
Harvestman: a framework for hierarchical
feature learning and selection from whole
genome sequencing data
Trevor S. Frisby1†, Shawn J. Baker1†, Guillaume Marçais1, Quang Minh Hoang2, Carl Kingsford1* and
Christopher J. Langmead1*   

Abstract 

Background:  Supervised learning from high-throughput sequencing data presents
many challenges. For one, the curse of dimensionality often leads to overfitting as
well as issues with scalability. This can bring about inaccurate models or those that
require extensive compute time and resources. Additionally, variant calls may not be
the optimal encoding for a given learning task, which also contributes to poor predic-
tive capabilities. To address these issues, we present Harvestman, a method that takes
advantage of hierarchical relationships among the possible biological interpretations
and representations of genomic variants to perform automatic feature learning, feature
selection, and model building.

Results:  We demonstrate that Harvestman scales to thousands of genomes compris-
ing more than 84 million variants by processing phase 3 data from the 1000 Genomes
Project, one of the largest publicly available collection of whole genome sequences.
Using breast cancer data from The Cancer Genome Atlas, we show that Harvestman
selects a rich combination of representations that are adapted to the learning task,
and performs better than a binary representation of SNPs alone. We compare Harvest-
man to existing feature selection methods and demonstrate that our method is more
parsimonious—it selects smaller and less redundant feature subsets while maintaining
accuracy of the resulting classifier.

Conclusion:  Harvestman is a hierarchical feature selection approach for supervised
model building from variant call data. By building a knowledge graph over genomic
variants and solving an integer linear program , Harvestman automatically and optimally
finds the right encoding for genomic variants. Compared to other hierarchical feature
selection methods, Harvestman is faster and selects features more parsimoniously.

Keywords:  Feature selection, Hierarchical feature spaces, Knowledge graphs, Integer
linear programming, Machine learning

Open Access

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Frisby et al. BMC Bioinformatics (2021) 22:174
https://doi.org/10.1186/s12859-021-04096-6

*Correspondence:
carlk@cs.cmu.edu;
cjl@cs.cmu.edu
†Trevor S. Frisby and Shawn
J. Baker have contributed
equally to this work
1 Computational Biology
Department, Carnegie
Mellon University, Pittsburgh,
PA, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0001-7521-6736
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04096-6&domain=pdf

Page 2 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

Background
Introduction

Supervised learning from high-throughput sequencing data presents many challenges
[1, 2]. First among these is the curse of dimensionality, which predisposes learning
algorithms to overfitting and imposes barriers to scalability [3]. A second critical
challenge is that raw variant calls may not be the optimal feature encoding for a given
learning task [4]. The most informative, and biologically relevant encoding of a given
variant may be at a higher level of organization, such as a perturbation in a particu-
lar exon, transcript, or pathway. This paper addresses both challenges by introducing
Harvestman, a method that automatically identifies a non-redundant set of relevant
features chosen from a hierarchy of biological encodings of the raw variants.

Strategies for finding effective representations of the data include feature engineer-
ing methods, which apply domain knowledge to define features a priori, and feature
learning methods, which apply supervised or unsupervised learning algorithms to the
task. Feature engineering is largely a manual process, but for that reason it is likely to
produce encodings that are meaningful to domain experts. Feature learning methods
are largely automated, but may produce features that are difficult to understand [5,
6]. Harvestman employs a hybrid approach to finding an effective encoding of the
data. It first constructs a hierarchy of potential representations for each variant. We
refer to that hierarchy as the knowledge graph. Our knowledge graph is derived from
existing genomic annotations and ontologies, to ensure that each putative encoding is
biologically relevant, but the Harvestman framework can also incorporate alterna-
tive, user-defined knowledge graphs.

Traditional approaches to mitigating the curse of dimensionality fall into two basic
categories: feature extraction methods and feature selection methods [7]. Feature
extraction methods find a new lower-dimensional feature subspace using informa-
tion about the current feature space, usually in an unsupervised fashion. Hence, the
extracted features are not present within the original data, but rather constructed
from it. Among the most common feature extraction techniques is Principle Com-
ponents Analysis. A downside with such feature extraction methods is that they may
become unreliable when the vast majority of the input features are irrelevant to the
prediction task, as is often the case with genomic data [8]. Moreover, the induced
features are typically linear or non-linear combinations of the input covariates. Such
representations can be difficult to understand.

Feature selection methods, in contrast, explicitly select informative subsets of
covariates [9], and do not change the way those features are encoded. Thus, if the
given features have an intuitive interpretation, the chosen subset will as well. Feature
selection techniques are typically categorized as being either a filter, a wrapper, or an
embedded method [10, 11]. Filter-based methods (e.g., ReliefF [12]) rank individual
features according to some scalar quantity, such as the mutual information between
the feature and the label. The user then selects the top k features for subsequent
model-building. Wrapper methods (e.g., CFS [13]) explicitly rank various subsets of
features, with the highest ranking subset then chosen. Embedded methods select fea-
ture subsets during model building (e.g., by applying L1-regularization).

Page 3 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

Harvestman employs supervised hierarchical feature selection under a wrapper-
based regime, as it solves an optimization problem over the knowledge graph designed
to select a small and non-redundant subset of maximally informative features. In this
way, Harvestman automatically learns the best feature encoding while performing fea-
ture selection. Critically, we will show that Harvestman is more parsimonious than
competing hierarchical feature selection strategies, meaning Harvestman selects fewer
features without sacrificing classifier accuracy.

Harvestman and related work

Traditional feature selection strategies are not intended for hierarchical feature spaces,
where the parent of a given feature represents an alternative encoding of the same under-
lying observation(s). Harvestman builds on recent techniques [14–16] for solving the
hierarchical feature selection problem. Let V = {v1, . . . , vm} be a set of features (nodes)
and let G = (V ,E) be a directed acyclic graph over those features. Here, the topology of
G encodes the hierarchical relationships among the features (if any) such that a directed
edge from node vi to vj implies that vj represents a higher level abstraction of node vi . In
the current paper, G is the knowledge graph that encodes the potential interpretations
(i.e. feature encodings) for a given set of variant calls (see Fig. 5). Naturally, each vertex/
feature in G will be correlated with its ancestors and descendants, and so it is important
to identify and eliminate redundant features. The (supervised) hierarchical feature selec-
tion problem is: given G and a set of labeled training instances, select the most informa-
tive and least redundant subset of V.

