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Abstract 

Background:  The most common measure of association between two continuous 
variables is the Pearson correlation (Maronna et al. in Safari an OMC. Robust statistics, 
2019. https://login.proxy.bib.uottawa.ca/login?url=https://learning.oreilly.com/library/
view/-/9781119214687/?ar&orpq&email=^u). When outliers are present, Pearson does 
not accurately measure association and robust measures are needed. This article intro-
duces three new robust measures of correlation: Taba (T), TabWil (TW), and TabWil rank 
(TWR). The correlation estimators T and TW measure a linear association between two 
continuous or ordinal variables; whereas TWR measures a monotonic association. The 
robustness of these proposed measures in comparison with Pearson (P), Spearman (S), 
Quadrant (Q), Median (M), and Minimum Covariance Determinant (MCD) are examined 
through simulation. Taba distance is used to analyze genes, and statistical tests were 
used to identify those genes most significantly associated with Williams Syndrome 
(WS).

Results:  Based on the root mean square error (RMSE) and bias, the three proposed 
correlation measures are highly competitive when compared to classical measures 
such as P and S as well as robust measures such as Q, M, and MCD. Our findings indi-
cate TBL2 was the most significant gene among patients diagnosed with WS and had 
the most significant reduction in gene expression level when compared with control (P 
value = 6.37E-05).

Conclusions:  Overall, when the distribution is bivariate Log-Normal or bivariate 
Weibull, TWR performs best in terms of bias and T performs best with respect to RMSE. 
Under the Normal distribution, MCD performs well with respect to bias and RMSE; but 
TW, TWR, T, S, and P correlations were in close proximity. The identification of TBL2 may 
serve as a diagnostic tool for WS patients. A Taba R package has been developed and is 
available for use to perform all necessary computations for the proposed methods.

Keywords:  Pearson correlation, Spearman correlation, Quadrant correlation, Median 
correlation, Minimum covariance determinant correlation, Dissimilarity measures, Gene 
expression, Williams syndrome
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Background
Novel measures of correlation that have noticeably improved performance over exist-
ing measures can be a fundamental enhancement to understanding data, affecting a 
broad range of fields. One of the most widely used statistical measures is the correla-
tion coefficient. The choice of correlation and dissimilarity measures is essential in 
many areas of science including, but not limited to, clustering co-expressed genes, 
mediation and moderation analysis with structural equation modeling, time series 
analysis, pattern recognition, autonomous robots, structural engineering, image 
recognition, graph theoretical algorithms, spatiotemporal trajectory, artificial intel-
ligence, machine learning techniques, classification, principal component analysis, 
discriminant analysis, and correlation graphs [1–12]. The need for robust techniques 
is of utmost significance when dealing with high dimensional biological noisy data. 
Biological bioassay data frequently contain outliers [13]. Therefore, the choice of the 
metric can considerably affect the analysis results.

Various resistant dissimilarity measures, such as Tukey’s biweight estimate pro-
posed by Hardin et al., are available in the literature, however Pearson (P), Spearman 
(S), and Euclidian dissimilarity measures are the most commonly used techniques in 
biomedical research [14, 15]. For standardized vectors X and Y  with dimensions n , 
the Euclidean distance dEuclid is related to Pearson distance dPearson [16] by the follow-
ing equation:

The choice of distance measure to assess outliers plays a vital role in determining the 
outcome of a wide range of applications [17].

A major difficulty in clustering large data is in the usage of an appropriate dissimilar-
ity measure that captures the geometrical characteristics of those data [18]. Shevlyakov 
and Pavel Smirnov examined the robustness of correlation coefficient estimators under 
the assumption of normality at various sample sizes [19]. In a simulation study, Win-
ter et al. concluded that the P correlation coefficient is appropriate when the underlying 
distribution is light-tailed; but, if outliers are present or the underlying distribution is 
heavy-tailed, then S correlation coefficient should be used [20]. Using a centroid based 
algorithm, Shirkhorshidi et al. concluded that P correlation performs well at high dimen-
sions but not in low dimensions [21]. Robust correlation was identified as a more useful 
tool in image-guided surgery applications and image registration in radiotherapy [22].

Pearson dissimilarity measure has frequently been used in the assessment of cell-lines 
using expression levels or sequence variation profiles genome-wide [23]. Yona et  al. 
studied the quality of some dissimilarity measures used in microarray analysis in order 
to determine the most effective measure(s) for detecting functional links [24]. A robust 
complementary hierarchical clustering was introduced to guard against genes with out-
lying expression levels [25]. Moore et al. utilized the correlation coefficient to examine 
the association between the quality of visually graded chest images and a quantitative 
assessment of chest phantom images [26]. Several other studies integrated clever bias-
reducing techniques such as drawing from the Weibull distribution in analysis, creating 
new dissimilarity measures with a normalization factor, and testing the performance of 
logistic and conventional probabilistic hidden variable models when dealing with gene 

dEuclid = 2
√

n ∗ dPearson.
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expression data [27–29], they claimed that these methods helped to mitigate the nega-
tive effects of outliers from the data.

The role of DNA methylation in regulating the expression of oncogenes and progres-
sion of cancer types also has been found to generate many outliers. A robust correlation 
coefficient is a vital tool for calculating the correlation between DNA methylation and 
gene expression in epigenetic studies when outliers are present [30, 31]. The use of an 
improper correlation can result in a variety of patterns that produce conflicting results 
regarding gene expression [30]. Nishimura et al. assessed whether the volume of infused 
crystalloid fluid is correlated to the amount of interstitial fluid leakage during surgery 
[32], and Kim et al. studied whether opioid growth factor receptor expression is corre-
lated with cell proliferation in cancer cells [33].

Bloch et al. found that improvement in gene clustering can be obtained by applying the 
Median correlation measure when outliers are present [34]. The choice of dissimilarity 
measure is essential part of the RNA transcriptome data analysis, which can determine 
similar genes or tissues, leading to the identification of biomarkers of specific diseases 
and the discovery of new drug interventions [35].

