were implemented to evaluate the performance of 
this model, and the correlation between risk score and survival state was also analyzed. 
At last, the predictive value of the model was validated by GSE14520. The overall work-
flow of this study was shown in Fig. 1.

Results
Identification of DEGs and hub genes

A total of 47 upregulated and 121 downegulated genes were identified from the merged 
dataset (Fig. 2a), and 164 upregulated and 38 downregulated genes were obtained from 
GSE121248 (Fig. 2b). 36 upregulated and 34 downregulated genes were further filtered 

https://bioinfogp.cnb.csic.es/tools/venny/
https://bioinfogp.cnb.csic.es/tools/venny/
http://string-db.org
http://string-db.org
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Fig. 2  Differantially expressed genes. a Merged dataset generated from GSE62232 and GSE40873. b 
GSE121248. c,d Venn plot of shared gene between merged dataset and GSE121248
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through overlapping the DEGs of two datasets (Fig. 2c, d), which were used to construct 
PPI network. Thirty five genes were involved in the PPI network (Fig.  3a). Two sub-
networks, which were regarded as hub genes, were further found and exhibited as 17 
nodes and 135 edges in subnetwork 1 (Fig. 3b) and 3 nodes and 3 edges in subnetwork 2 
(Fig. 3c).

Expression of hub genes and functional enrichment in TCGA cohort

Expression of hub genes in TCGA cohort were analyzed, and the results exhibited that 
the level of all hub genes were significantly different between tumor and non-tumor 
samples (p < 0.001) (Fig. 3d, e). GO enrichment analysis showed that nuclear division and 
organelle fission were the most enriched GO terms (Fig. 4a, b), and hub genes were sig-
nificantly enriched in p53 signaling pathway, Rheumatoid arthritis, Cell cycle and Viral 
protein interaction with cytokine and cytokine receptor pathways (Fig. 4c).

Construction and predictive performance evaluation of the prognostic model

Seventeen hub genes in subnetwork 1 were applied to construct the prognostic model, 
while three genes in subnetwork 2 were discarded because they were not independ-
ent prognostic factors (p > 0.05) (Fig. 4d). Finally, the prognostic model involved six 
genes, and risk score = 0.65619 * KIF20A—0.40871 * CDKN3 + 0.391238 * ZWINT − 1.
07861 * NUSAP1 + 0.757771 * DLGAP5 + 0.479682 * HMMR. The detailed information 
was shown in Table 2. The risk scores of HCC patients were calculated according to 
the prognostic model, and the median of risk score was defined as the cutoff to divide 
patients into high- and low-risk groups (n = 370, which have complete survival state 
and risk score information). KM survival analysis showed low-risk group represented 
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survival advantage compared with high-risk group (p = 1.553e−06) (Fig.  5a). ROC 
curve revealed that the AUC of risk score (AUC = 0.792) was higher than that of other 
clinical parameters (AUC = 0.511, 0.504, 0.478, 0.703, 0.708, 0.508, 0.508) (n = 235) 
(Fig.  5b). Univariate hazard regression analysis dispalyed that potential prognostic 
factors contained riskscore and several clinical indicators. However, only the satisfac-
tory predictive performance of risk score persisted regardless of other clinical param-
eters in the multivariate hazard regression analysis (p < 0.001, n = 235, which have 
complete clinical and risk score information) (Fig.  5c, d). Risk score analysis illus-
trated that death cases were increased and survival time was incrementally reduced 
along with increased risk score (n = 370) (Fig. 6a–c). In adition, the risk score of death 
cases were significantly higher than that of alive individuals (p = 2.0e−05) (Fig. 6d), 
and the distribution of risk score relative to tumor size was displayed in Fig. 6e. These 
results suggested the potential significance of the prognostic model.

a b

c d

Fig. 4  Functional enrichment and univariate regression analysis of hub genes in TCGA cohort. a,b GO 
enrichment analysis. CC, cellular component. BP, biological process. MF, molecular function. c Circle plot of 
KEGG pathway. d Univariate hazard regression analysis of hub genes

Table 2  Information of prognosis model

#   coef, coefficient; HR, hazard ratio

Gene_symble Coef# HR# HR.95L HR.95H P value

CDKN3 − 0.40871 0.66451 0.47098 0.93754 0.01996

ZWINT 0.39124 1.47881 0.98122 2.22874 0.06157

NUSAP1 − 1.07861 0.34007 0.22714 0.50913 1.62e−07

DLGAP5 0.75777 2.13351 1.21285 3.75304 0.00855

HMMR 0.47968 1.61556 1.09716 2.37891 0.01512

KIF20A 0.65619 1.92743 1.23469 3.00886 0.00388
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Validation cohort

The predictive stability of the prognostic model was validated with GSE14520 data-
set. The risk scores of tumor patients were significantly higher than that of the nor-
mal controls (Fig. 7a). KM survival analysis showed that the high-risk group displayed 
poorer survival compared with the low-risk group, while it did not reach statistical 
significance (Fig.  7b). Similarly, there was not significant correlation between risk 
score and TNM stage although the risk score gradually increased as the development 
of TNM stage (Fig. 7c). Tumor samples were divided into large and small groups with 
a diameter of 5  cm, and lower expression scores were significantly associated with 
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smaller tumor size (Fig. 7d). These results suggested that the prognostic model may 
function as an independent biomarker to predict the outcome of patients with HCC.