There are many different hierarchies that might be used to construct the knowledge
graph from genomic data. Perhaps the most obvious one corresponds to the overlap
between genomic loci known to play a functional or regulatory role. Here, the terminal
nodes of G might correspond to specific positions within the genome. Internal nodes
correspond to higher levels of annotation that denote specific regions in the genome,
such as transcripts or genes. Alternatively, one might use the existing Gene Ontology
(GO) hierarchies [17, 18] to define the knowledge graph. The GO graphs describe the
cellular components, molecular functions, and biological processes associated with each
gene and its products. Unlike genome annotations that relay structural information
about specific genomic regions, GO annotations provide broader information about the
systems and processes that changes to these regions may affect. Combining the knowl-
edge contained by multiple annotation types thus captures a fuller picture for genomic
variation. Harvestman’s strategy is thus to combine any given graphs into a unified
hierarchy that represents a wide range of potential interpretations of the raw variants. In
the current paper, Harvestman combines a graph extracted from the genome annota-
tion with the three GO graphs.

Hierarchical feature selection is a relatively new area of research. Harvestman
is most closely related to a recent greedy algorithm by Ristoski and Paulheim named
SHSEL [14], as both approaches seek to maximize feature relevance while reducing
feature redundancy. The SHSEL algorithm has two steps. In the first step, SHSEL itera-
tively processes the graph from the leaves to the root. A node is removed from G if it is
uncorrelated with the label (i.e. irrelevant), or highly correlated with one of its ances-
tors (i.e. redundant). In the second step, SHSEL computes the average relevance of the

Page 4 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

remaining nodes along each path from the root to a leaf. A node is removed if its rel-
evance is below-average on a given path. The SHSEL algorithm is elegant, but it is not
guaranteed to output an optimal set of features (i.e., those that are both maximally rel-
evant, and least redundant). Like Harvestman, SHSEL is also a supervised approach.
While we focus this work on supervised methods, we recognize that unsupervised
methods have also been explored [16].

Applications of hierarchical feature selection to biology and medicine have been
reported, including the HIP (select Hierarchical Information Preserving features) and
MR (select Most Relevant) algorithms [15, 19, 20]. Like Harvestman, these approaches
use GO to define a hierarchy of binary features, although are intended for the analysis
of gene expression data rather than genomic variants, and do not incorporate any other
hierarchy types. Additionally, HIP and MR are intended for lazy-learning, where fea-
ture selection and model building are performed for each new instance. Harvestman
instead identifies features that work well across a cohort of samples.

As previously mentioned, one limitation of existing hierarchical feature selection
methods is that they provide no guarantees with respect to the optimality of the chosen
features. Harvestman, in contrast, formulates the problem as an integer-linear pro-
gram (ILP) where the user specifies an objective function and an optional set of con-
straints. The objective function defines the desired tradeoff between some measure of
feature relevance (e.g., mutual information) and redundancy (e.g., correlation). The user
may also specify suitable linear constraints, such as the maximum number of features to
be selected. An ILP solver then returns a subset of maximally informative and minimally
redundant subset of features, subject to the constraints, or else reports that no solution
exists. Ghalwash et al. [21] propose a similar ILP-based method for (non-hierarchical)
feature selection using expression data. They ultimately relax their ILP to a convex opti-
mization problem, because integer programming is NP-complete. We will demonstrate
that when using modern ILP solvers, it is possible to perform hierarchical feature selec-
tion over very large knowledge graphs. We note that while Harvestman does make
simplifying assumptions with the data prior to solving an ILP, the problem presented to
the ILP is solved exactly. When we refer to the optimality of Harvestman, we are refer-
ring to the value of the user-specified objective.

Results
We evaluated Harvestman in two ways. First, we tested its scalability using the 1000
Genomes data. Second, we compared Harvestman to existing methods for feature
selection on a subset of The Cancer Genome Atlas (TCGA) breast cancer data.

Evaluating Harvestman’s scalability using 2504 whole genome sequences

To demonstrate the effectiveness of Harvestman at scale, we apply our method to data
obtained from the 1000 Genomes Project [22], a large and well-known publicly available
DNA sequencing data set. In these experiments, we use their most recent Phase 3 data,
which includes a combination of low-coverage whole genome and high-coverage exome
sequencing for each of 2504 samples. These samples belong to one of five ethnic super-
populations (African, American, South Asian, East Asian, and European). In this experi-
ment, we perform feature selection and model building with the task of predicting ethnic

Page 5 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

super-population from DNA sequence, and evaluate Harvestman’s scalability using a
variety of solvers and progressively more powerful public cloud computing instances.

We run five-fold cross validated experiments using two versions of the knowledge
graph, one without SNP representation totalling roughly 1.5 million nodes, and one
with SNP representation totalling roughly 25 million nodes. In Fig. 1 we demonstrate
both Harvestman and SHSEL as computationally intensive feature selection methods,
and a simple threshold test as a baseline. Memory usage is not shown, since it remains
relatively constant across experiments and never exceeds 8 GB. Since the knowledge
graph is fully constructed while running the inexpensive threshold test, and training a
multi-class logistic regression classifier takes no more than several seconds, we can use
threshold timings as a proxy for the time spent loading nodes and edges into memory
and computing mutual information.

We apply several pre-processing steps before running the feature selection methods.
Since building an ILP problem with the full graph would take at least two days of pro-
cessing time, we filter nodes from the smaller and larger graphs by applying a mutual
information threshold of 0.2 and 0.4, respectively. This reduces total feature size to
between 15,000 and 30,000 and produces no more than 120,000 correlations to consider.
For ease of reproduction, we limit the selection set size to 1000 and use COIN-OR solver
with a maximum runtime of 1 h.

While running Harvestman to construct an ILP with four CPU cores, graph con-
struction takes 33% of the runtime in the small graph but as much as 79% of the runtime
in the SNP-enhanced graph. Harvestman then spends its remaining time computing
correlations, setting up an ILP problem, and finally running a solver instance. Once the
instance is constructed, even difficult problems can be solved quickly and economically
with commercial solvers such as CPLEX. To demonstrate this, we select 5000 features to
predict ancestry on the SNP-inclusive 1000 Genomes graph, which corresponds to an

Fig. 1  Harvestman can solve large problem instances in hours. Timing for graph construction and feature
selection using Harvestman, SHSEL, and an MI threshold with access to varying numbers of CPUs on the 1000
Genome data. The initial graph consisted of 23,393,068 nodes. This figure was generated using Matplotlib
version 3.2.1

Page 6 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

ILP problem with roughly 70,000 considered features and over 1.2 million correlations
between them. CPLEX will find an optimal solution in under a minute and six gigabytes
of RAM. The commercial Gurobi solver and open source COIN-OR solver will not come
to a solution on such a problem in under 48 h, but are suitable for smaller problems.

Our method, like SHSEL, scales to multiple processors. Each fold of cross-validation
can be run in separate threads that receive data from a single producer thread, which
allows us to implement coarse grained parallelism with relative ease. We can achieve
finer parallelization by dividing the computation of correlations and other graph pro-
cessing tasks as we build the ILP. For solving the ILP, both CPLEX and Gurobi allow
multiple threads and scaling across multiple machines using message passing. The most
time consuming steps that must be performed serially are reading the knowledge graph
and associated feature vectors from the binary files, and accessing the solver API to con-
struct the problem from the processed graph. However, these actions can be performed
concurrently with the other parts of the program, and do not pose a major hindrance
with the number of cores available at the range of a high-end desktop or economically-
available cloud instance.