Our simulation results indicate that in the presence of outliers or influential observa-
tions, non-robust correlation measures of dissimilarity often result in conclusions that 
do not represent the true association. We have developed robust linear and monotonic 
correlation measures capable of giving an accurate estimate of correlation when outli-
ers are present, and reliable estimates when outliers are absent. In this paper, Taba (T), 
TabWil (TW), and TabWil rank (TWR) correlations are introduced and their robustness 
are validated by a simulation study in comparison with other widely used correlation 
estimators.

Methods

Definition 1  The function Tω : R → R is defined as Tω(x) = x ∗ Sech(ω ∗ x) , where 
Sech is the hyperbolic secant function and ω is the tuning constant. Tω has the following 
properties:

•	 Tω(0) = 0

•	 For every real number x , Tω(−x) = −Tω(x)

•	 For every nonnegative real number x , Tω(x) ≥ 0
•	 d(Tω(x))

d(x)
 = 1 when x = 0

•	 Tω(x ) →  0 as |x| → ∞

•	 d(Tω(x))
d(x)

→ 0 as |x| → ∞

•	 For every positive real number k , Tω(kx)
Tω(x)

 = k as x → 0

•	 Tω(x) is bounded

Figure  1 depicts the function Tω(x) for various values of ω , illustrating the properties 
mentioned in Definition 1. The value of ω has been calculated using asymptotic effi-
ciency under the assumption of normality [36, 37]. The re-descending property of the 



Page 4 of 18Tabatabai et al. BMC Bioinformatics          (2021) 22:170 

function can be seen as |x| approaches infinity. The function Tω is a bounded influence 
function. Due to its properties mentioned in Definition 1, our proposed measures of 
correlation have high efficiency, a high breakdown point, and will not suffer from mask-
ing effects [38, 39].

Robust correlation methods
Taba correlation

For variables X and Y  each of size n, we define the Taba robust correlation coefficient 
rTaba as:

where C1,i =
xi−Median(X)

σ̂Sn(X)
 , C2,i =

yi−Median(Y )

σ̂Sn(Y )
. Dispersion measures σ̂Sn(X) and σ̂Sn(Y ) are 

estimates of the standard deviation for variables X and Y  respectively, introduced by 
Rousseeuw and Croux as a robust scale measurement. Other robust choices such as 
σ̂Qn(·) are available as an alternative estimate of standard deviation [40, 41]. For the Taba 
correlation estimator, we set our default value for ω at 0.45 which will give us over 95% in 
asymptotic efficiency under normality assumptions [36].

rTaba(X ,Y ) =

∑n
i=1

[

Tω

(

C1,i

)

∗ Tω

(

C2,i

)]

√

∑n
i=1

[

Tω

(

C1,i

)]2
∗
∑n

i=1

[

Tω

(

C2,i

)]2
,

Fig. 1  Graph of Tω(x) using Wolfram Mathematica software version 12.1
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TabWil correlation

Let U = X−Median(X)
σ̂Sn(X)

+ Y−Median(Y )
σ̂Sn(Y )

 and V = X−Median(X)
σ̂Sn(X)

− Y−Median(Y )
σ̂Sn(Y )

.

We define the robust TabWil correlation estimator rTabWil as:

where m1 = Median(|U |) and m2 = Median(|V |). Both T and TW correlations estimate 
the linear association between variables X and Y  . Figure 2 illustrates the TW correlation 
coefficient as a function of Median(|U |) and Median(|V |).

TabWil rank correlation

For vectors X and Y  , let RX = Rank(X) , RY = Rank(Y ) , where Rank(X) and Rank(Y ) 
refer to the ordinal standing of each element in the vectors X and Y , respectively.

Define

then the robust TabWil rank correlation estimator rTabWilRank is defined as:

where L1 = Median(|D1|) and L2 = Median(|D2|) and the default value for ω is 0.05 for 
both TW and TWR correlations. These values were determined using asymptotic effi-
ciency and outlier tolerance using simulation. There is a trade-off between asymptotic 
efficiency and outlier tolerance level. In other words, the lower the efficiency, the higher 
the tolerance level [37, 42].

rTabWil(X ,Y ) =
Tω

(

m2
1

)

− Tω

(

m2
2

)

Tω

(

m2
1

)

+ Tω

(

m2
2

) ,

D1 =
RX −Median(RX )

σ̂Sn(RX )
+

RY −Median(RY )

σ̂Sn(RY )
and

D2 =
RX −Median(RX )

σ̂Sn(RX )
−

RY −Median(RY )

σ̂Sn(RY )

rTabWilRank(X ,Y ) =
Tω

(

L21
)

− Tω

(

L22
)

Tω

(

L21
)

+ Tω

(

L22
) ,

Fig. 2  Graph of TabWil Correlation using Wolfram Mathematica software version 12.1
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The TWR correlation estimator measures the monotonic association and direction 
between two variables X and Y  . The TWR correlation can be used with ordinal, interval, 
or ratio data.

Confidence intervals for proposed Measures

The (1− α)100% confidence interval estimator for correlation ρ using any of the three 
proposed robust measures ( r(·) ) is given by the following lower ( LCL(·) ) and upper 
( UCL(·) ) confidence limits:

and

where F(·) = ArcTanh
(

r(·)
)

 is the Fisher transformation of robust correlation measure 
r(·). The symbols Tanh(·) and ArcTanh(·) represent the hyperbolic tangent and inverse 
hyperbolic tangent functions respectively. Bonett and Wright as well as Ruscio stud-
ied confidence intervals constructed using 

1+0.5r2(·)
(n−3)

 as an estimate for variance of Fisher 
transformation. Their results indicate that (1− α)100% confidence interval for ρ pro-
vide fairly accurate coverage when a robust correlation measure is used [43, 44]. For 
one sided confidence limits, simply replace α

2
 by α in the equation for LCL(·) or UCL(·) . 

Alternative methods, such as bootstrapping, are also available for calculating confidence 
interval estimates [45].