Discussion
Patients with HCC are generally characterized by poor prognosis, and there have been 
numerous studies to explore clinical biological signatures. In this study, three GEO 
datasets were used to analysis of DEGs. Subsequently, 35 genes were selected by PPI, 
and then twenty hub genes were generated by Cytoscape software. In order to explore 
the function of these hub genes, GO and KEGG enrichment analysis were carried out 
hosted on the TCGA cohort, and the results displayed that nuclear- and chromosome-
related GO term, p53 signaling pathway and cell cycle were the main enrichment path-
ways. Seventeen genes (P < 0.05) were selected from twenty hub genes by univariate 
regression analysis to construct the prognostic model by COX hazard regression analysis 
using TCGA data, and finally, six genes (CDKN3, ZWINT, NUSAP1, DLGAP5, HMMR, 
KIF20A) were involved in the prognostic model.

KIF20A is associated with drug resistance and the clinical prognosis in diverse can-
cers. Previous studies suggest high expression of KIF20A is linked with poor clinical out-
comes(14), and maybe involved in process of transformation of cirrhosis to HCC(15). 
In terms of drug resistance, KIF20A promotes paclitaxel resistance of breast cancer(16), 
and also insensitizes colorectal tumor to chemotherapy(17). In this study, the expression 
of KIF20A was positively correlated with the risk score that indicated poor outcomes.

DLGAP5, also known as HURP, is an important mediator for chromosome congres-
sion and alignment. Compelling evidence elucidates that DLGAP5 promotes the devel-
opment of non-small cell lung cancer(18), and is overexpressed in HCC and plays a 
critical role in the cancer cell cycle(19). Vice versa, a study confirms DLGAP5 silence 
could inhibit HCC cell cycle and proliferation(20). We also suggested DLGAP5 was a 
risk factor for HCC.

Many reports show that ZWINT is a predictor of tumor development. ZWINT is rela-
tive to risk index in pulmonary adenocarcinoma, that implies high level of ZWINT is 
correlated with poor outcomes(21). Similarly, elevated ZWINT could promote HCC 
clinicopathological features, and also possibly result in reduced overall survival and ris-
ing tumor recurrence(22). A study of prostate suggest ZWINT upregulation is correlated 
with higher Gleson scores and tumor grade(23).

The correlation between increased HMMR and poor prognosis has been reported in a 
variety of malignant tumors, including breast cancer(24), lung cancer(25), stomach can-
cer(26) and glioblastoma(27). Our results were in accordance with previous studies. In 
addition, HMMR may be contributed to proliferation, metastasis and invasion of breast 
cancer(28).

CDKN3, as tumor repressor, encodes protein that belongs to the dual-specific-
ity protein phosphatase family. The role of CDKN3 has been controversial in tumor 
progression. Increasing evidences suggest that CDKN3 could promote tumor pro-
gression. Overexpression of CDKN3 is associated with poor prognosis in lung adeno-
carcinoma(29), and the silence blocks proliferation and metastasis of pancreatic ductal 
adenocarcinoma(30). In contrast, CDKN3 is relatively downregulated in brian tumor 
compared with normal brain tissue(31). In adition, the level of CDKN3 is negatively 
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correlated with HCC clinical pathological stage, and downregulation of CDKN3 pro-
motes tumor clonogenic ability(32). The present study was consistent with later that 
CDKN3 was a protective factor in tumor development. The role of CDKN3 in tumors 
needs to be further investigated.

The function of NUSAP1, the last signature of the prognostic model, has also been 
controversial in tumor progression. It’s reported that HCC patients with upregulated 
NUSAP1 possess reduced survival times(33). Similar results are observed in a study 
of melanoma(34). Moreover, NUSAP1 is involved in the resistance to antitumor ther-
apy(35). However, current understanding of cervical cancer debates that low expression 
of NUSAP1 is associated with higher tumor stage, and results in worse clinical out-
comes(36). Our results illustrated the coefficient of NUSAP1 was negative which implied 
the high level of NUSAP1 predicted the survival advantage of HCC patients. The func-
tion of NUSAP1 in tumor development need to be further explored by biomolecular and 
cellular research.

Finally, the predictive performance of the prognostic model was evaluated. K–M curve 
and risk score analysis indicated low-risk group had better prognosis than high-risk 
group, and univariate and multivariate regression analysis showed risk score might be 
an independent prognostic factor. Meanwhile, ROC analysis displayed the AUC of risk 
score was higher than that of other clinical indicators which illustrated risk score hold 
more prognostic value. In addition, the risk score of death cases were higher significantly 
than that of alive patients. The results of validation cohort also showed this prognostic 
model represented a prognostic significance for patients with HCC. Based on the analy-
sis above, it was reasonable to regard risk score as a prognostic biomarker for HCC.

The whole process have combined multiple analysis methods, such as merging two 
GEO datasets and removing batch effect to expand the sample size and compensate for 
the lack of a certain sample type, generating subnetworks to identify hub genes rather 
than simply selecting top-ranked genes, and employing diverse risk score-related anal-
ysis and independent validation to evaluate the predictive power of the model. These 
methods may reduce false positive rate and therefore make the results more reliable and 
convincing. We hope that this workflow will be helpful for bioinformatics research in the 
future.

Conclusion
We utilized bioinformatics methods to analyze HCC-related gene expression profiles 
from GEO and TCGA data. A prognostic model involving six genes was constructed 
through Cox hazard regression analysis, and the results of predictive performance evalu-
ation represented the clinical value of this modle. At last, the consistent findings in vali-
dation cohort demonstrated that the prognostic model may be used as a tool to achive 
risk stratification of patients with HCC. For patients with higher risk score, more inten-
sive systemic surveillance and therapy could be considered. Considering our attempt 
was definitely exploratory and the clinical value of the prognostic model to accurately 
predict prognosis was the ultimal goal, this work should not be regarded as the definitive 
result and more external verification work are needed to validate the predictive perfor-
mance of this prognostic model.
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