Once the features are selected, training a logistic regression (or any other) classifier
takes a trivial amount of time, and its memory consumption increases with the number
of features. Models built with the selected features were able to properly classify ethnic-
ity with over 99% accuracy. This high level of accuracy is expected, as it is known that
there are strong markers for geographically separated populations scattered throughout
the genome [22].

Using Harvestman to predict cancer survival outcomes

A difficult yet important problem in cancer genomics is finding markers that are pre-
dictive of patient outcomes. Adding to the difficulty is that the available training data
may be small, with respect to the number of patients, and/or imbalanced with respect
to the relative proportions of each outcome. We demonstrate here the effectiveness of
using our hierarchical representation of DNA sequence data in these settings by building
models for two binary breast cancer survival outcomes.

Using a curated subset of the TCGA BRCA cancer data, we considered two binary
endpoints: predicting five-year survival and five-year disease-free survival. The five-year
survival data set contains 136 samples with a 100/36 outcome ratio. The five-year dis-
ease-free survival data set contains 120 samples with an 89/31 outcome ratio. Sequenc-
ing and survival status data was obtained from [23], and all data was initially processed
according to the original TCGA specifications [24]. We report results obtained from ten
different permutations of the data. For each permutation, we held out 30% of the data
for testing. We did five-fold cross validation on the remaining 70%, and report the cross-
validated accuracy on the holdout set. Thus, each permutation has a unique hold-out set
and training set. These ten permutations were created to test the robustness of the fea-
ture selection and model building steps. Note that the training and holdout sets for each
permutation are not identical between endpoints.

For comparison, we also applied the previously described SHSEL hierarchical feature
selection algorithm [14] and the ReliefF [12] algorithm to the same data partitions.
ReliefF is a well-known, scalable, but non-hierarchical approach to feature selection.

Page 7 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

Briefly, ReliefF ranks features according to their ability to discriminate between labels.
We note that, being a filter method, relieff simply ranks the features. The user then
decides how many features to include in the classifier.

The main tunable parameter for SHSEL is a similarity threshold, which is analogous to
Harvestman’s mutual information threshold, t (see Methods). We used SHSEL’s rec-
ommended similarity threshold of 0.99 in our experiments. With relieff, we select the
top c features, where c is the number of features selected by Harvestman when given
the same train-test split. We did not place a limit on the number of features Harvest-
man should choose, rather we allow the ILP to simply choose the number of features
that maximize the objective. For each experiment, an identical knowledge graph was
used as a starting point for each algorithm. To further show robustness of the method,
we report classification accuracy obtained with three different classifier types, logistic
regression (LR) with no regularization, random forest (RF) using 100 trees, and sup-
port vector machine (SVM) with radial basis function kernel. All unspecified classifier
parameters were left in their default settings.

Harvestman’s knowledge graph is more informative than a binary encoding of raw SNPs

Harvestman is predicated on the idea that the knowledge graph, a hierarchical rep-
resentation of prior knowledge over the human genome, may contain more suitable
feature encodings than raw SNPs. By construction, the bottom layer of Harvestman’s
hierarchy consists of annotated SNPs, and further loci-centric annotation comprise the
higher layers. In order to demonstrate the informative value of the knowledge graph
with respect to that of SNPs alone, we ran experiments using three segments of the
knowledge graph:

1	 All node types
2	 All node types except SNPs
3	 Only SNPs

For both survival endpoints, we initialized knowledge graphs using starting MI thresh-
olds of 0.05, 0.075, 0.1, and 0.125. For cases (1) and (2) above, we then applied Harvest-
man’s ILP-based feature selection strategy. We trained classifiers on the selected feature
subsets as well as with the SNPs from each graph alone, and report the model AUC as a
function of feature counts in Fig. 2. Each data point in Fig. 2 corresponds to one of the
four initial knowledge graphs, where the initial MI threshold decreases moving from left
to right. We do not perform further feature selection on segment 3 (only SNPs). With
respect to the five year survival endpoint, the number of nodes in segment 3 is less than
the total number of nodes selected by Harvestman on segments 1 and 2. In contrast,
the number of segment 3 nodes is more comparable to those selected on segments 1 and
2.

For both endpoints, the features selected by Harvestman from segment 1 and 2
knowledge graphs achieve a higher AUC than those for segment 3 ( p < 0.05 , paired
t-tests), and this behavior generalizes across three classifier types. This suggests that
features encoded within the knowledge graph are more informative for these classifica-
tion tasks than are encodings of SNPs alone. Furthermore, there is no difference in AUC

Page 8 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

when comparing Harvestman over the complete knowledge graph and Harvestman
over the knowledge graph sans SNPs. This further verifies that the best set of features is
obtained using portions of the graph representing genomic loci at a broader scale than
individual SNPs. If this were not the case, then we would expect Harvestman sans
SNPs to perform more poorly than Harvestman over the complete knowledge graph.
Additionally, Harvestman is still able to identify these informative, higher level fea-
tures even when presented less informative SNP nodes. We conclude that the knowledge
graph effectively encodes genomic features better than using raw SNPs alone.

Recall that the knowledge graph is built from two primary sources—genomic loci-
based annotations and the GO hierarchy. To evaluate the relative contributions of both
components to these two prediction tasks, we ran experiments where we limited the
construction of the knowledge graph to each of these constituent parts. Tables 1 and 2
show results when using Harvestman on these knowledge graphs applied to the five-
year survival and five-year disease-free survival endpoints, respectively. For simplicity,
these results focus on the most lenient MI threshold (0.05) and use only a single clas-
sifier type (logistic regression). For these two endpoints, the differences in model AUC
make it apparent that the Genomic portion of the knowledge graph is more informative
than the GO portion. While the raw number of selected Genomic features is also much

Fig. 2  The knowledge graph is more informative than raw SNPs. AUC as a function of feature counts for five
year survival (top) and five year disease free survival (bottom) obtained with logistic regression (left), random
forest (middle), and SVM (right). Each point in each figure corresponds to a knowledge graph that has been
filtered by one of four MI thresholds (0.125, 0.1, 0.075, and 0.05.). The points are ordered from left to right in
order of decreasing MI thresholds. Harvestman selects different numbers of features (x-axis), depending on the
input graph. Comparisons are made using models trained on binary encodings of SNPs that passed those
same thresholds. This figure was generated using Matplotlib version 3.2.1

Table 1  Harvestman applied to the five-year survival endpoint over a full knowledge graph (GO +
Genomic) and both of its constituent components (GO, Genomic)

Values shown are averaged over five-fold cross validation, and AUC was obtained from a logistic regression classifier

Knowledge graph Selected count AUC​

GO + GENOMIC 23,939 0.74

GO 85 0.58

Genomic 23,836 0.74

Page 9 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

higher, the net reduction in features chosen from each graph relative to its initial size is
similar, as the GO graph starts with approximately 43,000 nodes, whereas the Genomic
graph starts with greater than 2 million.