Testing hypothesis for proposed measures

To test the researcher (alternative) hypotheses H1 : ρ �= 0 , H1 : ρ > 0 , or H1 : ρ < 0 
using any of the three proposed robust correlation measures r(·), one can utilize the test 
statistic t(n−2) = r(·)

√

n−2

1−r2(·)
 with n− 2 degrees of freedom.

Simulation study
The aim of our simulation study is to assess the performance of our proposed methods 
in comparison with other correlation estimators in the presence and absence of outliers. 
To achieve this aim,

We have used RStudio version 1.3.1073 utilizing lcmix, robustbase, mvtnorm, Taba, 
robcor, MethylCapSig, and MultiRNG packages to assess the performance of T, TW, and 
TWR in comparison with P, S, Quadrant (Q), Median (M), and Minimum Covariance 
Determinant (MCD) correlation estimators [46, 47]. We generated m = 5000 pairs of 
samples each having size n = 20, 40, 80, 160, or 320 from one of three distributions: a 

bivariate normal with mean vector 
(

0

0

)

, a bivariate log-normal with mean vector 
(

1

3

)

, 

or a bivariate Weibull with a shape parameter of 1.5. All bivariate distributions had a 

LCL(·) = Tanh



F(·) − Z1− α
2

�

1+ 0.5r2(·)

(n− 3)





UCL(·) = Tanh



F(·) + Z1− α
2

�

1+ 0.5r2(·)

(n− 3)



,
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variance–covariance matrix of the form 
(

1 ρ

ρ 1

)

, where the five levels of correlation ρ 

used in our simulation were set at the 0.0, 0.2, 0.5, 0.7, and 0.9 levels. Random contami-
nations of our simulated data were generated at the 0%, 5%, and 10% levels. To do this, 
each iteration randomly drew the appropriate number of observations (based on the 
level of contamination) to be corrupted. For each of the selected datapoints, the con-
taminated datapoints will be equal to the value of the uncontaminated datapoints plus 
five times the standard deviation of the uncontaminated sample within each iteration 
(positive shift). The results were similar with a negative shift, but are not shown here. 
After contamination, the correlation was calculated using each of the eight correlation 
methods. T, TW, and TWR correlations used tuning constants ω = 0.45, 0.05, and 0.05 
respectively. For comparative purposes, bias and the root mean square errors (RMSE) 
were calculated for all methods. The bias and the RMSE are defined as:

and

Simulation results
To better understand our simulation results, we ordered the bias and RMSE for each dis-
tribution and identified the correlation estimators associated with the ordered results as 
shown in Additional file 1: Table S1.

Simulation results stratified by sample size

Figure 3 compares the frequency of each correlation method that resulted in having the 
lowest bias or RMSE in our simulation study, stratified by sample size. For small samples 
of size 20, TWR or T correlations consistently had the highest frequency of lowest bias 
and RMSE; tying with P correlation under bias for the bivariate Normal and bivariate 
Weibull distributions.

For samples of size 40, T correlation uniformly performed best with respect to RMSE 
under all three bivariate distributions. TWR correlation was shown to have the low-
est bias the greatest number of times when the distribution was bivariate Log-Normal, 
while MCD and TW regularly appeared as having the lowest bias for bivariate Normal 
and Weibull distributions respectively.

Samples of size 80 or more consistently showed MCD and P correlations having the 
lowest bias and RMSE under the assumption of a Normal distribution. Assuming the 
distribution is Weibull, T correlation had the highest frequency of lowest bias or was 
among methods having the most frequent lowest RMSE. When the distribution was 
Log-Normal, Q correlation generally had the highest frequency of lowest bias with sam-
ples larger than 80, but tied with TWR when the sample size was set to 80. For other 
non-Normal cases, T correlation performed well with respect to RMSE in Log-Normal 

bias =

∣

∣

∣

∣

∑m
l=1 ρ̂l

m
− ρ

∣

∣

∣

∣

RMSE =

√

∑m
l=1(ρ̂l − ρ)2

m
.
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distributions, but was overtaken by S and TW correlations when the sample size 
increased to 320. M correlation performed best with respect to bias when the distribu-
tion was bivariate Weibull.

Simulation results stratified by level of correlation (ρ)

Similar to the previous graphic, Fig. 4 depicts the frequency of lowest measurements, 
this time stratified by the value of correlations. As ρ becomes more positive, the sam-
pling distribution of correlation estimator becomes left skewed. When correlation is set 
to zero, T correlation performed best in RMSE for all tested bivariate distributions. P 
correlation performed well overall in terms of bias, but tied with TWR and S correla-
tions when the distribution was bivariate Log-Normal and was overtaken by Q correla-
tion when the distribution was normal.

For correlations set at 0.2, T correlation outperformed the other correlation methods 
for RMSE in all three bivariate distributions. Q performed best with regard to bias in the 

Fig. 3  Frequency of lowest measurement for simulated data stratified by sample size using IBM SPSS 
software version 27
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bivariate Log-Normal, but the MCD performed best when the distribution was bivariate 
Normal. TWR and Q tied for the best performance in bias when the distribution was 
bivariate Weibull.

When the correlation level was raised to 0.5, TW performed best in bias for both 
bivariate Log-Normal and Weibull. MCD performed best with regard to bias and RMSE 
for bivariate Normal. S and TW performed best in RMSE for bivariate Log-Normal and 
Weibull distributions, respectfully.

At the 0.7 correlation level for the bivariate Normal distribution, MCD performed 
best with regard to bias and RMSE, but TW performed best in RMSE for both bivariate 
Weibull and bivariate Log-Normal distributions. M performed best with respect to bias 
in the bivariate Weibull distribution, while TW and TWR tied for the best bias perfor-
mance in the bivariate Log-Normal.

Finally, when the correlation reached the 0.9 level, the best performance in bias 
and RMSE for both bivariate Log-Normal and Normal belonged to TWR and MCD 

Fig. 4  Frequency of lowest measurement for simulated data stratified by simulated value of correlation using 
IBM SPSS software version 27



Page 10 of 18Tabatabai et al. BMC Bioinformatics          (2021) 22:170 

respectively. TW gave the best performance in terms of RMSE for the bivariate Weibull; 
TW and M tied for the best performance in bias for the bivariate Weibull distribution.