Harvestman selects fewer features than SHSEL without sacrificing model AUC​

Given the success of using the knowledge graph compared to an encoding of SNPs alone,
we next compare Harvestman to SHSEL and relieff over knowledge graphs contain-
ing each node type. Using the same initial MI filters as before, we show in Fig. 3 the
AUCs of three different classifiers on both survival tasks as a function of the number of
features selected by each method. We also include as a natural baseline a model trained
on all features that passed each initial threshold.

Reducing the dimensionality of data is the primary goal of any feature selection strat-
egy. In each experiment, we find that Harvestman selects significantly fewer features
than SHSEL or the threshold baseline ( p < 0.05 , paired two-sided t-test).

As the initial graph increases in size, this effect becomes increasingly more pro-
nounced. In the case of the most lenient threshold used (0.05), we find that SHSEL
selects nearly 60,000 features from the five year survival knowledge graph and 40,000
from the five year disease free survival, and does not improve much upon the threshold

Table 2  Harvestman applied to the five-year disease-free survival endpoint over a full knowledge
graph (GO + Genomic) and both of its constituent components (GO, Genomic)

Values shown are averaged over five-fold cross validation, and AUC was obtained from a logistic regression classifier

Knowledge graph Selected count AUC​

GO + GENOMIC 11,671 0.68

GO 107 0.55

Genomic 11,497 0.68

Fig. 3  Harvestman is more parsimonious than SHSEL, meaning it selects fewer features than SHSEL without
sacrificing model AUC. AUC as a function of feature counts for five year survival (Top) and five year disease
free survival (bottom) obtained with logistic regression (left), random forest (middle), and SVM (right). In each,
Harvestman is applied to complete knowledge graphs with MI thresholds 0.125, 0.1, 0.075, and 0.05, moving
left to right. This figure was generated using Matplotlib version 3.2.1

Page 10 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

baseline. This is compared to about 20,000 and 15,000 features respectively with Har-
vestman. Thus, Harvestman is more effective, in terms of reducing total feature
counts for these two endpoints.

When we consider the underlying AUC of each trained model, we see several patterns
that depend on classifier type and the survival endpoint. With respect to disease free
survival, there is a general trend that as we decrease the initial threshold, the AUCs tend
to increase or plateau, as each feature selection strategy chooses larger numbers a fea-
tures that are used in training. The highest average AUC measured overall corresponds
to Harvestman using LR, though SHSEL and ReliefF obtain the highest AUCs when
using RF or SVM, respectively.

In general, we note that all models obtain higher AUC in the five year survival setting
compared to five year disease free survival. With the LR classifier, we found no statisti-
cally significant differences between model AUCs, though note that the best overall AUC
was obtained by a model using SHSEL. RF and SVM classifiers show evidence of overfit-
ting, as AUC tends to decrease as the number of features increases. Note that the scal-
ing of the AUC and feature count axes indicate these differences are not as stark as they
may at first seem, as AUC varies by less than 0.2 across experiments using both classi-
fiers. In any case, this trend occurs independent of feature selection strategy. With SVM,
there is no statistical difference between AUCs across experiments. With RF, there are
instances where a ReliefF model (initial MI threshold 0.125) and Threshold model (ini-
tial MI threshold 0.05) outperform the Harvestman model. In the Threshold case, we
note that Harvestman had selected significantly fewer features in that experiment. The
most common result is that model AUCs obtained with each feature selection method
are statistically indistinguishable for a given MI threshold and classifier type. In general,
this means that Harvestman can select fewer features than the hierarchical method
SHSEL and the baseline threshold method without sacrificing model AUC. Harvest-
man is thus more parsimonious than SHSEL.

Comparing selected feature sets by average correlation

It is desirable for feature selection algorithms to select non-redundant features. We
investigated the redundancy of features selected by each algorithm over knowledge
graphs by computing pairwise correlations between subsets of selected features. For
each experiment, we randomly selected 1000 features selected by each feature selec-
tion strategy, and report in Fig. 4 the absolute values of pairwise Pearson correlations
between those features.

In both endpoints, we notice some similar trends. For one, ReliefF consistently selects
the most redundant features. While both Harvestman and SHSEL consider pairwise
similarity of hierarchically related features as a means of reducing redundancy among
their selected feature subsets, ReliefF does not. It therefore makes sense that Harvest-
man and SHSEL should select less redundant features than ReliefF. Among features
that pass the initial mutual information threshold, ReliefF selects a redundant subset,
which is why ReliefF also has higher pairwise correlation than the Threshold.

With respect to the two hierarchical feature selection methods, we notice that as the
initial MI threshold decreases, there is a more pronounced difference between pairwise
correlations obtained by Harvestman relative to SHSEL. For both endpoints, when

Page 11 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

considering knowledge graphs constructed with MI thresholds 0.05 and 0.075, features
selected by Harvestman have lower pairwise correlation compared to SHSEL, and the
differences are statistically significant. For thresholds 0.1 and 0.125, Harvestman does
not select less redundant subsets. Since lower initial thresholds correspond to larger
initial knowledge graphs, this suggests that Harvestman is more adept at finding less
redundant features in larger problem instances. Additionally, where Harvestman is
able to select fewer redundant features than SHSEL, so too is it able to select fewer fea-
tures than the MI baseline, whereas SHSEL is unable to improve upon the baseline.

Discussion
In comparison to alternative methods, Harvestman tends to make more parsimonious
selections, meaning smaller or similar sized subsets of features. Smaller feature subsets
are desirable for both practical and statistical reasons. In particular, smaller subsets may
be easier for humans to interpret and understand, and will produce simpler models that
are less likely to overfit the training data. Additionally, standard results from statistical
learning theory [25] show that the number of samples required in order to successfully
learn a discriminative model is linear in the VC dimension [26] of the hypothesis space.
The VC dimension for most models is typically linear in the number of parameters [27]
which, in turn, is at least linear in the number of input features. Like SHSEL, our method
uses a knowledge graph to guide feature selection. However, as the knowledge graph
increases in size, Harvestman is more aggressive when it comes to eliminating redun-
dant features.

By construction, each node (feature) in our knowledge graph corresponds to specific
genomic annotation. This makes it straightforward to relate prior knowledge to the clas-
sification task at hand, and strengthen existing relationships or forge new ones. Mov-
ing forward, we look to strengthen our knowledge graph by adding more diverse sets of
annotation, particularly those that identify regulatory elements across the genome. This
can help make the graph more directly interpretable, and may make inspecting selected
features instructive. While our experiments are performed over our knowledge graph,
we note that Harvestman and SHSEL are easily configured to use any suitable knowl-
edge graph.

Fig. 4  Harvestman selects fewer redundant features than other methods as graph size increases. The average
absolute pairwise correlation of 1000 randomly sampled selected features for each selection algorithm for
both the five year survival (Left) and five year disease free survival (Right). Error bars denote standard errors
over ten runs with different train-test permutations. This figure was generated using Matplotlib version 3.2.1

Page 12 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

Harvestman provides an additional degree of customization through the ILP
objective. In particular, the ILP objective function specifies the global properties of
the resulting feature set. For example, users can control the size of the set and adjust
the tradeoffs between feature relevance and redundancy. SHSEL, in contrast, per-
forms feature selection via explicit graph traversals. That is, SHSEL selects features
based on local properties in the graph, while Harvestman solves a global optimi-
zation problem, exactly. Harvestman’s ILP-based formulation also facilitates the
enumeration of multiple, distinct solutions, a capability not provided by SHSEL. This
means that after the first solution is found, it is possible to force the ILP solver to find
a second solution with the same objective value if one exists. In this way, it is possible
to generate multiple solutions. In general, it is possible to augment a given ILP objec-
tive with arbitrary constraints, and then re-run the solver. In particular, we could add
constraints that force the ILP to find a solution that differs from the previous by some
minimum number of features. In future work, we envision exploring this functionality
as a means to identify robust features by solving iterative ILP problems. Since integer
programming is NP-complete, one drawback with these approaches is that there is no
guarantee that they can be solved quickly. While the commercial CPLEX solver works
well on the problems we tested, it is likely that there exists problems where the solver
would not perform as efficiently. We leave effort towards relaxing Harvestman’s ILP
formulation to the easily solvable LP case for future work.

We note that it is straightforward to adapt Harvestman to incorporate additional
data types (e.g. expression data). The knowledge graph does not need to be a con-
nected graph. Thus, it is easy to incorporate additional hierarchies, even isolated fea-
ture nodes. This same capability means that it is possible to evaluate different ways of
constructing internal nodes. In our experiments, the binary vectors associated with
the internal nodes of the knowledge graph were primarily constructed using logical
or’s. If desired, one could create and include additional graphs where the binary vec-
tors are constructed using logical and’s or any other user-specified function. This
capability may be useful when it is unclear which relationships among features best
reflect the true relationships between features. While our experiments were per-
formed on binary-valued features, the approach is capable of incorporating numeric
features. In principle, many functions can be used to create parent feature vectors
from their child nodes, including those that take and emit real values. As an exam-
ple, we envision this functionality could be used to create nodes that represent gene
expression.

Finally, in evaluating Harvestman’s performance in selecting features and making
predictions for survival endpoints in cancer, it is important to consider potential limita-
tions of this data and prediction task. For one, survivorship is a complex issue that has
many contributing factors. While genetics certainly plays a role in the likely survival and
treatment options available to those with cancer, there are other environmental and life-
style factors, such as tobacco usage [28] or age [29], that also contribute to survival. Fur-
thermore, the small sample size and imbalanced nature of the data further contribute to
making this feature selection and prediction task a difficult enterprise. Still, within this
challenging setting, Harvestman was able to identify predictive feature subsets, and
thus expose specific genomic markers that may play a role in cancer survival.

Page 13 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

Conclusion
We have introduced Harvestman, a new approach to supervised hierarchical feature
selection, and demonstrated it on our knowledge graphs built from high-throughput
sequence data. Using the 1000 Genomes Project, we show Harvestman scales to thou-
sands of genomes, and demonstrate that we can perform feature selection quicker with
Harvestman than the hierarchical feature selection method SHSEL when allocated 4,
8, or 16 CPUs. Next, using breast cancer data from The Cancer Genome Atlas, we show
that Harvestman selects a rich combination of representations used to predict five
year patient survival and disease status, and that these representations perform better
than a binary representation of SNPs alone. Finally, we compare Harvestman to exist-
ing feature selection methods, hierarchical (SHSEL) and otherwise (ReliefF), and dem-
onstrate that our method is more parsimonious—it selects smaller and less redundant
feature subsets while maintaining accuracy of the resulting classifier.

Methods
Harvestman performs automatic feature learning, feature selection, and model build-
ing in three steps: (i) hierarchy construction; (ii) optimal hierarchical feature selection;
and (iii) model building. These steps are described in the following subsections.

Fig. 5  Harvestman’s knowledge graph and variant encoding scheme. The knowledge graph is composed
of the genomic hierarchy (blue boxes) and GO hierarchy (orange boxes). Binary vectors at the genomic
hierarchy leaf nodes are determined directly from DNA sequences (shown by green bars, variants in
sequence shown by red boxes). Binary vectors at parent nodes are computed by taking the logical or of
their child nodes or directly from the DNA sequence. A GO threshold is determined for each GO term from
variant sequences related to its connected gene nodes. We use this threshold to determine a binary vector
that reflects whether or not each sample is greater or less than the threshold. This figure was generated using
Matplotlib version 3.2.1 and OmniGraffle

Page 14 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

Constructing a hierarchy of feature representations

Harvestman leverages hierarchical relationships among potential feature encodings
to facilitate feature selection. Figure 5 outlines the process of constructing a knowledge
graph from one or more variant call format (VCF) files. The first step encodes annotated
variants and structural elements (see Table 3) as a directed acyclic graph. We refer to
this initial graph as the ‘genomic hierarchy’. Each node in the genomic hierarchy corre-
sponds to a genomic element. The topology of the graph reflects the logical relationships
among these elements. For example, the children of a node representing a gene will be
the known transcripts of that gene. Similarly, the children of a node representing a par-
ticular transcript will be the exons contained in that transcript.

To build the genomic hierarchy, we use Reference SNP (RefSNP) [30] and Ensembl
annotations [31]. Ensembl IDs provide unique identifiers that match regions of the
genome to structural and functional elements, such as exons, transcripts, genes, and 3 ′
or 5 ′ untranslated regions. Inclusion of these elements are motivated by the biological
contributions each can make with respect to certain diseases and phenotypes, particu-
larly in the presence of genomic variation.

Variation on the level of exons, transcripts, and genes perhaps have the most clear
relationship to observable phenotypes or disease, as each of these elements contrib-
ute to the creation of functional proteins from genomic sequence. Alternative splic-
ing could also be explained by variation at this level, and can contribute to cancer
[32]. 5 ′ and 3 ′ untranslated regions are critical regulators of post-transcriptional gene
regulation, and genomic variants in these regions are also implicated in cancer [33].
Ensembl also identifies genomic regions with predicted functional roles, including
transcription start sites, enhancers, and promoters, or those that are associated with
known peptides. These regions are collectively referred to as ‘biological regions’ or
‘peptides’ accordingly, and variation in such sites have also been tied to cancer among
other diseases [34–36]. Associating an Ensembl ID to each node in the graph thus
makes clear the biological interpretation of each feature.