Simulation results stratified by level of contamination

When the frequency of lowest measurements was stratified by the levels of data con-
tamination, we observed that in the absence of contamination, the best performing bias 
and RMSE belonged to P correlation. Q correlation had the best performance in bias for 
both the bivariate Log-Normal and bivariate Weibull distributions. Figure 5 shows that 
S and P had the best performance with regard to RMSE for bivariate Log-Normal and 
bivariate Weibull respectively.

At the 5% level of contamination, T had the best performance with regard to RMSE for 
all three distributions. MCD performed best with regard to bias for the bivariate Normal 
and TWR had the best performing bias for the bivariate Log-Normal. TW and M tied 
for the best performance in bias for the bivariate Weibull. Finally, when contamination 

Fig. 5  Frequency of lowest measurement for simulated data stratified by contamination level using IBM SPSS 
software version 27
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level reached 10%, MCD performed best in both bias and RMSE for bivariate Normal, 
while TWR performed best in bias for both the bivariate Log-Normal and bivariate 
Weibull. TW performed best with respect to RMSE for bivariate Weibull. There was a tie 
between TW and T for the best performing RMSE when the distribution was bivariate 
Log-Normal.

Overall simulation results

Overall, as indicated in Fig. 6, for the bivariate Normal, MCD had the best performance 
with respect to bias and RMSE, but when the distribution was bivariate Log-Normal or 
bivariate Weibull, TWR performed best in bias and T had the best performance with 
respect to RMSE.

Analysis of William syndrome
A RNA transcriptome-based dataset of human gene expressions recorded in patients 
with Williams Syndrome (WS) was obtained from the National Center for Biotechnol-
ogy Information (NCBI) [48]. Expression levels of genes that appeared in the dataset 
more than once were combined by averaging expression levels. Any genes with miss-
ing values were removed, resulting in a total sample size of 13,909 genes. Tissues were 
sampled from those with and without WS, each containing three replicated expressions. 
Silhouette and Elbow graphs were used to determine the optimal number of clusters. 
Figure 7 shows a visual snapshot of our gene expression data. It is a hierarchical cluster-
ing dendrogram for all genes using Taba distance.

After careful examination of data and checking the validity of assumptions, a one-sided 
t-test was conducted for each of the 13,909 individual genes to determine differences 

Fig. 6  Frequency of lowest measurement for simulated data using IBM SPSS software version 27
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between control and WS groups. Statistical analysis of the data indicated only 43 genes 
had a P value less than 0.005 when control and WS groups were compared. The most 
statistically significant reduction in gene expression levels was associated with trans-
ducin beta-like 2 (TBL2) gene (P value = 6.37E−05). This gene encodes a member of the 
beta-transducin protein family known to be involved in regulatory functions. This gene 
is deleted in WS. The 2nd most significant reduction in expression level of the WS group, 
when compared to control, was observed with the Bromodomain Adjacent to Zinc fin-
ger domain, 1B (BAZ1B) gene. BAZ1B plays an important role in neurodevelopment and 
implicate its haploinsufficiency as a likely contributor to the neurological phenotypes in 
WS [49]. Eukaryotic translation Initiation Factor 4H (EIF4H) encodes one of the transla-
tion initiation factors, which functions to stimulate the initiation of protein synthesis at 
the level of mRNA utilization. This gene is deleted in WS [50]. The top most significant 
genes belong to Chromosome 7.

We examined our entire dataset for the presence of outliers and found no signifi-
cant outliers present. In order to demonstrate the extent of protection of all correlation 
measures considered in this article against outliers, we selected a random sample of one 
hundred genes from the set of 13,909, clustered them into two groups using each of the 
eight correlation estimators, and recorded the genes in each of the two clusters. One of 
the two groups were randomly selected and 10% of its genes were contaminated. For 
each selected gene, which consists of six replicates, one replicate was selected at ran-
dom and contaminated. The contaminated replicate is equal to the value of the uncon-
taminated replicate plus ten times the standard deviation of the chosen gene prior to 

Fig. 7  Heatmap of all 13,909 genes generated using RStudio software version 1.3.1073
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Fig. 8  Ordered Forest Plot of 43 Genes (P value < 0.005) generated using RStudio software version 1.3.1073

Fig. 9  Clustered Heatmap of Genes with P values < 0.005 generated using RStudio software version 1.3.1073
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contamination. For each correlation measure, genes within both groups were reexam-
ined and compared pre- and post-contamination. T, TW, TWR, and S had a perfect 
performance and had the same gene clustering results for pre- and post-contamination. 
Pearson had the worst performance, misplacing three genes. MCD, M, and Q misplaced 
only one gene when comparing pre- and post-clustered groups.

Figure 8 shows the ordered forest plot of the top 43 genes having P values less than 
0.005. The horizontal axis represents P values and the vertical axis represents genes. 
The numbers in the forest plot circles represent the chromosome each respective gene 
belongs to.

Figure  9 illustrates the clustered heatmap using Taba dissimilarity measure for all 
genes having P values less than 0.005. The hierarchical clustering of samples clearly 
indicates two groups: the WS and the control. WS samples naturally clustered together 
and the same was observed for the control samples. The hierarchical clustering of the 
43 genes shows at least two clusters. WS group has less intensity in colors when com-
pared to the control group, indicating a significant difference in their expression lev-
els between the two groups. In the cell consisting of WS samples and genes HSPB11, 
DHX40, SDF2, GNPAT, HIST2H2AB, BAZ1B, and WBSCR22, the most similar pair of 
genes were HSPB11 and DHX40, which belong to gene class B2 and B3 respectively. As 
far as we know there is no publication linking these two genes to WS. The next closest 
gene to these two genes was SDF2. GNPAT and HIST2H2AB were very close in their 
expression level and BAZ1B and WBSCR22 showed similar expression levels. The next 
block of genes in the WS category were COPB1, ING4, CLIP2, DHX9, HSBP1, PDCD5, 
GTF2I, UBA52, and EIF4H. COPB1, ING4, CLIP2, DHX9 and their expression levels 
showed similar patterns. HSBP1, PDCD5, and GTF2I had similar expression levels. The 
pair UBA52 and EIF4H were also expressed similarly. The remaining genes had a lower 
gene expression level when compared with the abovementioned genes.