Harvestman grafts the three Gene Ontology (GO) hierarchies onto the genomic
hierarchy (Fig. 5, orange nodes). GO is a knowledgebase that relates genes to gene
products with respect to cellular components, molecular function, and biological
process. Since each GO term is associated with a specific set of genes, Harvestman
adds a directed edge from each leaf node in the GO graphs to the appropriate ‘gene’

Table 3  The Ensembl IDs that are used by Harvestman, as well as a description of the genomic
feature type that they represent

Annotation type Description

Genes A known protein or RNA coding gene

Transcripts A known transcript in a coding gene

Exons A known exon in a coding gene

Peptides Identifies sequences associated with a known peptide

UTR​ 5 or 3  untranslated regions

Bio region A catch-all annotation describing a genomic region
relevant to some biological process

SNP SNPs annotated by NCBI’s RefSNP database

Page 15 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

nodes in the genomic hierarchy (i.e. those with annotation ID ‘gene’). These edges
create a combined graph that includes the initial genomic hierarchy and the GO hier-
archies. We refer to this structure as Harvestman’s knowledge graph.

Harvestman assigns an n-element binary vector to each leaf node in the knowl-
edge graph. Here, n corresponds to the number of samples within the VCF file(s).
For each leaf node, the algorithm sets bit i to 1 if the ith sample contains a variant
associated with that node. Otherwise, the ith bit is set to zero. Then, in a bottom-up
fashion, the algorithm assigns n-element binary vectors to internal nodes by apply-
ing a function that combines the vectors from that node’s children. Various functions
can be used, including logical or’s, and’s, xor’s, and threshold functions. The frame-
work is general enough that the choice of function can be tailored to suit properties
or defining characteristics of specific portions of the graph. If desired, multiple func-
tions can be evaluated in the same knowledge graph through a duplication of parent
nodes. For simplicity, when we refer to the knowledge graph in the following sections,
we assume each node has been assigned a binary vector.

In our experiments, most vectors were combined by computing a logical or. How-
ever, a threshold function was used at the nodes that were originally leaves in the
GO graphs. Threshold functions were used at these nodes to avoid saturation of the
binary vectors (i.e. vectors of all ones). Recall that edges were created between the
GO leaf nodes and their associated gene nodes in the genomic hierarchy to create the
knowledge graph. Each GO leaf node may be associated with many genes, so it is easy
for their binary vectors to become saturated. Saturated vectors are not informative
and will therefore never be selected as a feature. If vectors are combined using logi-
cal ors, then any ancestor of a saturated node will also be saturated and so a single
saturated vector may effectively eliminate an entire subgraph from being selected. We
avoid this problem by computing a threshold for each GO leaf node. This threshold
identifies samples that have an accumulation of genomic variants in a given region
of the genome, which is a hallmark trait of malignancies [37]. A visual example of
this procedure is shown in Fig. 5. Let v be an arbitrary GO leaf node. The threshold
associated with v is based on the statistics of the number of variants that are observed
among the genes connected to v. Briefly, let µ (resp. σ ) be the average (resp. standard
deviation) of the number of variants from each sample that map to the genes associ-
ated with v. This is shown as a distribution in Fig. 5. We say that sample i is enriched
in v if the number of variants in the ith sample that map to any of the genes associ-
ated with v is ≥ µ+ σ . The ith bit of the binary vector associated with v is set to one if
sample i is enriched for v (these samples are highlighted in red in Fig. 5). Otherwise,
it is set to zero (shown in green). This threshold function is only used to compute the
binary vectors for the GO leaf nodes. The remaining nodes from the GO hierarchy are
assigned binary vectors by computing logical or’s.

It is possible for the binary vectors associated with two nodes connected via an edge
to be identical. This will occur, for example, if the out-degree of a node is one. When this
happens, the two nodes are redundant, and there is no need to consider both of them
during feature selection. We handle this situation by “collapsing” redundant nodes (and
pathways of redundant nodes) into a single node. This has the benefit of reducing the
total number of features that need to be considered during feature selection.

Page 16 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

Optimal hierarchical feature selection via integer linear programming

We introduce here an ILP-based approach that identifies relevant and non-redundant
features based on the mutual information (MI) between the features and the given label,
and the pairwise correlation between features in the knowledge graph.

Let Bi ∈ {0, 1}n be the binary vector associated with node i in G, and let L ∈ {0, 1}n
be a binary label vector encoding, for example, the presence or absence of a particular
phenotype. We denote the mutual information (MI) between Bi and L as I(Bi; L) . This is
a measure of feature relevance, as it indicates how much information we gain about the
label after observing feature vector Bi . More precisely, the MI between two random vari-
ables is defined as:

Here, H(L) is the entropy of the labels, L, and H(L|Bi) the conditional entropy of labels,
after observing binary feature vector Bi . The entropies quantify the uncertainty of the
corresponding random variables representing the labels and features. Let p(X) denote
the probability that random variable X = 1 . Then, for b ∈ Bi and ℓ ∈ L we have the
following:

Thus, high MI between feature vector and the label corresponds to lower uncertainty,
making such features relevant to classification tasks. MI has commonly and effectively
been used as a measure of feature relevance in biological settings [38–40].

In practice, we find it useful to pre-filter features using an MI threshold designed to
eliminate features that are clearly irrelevant. We consider this an information theoretic
equivalent to variant filtration pre-processing steps common to DNA sequence analy-
ses. Harvestman lets the user specify a threshold, t ≥ 0 , and it pre-filters feature i if
I(Bi; L) < t.

The knowledge graph contains many highly correlated features by construction. Highly
correlated features provide little or no additional information and increase model com-
plexity, and so should be eliminated. We denote the correlation between features i and j
as Corr(Bi,Bj) . We used the Pearson correlation coefficient in our experiments, although
many other measures of correlation between binary features can be used [41]. Harvest-
man pre-computes the correlations between all pairs of features that pass the MI filter
outlined above.

We include correlations of only a subset P of all feature pairs when solving the ILP. We
consider correlations between all pairs of features that share a common ‘gene’ node as an
ancestor. Additionally, because two different genes may overlap, we also consider cor-
relations between pairs of features that have overlapping gene nodes as ancestors. Next,
to account for relationships between nodes across the genomic and GO hierarchies, we
include all pairs of features that fall along a directed path within the knowledge graph.

(1)I(Bi; L) = H(L)−H(L|Bi)

(2)

H(L) = −

n∑

j=1

p(ℓj) log p(ℓj)

H(L|Bi) = −

n∑

k=1

p(bk)

n∑

j=1

p(ℓj|bk) log p(ℓj|bk)

Page 17 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

Any pair of features fitting the above requirements that are at least moderately corre-
lated (Pearson correlation ≥ 0.3 ) are included in P.

The elements of P are included as terms in the ILP objective, which is defined as
follows:

Each feature i is associated with a binary decision variable, wi , and each feature pair, (i, j),
is associated with decision variable zij . If wi = 1 , then feature i is selected. By consider-
ing the absolute value of the correlations, we ensure that anti-correlated unselected pairs
will not artificially boost the objective value. Parameter � adjusts the relative importance
between mutual information and pairwise correlation. Parameter c imposes a constraint
on the maximum number of features to select. If c is set equal to the number of input
features, the ILP will naturally find the optimal number of features to select. In our
experiments, we set � = 1 and varied c.

We emphasize that Harvestman’s ILP-based approach to feature selection does not
involve the construction and evaluation of classifiers (or any predictive model). Whether
a given feature is selected is determined entirely based on the optimal solution to
problem (3).

Finally, Harvestman uses standard Machine Learning libraries to train classifiers and
regression models, after the feature selection step. In our experiments, we used Micro-
soft’s ML.NET machine learning library and scikit-learn [42] for model building. We
emphasize that model building and evaluation occur after setting aside a hold-out test
set. This is done to prevent data leakage from the procedure used to select features to
the procedure used to evaluate model performance. To assess model accuracy, we report
Area Under the receiver operating Curve (AUC).

Abbreviations
ILP: Integer linear program; MI: Mutual information; VCF: Variant Call Format; TCGA​: The Cancer Genome Atlas; GO: Gene
Ontology; SNP: Single nucleotide polymorphism; UTR​: Untranslated region; AUC​: Area under the curve; CPU: Central
processing unit.

Acknowledgements
Not applicable.

Authors’ contributions
TF conducted experiments using Harvestman and led in writing the manuscript. SJB implemented Harvestman and assisted
in writing the manuscript and conducting experiments. GM and QMH assisted with computing resource issues and
helped with experimental design. CK and CJL designed and supervised the research. All the authors read and approved
the manuscript.

Funding
This work was partially funded by the Center for Machine Learning and Health at Carnegie Mellon University and is
supported by the CURE Grant 4100070287 from the Pennsylvania Department of Health (PA DOH). The content of this
paper is solely the responsibility of the authors and does not necessarily represent the official views of the funding
agencies. The Pennsylvania Department of Health specifically disclaims responsibility for any analyses, interpretations
or conclusions. This work used the Extreme Science and Engineering Discovery Environment [43], which is supported
by National Science Foundation Grant Number ACI-1548562 through allocation TG-DMS160012. This project used the
Hillman Cancer Bioinformatics Services, which is supported in part by the National Cancer Institute award P30CA047904.
This research is supported by an NIH T32 training Grant T32 EB009403 as part of the HHMI-NIBIB Interfaces Initiative. This
research is funded in part by the Gordon and Betty Moore Foundation’s Data-Driven Discovery Initiative through Grant
GBMF4554 to C.K., and by the US National Institutes of Health (R01GM122935). None of the funding bodies played a role

(3)

maximizew,z
∑n

i=1 wiI(Bi; L)− �
∑

(i,j)∈P zij|Corr(Bi,Bj)|

subject to: zij ≥ wi + wj − 1, ∀i, ∀j∑n
i=1 wi ≤ c for some c ∈ N

wi, zij ∈ {0, 1}

Page 18 of 19Frisby et al. BMC Bioinformatics (2021) 22:174

in the design, analysis, or interpretation of data, or in writing the manuscript. The CURE award provided access to the
TCGA data.

Availability of data and materials
The data used is available through the 1000 Genomes Project and The Cancer Genome Atlas. Access to TCGA data
requires the completion of a Data Access Request through the Database of Genotypes and Phenotypes (dbGaP). Binary
releases of Harvestman for multiple systems are available for download at https://​github.​com/​cmlh-​gp/​Harve​stman-​
public/​relea​ses.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
C.K. is co-founder of Ocean Genomics, Inc. G.M. is VP of software engineering at Ocean Genomics, Inc.

Author details
1 Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA. 2 Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, USA.

Received: 2 December 2020 Accepted: 22 March 2021

References
	1.	 Leung MKK, Delong A, Alipanahi B, Frey BJ. Machine learning in genomic medicine: a review of computational

problems and data sets. Proc IEEE. 2016;104(1):176–97.
	2.	 D’Argenio V. The high-throughput analyses era: Are we ready for the data struggle? High Throughput. 2018;7(1):8.
	3.	 Clarke R, Ressom HW, Wang A, Xuan J, Liu MC, Gehan EA, Wang Y. The properties of high-dimensional data spaces:

implications for exploring gene and protein expression data. Nat Rev Cancer. 2008;8:37–49.
	4.	 Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet. 2015;16:321–32.
	5.	 Domingos P. A few useful things to know about machine learning. Commun ACM. 2012;55(10):78–87.
	6.	 Bengio Y, Courville AC, Vincent P. Unsupervised feature learning and deep learning: a review and new perspectives.

CoRR arXiv:​abs/​1206.​5538 2012.
	7.	 Li J, Cheng K, Wang S, Morstatter F, Trevino RP, Tang J, Liu H. Feature selection: a data perspective. ACM Comput Surv.

2017;50(6):94–19445.
	8.	 Xing EP, Jordan MI, Karp RM. Feature selection for high-dimensional genomic microarray data. In: Proceedings of the

eighteenth international conference on machine learning; 2001, pp. 601–608.
	9.	 Blum AL, Langley P. Selection of relevant features and examples in machine learning. Artif Intell.

1997;97(1–2):245–71.
	10.	 Hira ZM, Gillies DF. A review of feature selection and feature extraction methods applied on microarray data. Adv

Bioinform. 2015;2015:198363–198363.
	11.	 Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics.

2007;23(19):2507–17.
	12.	 Kononenko I, Šimec E, Robnik-Šikonja M. Overcoming the myopia of inductive learning algorithms with relieff. Appl

Intell. 1997;7(1):39–55.
	13.	 Hall MA. Correlation-based feature selection for machine learning. Technical report, The University of Waikato; 1999.
	14.	 Ristoski P, Paulheim H. Feature selection in hierarchical feature spaces. In: International conference on discovery

science. Springer; 2014, pp. 288–300.
	15.	 Wan C, Freitas AA. Two methods for constructing a gene ontology-based feature network for a Bayesian network

classifier and applications to datasets of aging-related genes. In: Proceedings of the 6th ACM conference on bioin-
formatics, computational biology and health informatics—BCB’15. ACM Press, Atlanta, Georgia; 2015, pp. 27–36.