Taba R package
A statistical R package for calculating proposed robust measures is available (https://​
cran.r-​proje​ct.​org/​web/​packa​ges/​Taba/​index.​html). This package contains functions that 
evaluate correlations and their corresponding P values; partial and semi partial correla-
tions; distance (dissimilarity) and P value matrices; as well as estimating generalized par-
tial correlations. For partial, semi-partial, and generalized partial correlations, users will 
be able to specify the choice of link models such as linear, logistic, and Poisson for each 
outcome variable. The generalized partial correlation between two variables is similar 
to partial correlation, but will give the users the opportunity to control for different sets 
of confounding variables. If the two sets of confounding variables are identical, then the 
generalized partial correlation will reduce to a partial correlation.

Conclusions
Robustness is a unique quality that not all frequently used measures have. Our work 
tackles an important issue in the usage of correlation coefficients either directly or indi-
rectly as part of other various disciplines. Although MCD and P typically performed well 
under normal conditions, not all data follows a Normal distribution, however a major-
ity of gene expression data is not normal [51]. When dealing with small samples from 

https://cran.r-project.org/web/packages/Taba/index.html
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the bivariate Weibull or bivariate Log-Normal distributions the proposed methods are 
able to more accurately measure association between groups. By using an appropri-
ate robust measure of correlation, one can improve the accuracy of the results and will 
enable researchers to better understand the true associations between variables in their 
models. It is imperative that a robust measure of correlation is used to reduce the severe 
impact of outliers. Thus, we recommend TabWil and Taba correlation for measuring lin-
ear association, and TabWil rank correlation for monotonic association because they are 
safeguards against the presence of outliers or influential observations.

Overall, MCD performed well based on bias and RMSE when the underlying distri-
bution was bivariate Normal, but TabWil, TabWil rank, Taba, Spearman, and Pearson 
correlations were in close proximity. When the distribution was bivariate Log-Normal 
or bivariate Weibull, TabWil rank performed best in terms of bias but Taba performed 
best with respect to RMSE. Simulation results indicate that the proposed methods are 
highly robust and capable of determining the dissimilarity in large genomic datasets 
with thousands of genes, and hundreds of tissues.

Taba robust measure of distance was used to cluster genes using WS gene expres-
sion data. When comparing WS with the control group, TBL2 had the most significant 
reduction in its expression level. The gene TBL2, a possible regulator of the endoplas-
mic reticulum-resident kinase pathway expressed in a variety of organs such as the 
heart, skeletal muscle, and several endocrine tissues, can negatively affect nutrient 
conditions when deleted or under stress [52, 53]. This protein is often deleted in those 
diagnosed with WS [54, 55]. Other highly correlated genes such as BAZ1B, EIF4H, 
and CLIP2 are shown to be linked to conditions having similar effects [49, 56, 57].

TBL2 is associated with the eukaryotic 60S ribosomal subunit. This association was 
endoplasmic reticulum (ER) stress independent, but the TBL2-PERK (PKR-like ER-res-
ident kinase) interaction occurred upon ER stress. This may help in understanding how 
TBL2 plays a role in the expression of proteins under ER stress [58]. Under ER stress, 
TBL2 partakes in Activating Transcription Factor 4 (ATF4) translation through its asso-
ciation with mRNA [59]. Furthermore, the deletion of TBL2, along with ER stress or 
poor nutrient conditions, can lead to impaired ATF4 induction. Thus, TBL2 serves as a 
potential regulator of the PERK pathway [52]. Due to the fact that haploinsufficiency has 
been shown for other Beta-Transducin repeat (WD-repeat) containing proteins, hemizy-
gosity of TBL2 may have an impact on some aspects of the WS phenotype [60]. TBL2 
has also been known to be highly associated with neurological syndromes [61]. Results 
suggest that TBL2 along with the 42 most significant genes identified in this study may 
serve as a diagnostic factor for WS. Future work includes investigating the robustness of 
the proposed methods in medical imaging and image recognition.

Abbreviations
P: Pearson correlation; S: Spearman correlation; Q: Quadrant correlation; M: Median correlation; MCD: Minimum covari-
ance determinant correlation; T: Taba correlation; TW: TabWil correlation; TWR​: TabWil rank correlation; WS: Williams syn-
drome; RMSE: Root mean square error; TBL2: Transducin Beta like 2; DNA: Deoxyribonucleic acid; Sech: Hyperbolic secant; 
Tanh: Hyperbolic tangent; ArcTanh: Inverse hyperbolic tangent; NCBI: National Center for Biotechnology Information; 
RNA: Ribonucleic acid; mRNA: Messenger ribonucleic acid; BAZ1B: Bromodomain Adjacent to Zinc finger domain, 1B; 
EIF4H: Eukaryotic translation Initiation Factor 4H; HSPB11: Heat Shock Protein Family B (Small) Member 11; DHX40: DEAH-
Box Helicase 40; SDF2: Stromal Cell Derived Factor 2; GNPAT: Glyceronephosphate O-Acyltransferase; HIST2H2AB: H2A 
Clustered Histone 21; BAZ1B: Bromodomain adjacent to zinc finger domain, 1B; WBSCR22: Williams Beuren Syndrome 
Chromosome Region 22; COPB1: COPI Coat Complex Subunit Beta 1; ING4: Inhibitor of Growth Family Member 4; CLIP2: 
CAP-Gly Domain Containing Linker Protein 2; DHX9: DExH-Box Helicase 9; HSBP1: Heat Shock Factor Binding Protein 1; 



Page 16 of 18Tabatabai et al. BMC Bioinformatics          (2021) 22:170 

PDCD5: Programmed Cell Death 5; GTF2I: General Transcription Factor IIi; UBA52: Ubiquitin Carboxyl Extension Protein 
52; EIF4H: Eukaryotic Translation Initiation Factor 4H; ING4: Inhibitor of Growth Family Member 4; CLIP2: CAP-Gly Domain 
Containing Linker Protein 2; DHX9: DExH-Box Helicase 9; ER: Endoplasmic Reticulum; PERK: PKR-like ER-resident kinase; 
ATF4: Activating Transcription Factor 4; WD-repeat: Beta-Transducin repeat.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04098-4.

Additional file 1. Simulation results produced using RStudio version 1.3.1073.

Acknowledgements
Not applicable.

Authors’ contributions
MT and HT developed the robust methods introduced in the paper. DW performed the simulation on gene expression 
as well as clustering WS data. MT and DW wrote the manuscript. SB, ZB, HT, and KS contributed to writing and editing the 
manuscript. Graphics and visual design were performed by DW. All authors read and approved the final manuscript.

Funding
The project has been partially supported by Meharry Medical College RCMI grant (NIH Grant MD007586). This informa-
tion or content and conclusions are those of the authors and should not be construed as the official position or policy of, 
nor should any endorsements be inferred by HHS or the US Government. The funder played no role in the design of the 
study, analysis of the data, or writing the manuscript.

Availability of data and materials
Data can be found on the National Center for Biotechnology Information website (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE12​8840). The Taba R Package is available on https://​cran.r-​proje​ct.​org/​web/​packa​ges/​Taba/​index.​
html.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have no competing interests.

Author details
1 Meharry Medical College, Nashville, TN 37208, USA. 2 Department of Biostatistics, Florida International University, Miami, 
FL 33199, USA. 3 Department of Civil and Environmental Engineering, University of Wisconsin Milwaukee, Milwaukee, WI 
53211, USA. 4 Department of Epidemiology and Biostatistics, University of Texas Health Sciences Center at Tyler, Tyler, TX 
75708, USA. 

Received: 17 September 2020   Accepted: 22 March 2021

References
	1.	 Ben-Dor A, Shamir R, Yakhini Z. Clustering gene expression patterns. J Comput Biol. 1999;6:281–97.
	2.	 Bezuidenhout CN, Domleo RR. A demonstration of correlation graphs to human body dimensions. Sci Res Essays. 

2013;9:1273–81.
	3.	 Fujita A, Takahashi DY, Balardin JB, Sato JR. Correlation between graphs with an application to brain networks analy-

sis. 2015. arXiv:​1512.​06830 [q-bio, stat]. Accessed 12 Jan 2020.
	4.	 Iwasaki Y, Kusne AG, Takeuchi I. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data 

from combinatorial libraries. NPJ Comput Mater. 2017;3:4.
	5.	 Jay JJ, Eblen JD, Zhang Y, Benson M, Perkins AD, Saxton AM, et al. A systematic comparison of genome-scale cluster-

ing algorithms. BMC Bioinform. 2012;13(Suppl 10):S7.
	6.	 Lin W-T, Wu Y-C, Cheng A, Chao S-J, Hsu H-M. Engineering properties and correlation analysis of fiber cementitious 

materials. Materials. 2014;7:7423–35.
	7.	 Neto AM, Victorino AC, Fantoni I, Zampieri DE, Ferreira JV, Lima DA. Image processing using Pearson’s correlation 

coefficient: applications on autonomous robotics. In: 2013 13th international conference on autonomous robot 
systems. Lisbon, Portugal: IEEE; 2013. p. 1–6. https://​doi.​org/​10.​1109/​Robot​ica.​2013.​66235​21.

	8.	 Preacher KJ, Zhang Z, Zyphur MJ. Multilevel structural equation models for assessing moderation within and across 
levels of analysis. Psychol Methods. 2016;21:189–205.

https://doi.org/10.1186/s12859-021-04098-4
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128840
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128840
https://cran.r-project.org/web/packages/Taba/index.html
https://cran.r-project.org/web/packages/Taba/index.html
http://arxiv.org/abs/1512.06830
https://doi.org/10.1109/Robotica.2013.6623521


Page 17 of 18Tabatabai et al. BMC Bioinformatics          (2021) 22:170 	

	9.	 Snape P, Pszczolkowski S, Zafeiriou S, Tzimiropoulos G, Ledig C, Rueckert D. A robust similarity measure for volumet-
ric image registration with outliers. Image Vis Comput. 2016;52:97–113.

	10.	 Suzuki Y, Hino H, Kotsugi M, Ono K. Automated estimation of materials parameter from X-ray absorption and elec-
tron energy-loss spectra with similarity measures. NPJ Comput Mater. 2019;5:39.

	11.	 Vlachos M, Gunopulos D, Kollios G. Robust similarity measures for mobile object trajectories. In: Proceedings. 13th 
international workshop on database and expert systems applications. Aix-en-Provence, France: IEEE Comput. Soc.; 
2002. p. 721–6. https://​doi.​org/​10.​1109/​DEXA.​2002.​10459​83.

	12.	 Zhao W, Chellappa R, Phillips PJ, Rosenfeld A. Face recognition: a literature survey. ACM Comput Surv. 
2003;35:399–458.

	13.	 Yellowlees A, Bursa F, Fleetwood KJ, Charlton S, Hirst KJ, Sun R, et al. The appropriateness of robust regression in 
addressing outliers in an anthrax vaccine potency test. Bioscience. 2016;66:63–72.

	14.	 Hardin J, Mitani A, Hicks L, VanKoten B. A robust measure of correlation between two genes on a microarray. BMC 
Bioinform. 2007;8:220.

	15.	 Mukaka MM. Statistics corner: a guide to appropriate use of correlation coefficient in medical research. Malawi Med 
J. 2012;24:69–71.