	16.	 Wang S, Wang Y, Tang J, Aggarwal C, Ranganath S, Liu H. Exploiting hierarchical structures for unsupervised feature
selection; 2017, pp. 507–515.

	17.	 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA,
Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontol-
ogy: tool for the unification of biology. Nat Genet. 2000;25:25–9.

	18.	 The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucl Acids Res.
2017;45(D1):331–8.

	19.	 Wan C, Freitas A. Prediction of the pro-longevity or anti-longevity effect of caenorhabditis elegans genes based on
bayesian classification methods. In: 2013 IEEE international conference on bioinformatics and biomedicine; 2013,
pp. 373–380.

	20.	 Wan C, Freitas AA. An empirical evaluation of hierarchical feature selection methods for classification in bioinformat-
ics datasets with gene ontology-based features. Artif Intell Rev. 2018;50(2):201–40.

	21.	 Ghalwash MF, Cao XH, Stojkovic I, Obradovic Z. Structured feature selection using coordinate descent optimization.
BMC Bioinform. 2016;17(1):158.

https://github.com/cmlh-gp/Harvestman-public/releases
https://github.com/cmlh-gp/Harvestman-public/releases
http://arxiv.org/abs/abs/1206.5538

Page 19 of 19Frisby et al. BMC Bioinformatics (2021) 22:174 	

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	22.	 The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.
	23.	 Cooper GF. CURE project. unpublished, in prep. 2019.
	24.	 Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.
	25.	 Vapnik VN. Statistical learning theory. Adaptive and learning systems for signal processing, communications, and

control. New York: Wiley; 1998.
	26.	 Vapnik VN, Chervonenkis AY. On the uniform convergence of relative frequencies of events to their probabilities.

Theory Prob Appl. 1971;16(2):264–80.
	27.	 Vapnik VN. Estimation of dependences based on empirical data. Springer series in statistics. New York: Springer;

1982.
	28.	 ...Ng AK, DeMichele A, Alter BP, Rabkin CS, Pui C-H, Ambrosone CB, Begg CB, Malkin D, Hall EJ, Allan JM, Little JB,

Offit K, Robison LL, Brown LM, Travis LB, Strong L, Tucker MA, Greene MH, Gospodarowicz MK, Hisada M, Rothman
N, Caporaso N, Inskip P, Shields PG, Kleinerman R, Chanock S, Taniguchi T, Figg WD. Cancer survivorship genetic
susceptibility and second primary cancers: research strategies and recommendations. JNCI J Natl Cancer Inst.
2006;98(1):15–25.

	29.	 Nordenskjöld AE, Fohlin H, Arnesson LG, Einbeigi Z, Holmberg E, Albertsson P, Karlsson P. Breast cancer sur-
vival trends in different stages and age groups a population based study 1989 through 2013. Acta Oncol.
2019;58(1):45–51.

	30.	 ...Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S,
Geer LY, Kapustin Y, Khovayko O, Landsman D, Lipman DJ, Madden TL, Maglott DR, Ostell J, Miller V, Pruitt KD, Schuler
GD, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Tatusov RL, Tatusova TA, Wagner L, Yaschenko
E. Database resources of the national center for biotechnology information. Nucl Acids Res. 2007;35(Database
issue):5–12.

	31.	 The Ensembl Consortium. Ensembl 2018. Nucl Acids Res. 2017;46(D1):754–61.
	32.	 El Marabti E, Younis I. The cancer spliceome: reprograming of alternative splicing in cancer. Front Mol Biosci.

2018;5:80–80.
	33.	 Schuster SL, Hsieh AC. The untranslated regions of mRNAs in cancer. Trends Cancer. 2019;5(4):245–62.
	34.	 Hua JT, Ahmed M, Guo H, Zhang Y, Chen S, Soares F, Lu J, Zhou S, Wang M, Li H, Larson NB, McDonnell SK, Patel

PS, Liang Y, Yao CQ, van der Kwast T, Lupien M, Feng FY, Zoubeidi A, Tsao M-S, Thibodeau SN, Boutros PC, He
HH. Risk SNP-mediated promoter-enhancer switching drives prostate cancer through lncRNA PCAT19. Cell.
2018;174(3):564–57518.

	35.	 Farman FU, Iqbal M, Azam M, Saeed M. Nucleosomes positioning around transcriptional start site of tumor suppres-
sor (rbl2/p130) gene in breast cancer. Mol Biol Rep. 2018;45(2):185–94.

	36.	 Rhie SK, Yao L, Luo Z, Witt H, Schreiner S, Guo Y, Perez AA, Farnham PJ. Zfx acts as a transcriptional activator in
multiple types of human tumors by binding downstream of transcription start sites at the majority of cpg island
promoters. Genome Res. 2018;28(3):310–20.

	37.	 Talseth-Palmer BA, Scott RJ. Genetic variation and its role in malignancy. Int J Biomed Sci IJBS. 2011;7(3):158–71.
	38.	 Jansi Rani M, Devaraj D. Two-stage hybrid gene selection using mutual information and genetic algorithm for

cancer data classification. J Med Syst. 2019;43(8):235.
	39.	 Sun Z, Zhang J, Luo Z, Cao D, Li S. A fast feature selection method based on mutual information in multi-label

learning. In: Sun Y, Lu T, Xie X, Gao L, Fan H, editors. Computer supported cooperative work and social computing.
Singapore: Springer; 2019. p. 424–37.

	40.	 Zhu Q, Fan Y, He Y, Xu Y. Effective cancer classification based on gene expression data using multidimensional
mutual information and elm. In: 2018 IEEE 7th data driven control and learning systems conference (DDCLS); 2018,
pp. 954–958.

	41.	 Choi S, Cha S-H, Tappert C. A survey of binary similarity and distance measures. J Syst Cybern Inf. 2009;8.
	42.	 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V,

Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E. Scikit-learn: machine learning in Python. J
Mach Learn Res. 2011;12:2825–30.

	43.	 Towns J, Cockerill T, Dahan M, Foster I, Gaither K, Grimshaw A, Hazlewood V, Lathrop S, Lifka D, Peterson GD, Roskies
R, Scott JR, Wilkins-Diehr N. Xsede: accelerating scientific discovery. Comput Sci Eng. 2014;16(5):62–74.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Harvestman: a framework for hierarchical feature learning and selection from whole genome sequencing data
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Introduction
	Harvestman and related work

	Results
	Evaluating Harvestman’s scalability using 2504 whole genome sequences
	Using Harvestman to predict cancer survival outcomes
	Harvestman’s knowledge graph is more informative than a binary encoding of raw SNPs
	Harvestman selects fewer features than SHSEL without sacrificing model AUC​
	Comparing selected feature sets by average correlation

	Discussion
	Conclusion
	Methods
	Constructing a hierarchy of feature representations
	Optimal hierarchical feature selection via integer linear programming

	Acknowledgements
	References