	16.	 Gentleman R, Ding B, Dudoit S, Ibrahim J. Distance measures in DNA microarray data analysis. In: Gentleman R, 
Carey VJ, Huber W, Irizarry RA, Dudoit S, editors. Bioinformatics and computational biology solutions using R and 
bioconductor. New York: Springer; 2005. p. 189–208. https://​doi.​org/​10.​1007/0-​387-​29362-0_​12.

	17.	 Jaskowiak PA, Campello RJ, Costa IG. On the selection of appropriate distances for gene expression data clustering. 
BMC Bioinform. 2014;15:S2.

	18.	 Guan J, Hsieh F, Koehl P. DCG++: a data-driven metric for geometric pattern recognition. PLoS ONE. 
2019;14:e0217838.

	19.	 Shevlyakov G, Smirnov P. Robust estimation of the correlation coefficient: an attempt of survey. Aust J Stat. 
2011;40:10.

	20.	 de Winter JCF, Gosling SD, Potter J. Comparing the Pearson and Spearman correlation coefficients across distribu-
tions and sample sizes: a tutorial using simulations and empirical data. Psychol Methods. 2016;21:273–90.

	21.	 Shirkhorshidi AS, Aghabozorgi S, Wah TY. A comparison study on similarity and dissimilarity measures in clustering 
continuous data. PLoS ONE. 2015;10:e0144059.

	22.	 Kim J, Fessler JA. Intensity-based image registration using robust correlation coefficients. IEEE Trans Med Imaging. 
2004;23:1430–44.

	23.	 Mohammad TA, Tsai YS, Ameer S, Chen H-IH, Chiu Y-C, Chen Y. CeL-ID: cell line identification using RNA-seq data. 
BMC Genomics. 2019;20:81.

	24.	 Yona G, Dirks W, Rahman S, Lin DM. Effective similarity measures for expression profiles. Bioinformatics. 
2006;22:1616–22.

	25.	 Badsha MB, Mollah MNH, Jahan N, Kurata H. Robust complementary hierarchical clustering for gene expression data 
analysis by β-divergence. J Biosci Bioeng. 2013;116:397–407.

	26.	 Moore CS, Wood TJ, Beavis AW, Saunderson JR. Correlation of the clinical and physical image quality in chest radiog-
raphy for average adults with a computed radiography imaging system. BJR. 2013;86:20130077.

	27.	 Wang H, Wang Z, Li X, Gong B, Feng L, Zhou Y. A robust approach based on Weibull distribution for clustering gene 
expression data. Algorithms Mol Biol. 2011;6:14.

	28.	 Ray SS, Bandyopadhyay S, Pal SK. Dynamic range-based distance measure for microarray expressions and a fast 
gene-ordering algorithm. IEEE Trans Syst Man Cybern B. 2007;37:742–9.

	29.	 Hasan MN, Rana MM, Begum AA, Rahman M, Mollah MNH. Robust co-clustering to discover toxicogenomic bio-
markers and their regulatory doses of chemical compounds using logistic probabilistic hidden variable model. Front 
Genet. 2018;9:516.

	30.	 Spainhour JC, Lim HS, Yi SV, Qiu P. Correlation patterns between DNA methylation and gene expression in the 
cancer genome atlas. Cancer Inform. 2019;18:117693511982877.

	31.	 Córdova-Palomera A, Palma-Gudiel H, Forés-Martos J, Tabarés-Seisdedos R, Fañanás L. Epigenetic outlier profiles in 
depression: a genome-wide DNA methylation analysis of monozygotic twins. PLoS ONE. 2018;13:e0207754.

	32.	 Nishimura A, Tabuchi Y, Kikuchi M, Masuda R, Goto K, Iijima T. The amount of fluid given during surgery that 
leaks into the interstitium correlates with infused fluid volume and varies widely between patients. Anesth Anal. 
2016;123:925–32.

	33.	 Kim JY, Ahn HJ, Kim JK, Kim J, Lee SH, Chae HB. Morphine suppresses lung cancer cell proliferation through the inter-
action with opioid growth factor receptor: an in vitro and human lung tissue study. Anesth Anal. 2016;123:1429–36.

	34.	 Bloch KM, Arce GR. Median correlation for the analysis of gene expression data. Signal Process. 2003;83:811–23.
	35.	 Liu L, Hawkins DM, Ghosh S, Young SS. Robust singular value decomposition analysis of microarray data. Proc Natl 

Acad Sci USA. 2003;100:13167–72.
	36.	 Rousseeuw PJ, Hubert M. Robust statistics for outlier detection. WIREs Data Min Knowl Discov. 2011;1:73–9.
	37.	 Eby W, Li T, Bae S, Singh K. TELBS robust linear regression method. OAMS. 2012:65.
	38.	 Maronna R, Martin R, Yohai V, Salibián-Barrera M, Safari an OMC. Robust statistics. 2nd ed. 2019. https://​www.​wiley.​

com/​en-​us/​Robust+​Stati​stics:+​Theory+​and+​Metho​ds+​(with+R)​,+​2nd+​Editi​on-p-​97811​19214​687. Accessed 23 
Jan 2020.

	39.	 Shevlyakov G, Morgenthaler S, Shurygin A. Redescending M-estimators. J Stat Plan Inference. 2008;138:2906–17.
	40.	 Rousseeuw PJ, Croux C. Alternatives to the median absolute deviation. J Am Stat Assoc. 1993;88:1273–83.
	41.	 Croux C, Rousseeuw PJ. Time-efficient algorithms for two highly robust estimators of scale. In: Dodge Y, Whittaker J, 

editors. Computational Statistics. Heidelberg: Springer; 1992. p. 411–28. https://​doi.​org/​10.​1007/​978-3-​662-​26811-
7_​58.

	42.	 Rousseeuw PJ, Leroy AM. Robust regression and outlier detection. Hoboken: Wiley; 2003.
	43.	 Bonett DG, Wright TA. Sample size requirements for estimating pearson, kendall and spearman correlations. Psycho-

metrika. 2000;65:23–8.

https://doi.org/10.1109/DEXA.2002.1045983
https://doi.org/10.1007/0-387-29362-0_12
https://www.wiley.com/en-us/Robust+Statistics:+Theory+and+Methods+(with+R),+2nd+Edition-p-9781119214687
https://www.wiley.com/en-us/Robust+Statistics:+Theory+and+Methods+(with+R),+2nd+Edition-p-9781119214687
https://doi.org/10.1007/978-3-662-26811-7_58
https://doi.org/10.1007/978-3-662-26811-7_58


Page 18 of 18Tabatabai et al. BMC Bioinformatics          (2021) 22:170 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	44.	 Ruscio J. Constructing confidence intervals for Spearman’s rank correlation with ordinal data: a simulation study 
comparing analytic and bootstrap methods. J Mod App Stat Meth. 2008;7:416–34.

	45.	 Bishara AJ, Hittner JB. Confidence intervals for correlations when data are not normal. Behav Res. 2017;49:294–309.
	46.	 Raymaekers J, Rousseeuw PJ. Fast robust correlation for high-dimensional data. Technometrics. 2019;2019:1–15.
	47.	 Rousseeuw PJ, Driessen KV. A fast algorithm for the minimum covariance determinant estimator. Technometrics. 

1999;41:212–23.
	48.	 Barak B, Zhang Z, Liu Y, Nir A, Trangle SS, Ennis M, et al. Neuronal deletion of Gtf2i, associated with Williams syn-

drome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nat Neurosci. 2019;22:700–8.
	49.	 Lalli MA, Jang J, Park J-HC, Wang Y, Guzman E, Zhou H, et al. Haploinsufficiency of BAZ1B contributes to Williams syn-

drome through transcriptional dysregulation of neurodevelopmental pathways. Hum Mol Genet. 2016;25:1294–306.
	50.	 De Cegli R, Iacobacci S, Fedele A, Ballabio A, di Bernardo D. A transcriptomic study of Williams–Beuren syndrome 

associated genes in mouse embryonic stem cells. Sci Data. 2019;6:262.
	51.	 de Torrenté L, Zimmerman S, Suzuki M, Christopeit M, Greally JM, Mar JC. The shape of gene expression distribu-

tions matter: how incorporating distribution shape improves the interpretation of cancer transcriptomic data. BMC 
Bioinform. 2020;21:562.

	52.	 Tsukumo Y, Tsukahara S, Furuno A, Iemura S, Natsume T, Tomida A. TBL2 is a novel PERK-binding protein that modu-
lates stress-signaling and cell survival during endoplasmic reticulum stress. PLoS ONE. 2014;9:e112761.

	53.	 Fisch GS. Genetics and genomics of neurobehavioral disorders. Totowa: Humana Press; 2003.
	54.	 TBL2 transducin beta like 2 [ Homo sapiens (human) ]. National Center for Biotechnology Information; 2020. https://​

www.​ncbi.​nlm.​nih.​gov/​gene/​26608?_​ga=2.​24196​5378.​13791​59307.​16062​44325-​79102​781.​16062​44325#​bibli​ograp​
hy.

	55.	 Meng X, Lu X, Li Z, Green ED, Massa H, Trask BJ, et al. Complete physical map of the common deletion region in Wil-
liams syndrome and identification and characterization of three novel genes. Hum Genet. 1998;103:590–9.

	56.	 Capossela S, Muzio L, Bertolo A, Bianchi V, Dati G, Chaabane L, et al. Growth defects and impaired cognitive-
behavioral abilities in mice with knockout for Eif4h, a gene located in the mouse homolog of the Williams–Beuren 
syndrome critical region. Am J Pathol. 2012;180:1121–35.

	57.	 Vandeweyer G, Van der Aa N, Reyniers E, Kooy RF. The contribution of CLIP2 haploinsufficiency to the clinical mani-
festations of the Williams–Beuren syndrome. Am J Hum Genet. 2012;90:1071–8.

	58.	 Tsukumo Y, Tsukahara S, Furuno A, Iemura S, Natsume T, Tomida A. The endoplasmic reticulum-localized protein 
TBL2 interacts with the 60S ribosomal subunit. Biochem Biophys Res Commun. 2015;462:383–8.

	59.	 Tsukumo Y, Tsukahara S, Furuno A, Iemura S, Natsume T, Tomida A. TBL2 associates with ATF4 mRNA via its WD40 
domain and regulates its translation during ER stress: TBL2 regulates translation of ATF4 during ER stress. J Cell 
Biochem. 2016;117:500–9.

	60.	 Pérez Jurado LA, Wang Y-K, Francke U, Cruces J. TBL2, a novel transducin family member in the WBS deletion: 
characterization of the complete sequence, genomic structure, transcriptional variants and the mouse ortholog. 
Cytogenet Genome Res. 1999;86:277–84.

	61.	 Talwar S, Munson PJ, Barb J, Fiuza C, Cintron AP, Logun C, et al. Gene expression profiles of peripheral blood leuko-
cytes after endotoxin challenge in humans. Physiol Genomics. 2006;25:203–15.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://www.ncbi.nlm.nih.gov/gene/26608?_ga=2.241965378.1379159307.1606244325-79102781.1606244325#bibliography
https://www.ncbi.nlm.nih.gov/gene/26608?_ga=2.241965378.1379159307.1606244325-79102781.1606244325#bibliography
https://www.ncbi.nlm.nih.gov/gene/26608?_ga=2.241965378.1379159307.1606244325-79102781.1606244325#bibliography

	An introduction to new robust linear and monotonic correlation coefficients
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Methods
	Robust correlation methods
	Taba correlation
	TabWil correlation
	TabWil rank correlation
	Confidence intervals for proposed Measures
	Testing hypothesis for proposed measures

	Simulation study
	Simulation results
	Simulation results stratified by sample size
	Simulation results stratified by level of correlation 
	Simulation results stratified by level of contamination
	Overall simulation results

	Analysis of William syndrome
	Taba R package
	Conclusions
	Acknowledgements
	References


