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Background
Lung cancer and tuberculosis (TB) are the leading causes of human death and represent 
a global health concern. According to estimates from the 2018 Global Cancer Observa-
tory (GLOBOCAN), lung cancer is the most frequent cancer, accounting for 11.6% of 
the 18.1 million newly diagnosed cancer cases [1]. In 2018, the World Health Organi-
zation (WHO) reported 10 million new cases of TB and 1.4 million TB-related deaths 
[2]. Different factors have been identified that might increase the risk of lung cancer [3]. 
Many risk factors are shared between lung cancer and TB infection [4]. Recent popula-
tion-based studies have reported that the risk of lung cancer can increase with infection 
by Mycobacterium tuberculosis (M.tb), the etiological agent of TB infection [5–10]. An 
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inflammatory microenvironment driven by cytokines, chemokines, and inflammatory 
cells during TB infection has been recognized as a process that can induce genetic and 
host tissue damage and contribute to carcinogenesis in lung tissue [11].

There is increasing evidence of a significant genetic diversity in the M.tb population 
[12, 13]. M.tb strain-specific host–pathogen interactions have been demonstrated in pre-
vious studies [14–18]. This characteristic may affect the trend of M.tb pathogenesis and 
the molecular mechanism behind the association between the risk of lung cancer and 
TB infection. However, the association between TB infection and lung cancer has been 
evaluated previously without considering the bacterial genotype. In the current study, 
we tried to provide new insight into this association with consideration of the genetic 
background of strains in M.tb population.

In Iran, the presence of remarkable diversity in M.tb population structure with pre-
dominance of L3-CAS1 and L4.5 (NEW1) sub-lineages has been documented. Epide-
miologically, Iran has been identified as the probable origin of L4.5 and the ecological 
adaption and national occurring of this subpopulation was not unexpected. L3-CAS-
1sub-lineage is almost found in around the Indian Ocean and the influx of Afghan refu-
gees may contribute to ongoing circulation of L3-CAS1sub-lineage in Iran. However, it 
seems genetic variability be the main driver of this epidemiological trend and transmis-
sion potential in both sub-lineages [13, 19, 20]. In line with, in our previous study, we 
compared these dominant sub-lineages of M.tb strains in interrupting TLRs and NF-κB 
signaling pathways in alveolar epithelial cell type II (A549 cell line) and observed strain-
specific characteristics in interactions with host cells [16]. In the light of these results, 
we examined the gene expression profile of cancerous cell line in response to two M.tb 
with divergent genetic background by employing penalized statistical model and systems 
biology methods.

Results
Differential analysis of gene expression data

Based on the statistical comparisons by Limma R package, 37 genes were identified 
with significant down-regulation (all fold-regulations were less than − 2) compared to 
the RPLP0 expression as the housekeeping gene, including BTK, AKT1, CD86, CD80, 
IFNG, BCL3, TLR10, MAPK8IP3, etc. In contrast, 25 genes were identified with a signifi-
cant up-regulation (all fold-regulations were more than 2) compared to RPLP0, includ-
ing PTGS2(COX-2), FOS, HSPA1A, NFKBIL1, MAP4K4, HSPD1, HSPA1A, FADD, etc. 
(Table 1).

Table 1  The list of the differentially expressed genes in comparison with the housekeeping gene

Significantly down-regulated genes (n = 37) Significantly up-regulated genes (n = 25)

AKT1, BCL2L1, BCL3, BTK, CARD11, CD180, CD80, CD86, ELK1, 
HMGB1, PSIP1, PPARA, SIGIRR, TAB1,TBK1, TIRAP, TLR10, 
IFNG, IKBKG, IL1R1, IL2, IL10, IRF1, LTA, MAPK8IP3, TLR2, 
TLR4, TLR6, TLR7, TLR8, TNFRSF10A, TNFRSF1A, TRADD, 
TRAF2, TOLLIP, TRAF3, TNFAIP2

BCL2A1, CCL2, CCL5, CXCL2, CXCL8, EIF2AK2, FADD, FOS, 
PELI1, PTGS2, RELA, SARM1, HRAS, HSPA1A, HSPD1, 
HMOX1, IRF3, JUN, MAP2K4, MAP3K1, MAP4K4, NFK-
BIA, NFKBIL1, NFRKB, NR2C2
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Gene selection and literature search

By using elastic net regularized logistic regression as a statistical-learning algorithm for 
gene selection, 21 genes were selected all in association with either of the two M.tb sub-lin-
eages (Table 2). The most important selected genes included CFLAR, TIFA, HRAS, IRAK1, 
CD14, BTK, MAPK8IP3, IFNG, JUN, IL1A, CD80, PSIP1, PTGS2, BCL3, HSPA1A, RHOA, 
CCL2(MCP-1), CXCL8, HSPD1, TLR2, and EGFR. The importance values of all the selected 
genes were more than 20%. Co-expression hierarchical heatmap between the selected genes 
was presented using Spearman’s rank correlation matrix (Fig. 1). As shown in Fig. 1, the 
selected genes were clustered in the two main clusters based on the co-expression pattern. 
According to the co-expression patterns of the selected genes, TIFA, BTK, EGFR, RHOA, 
CFLAR, PSIP1, and BCL3 had a similar expression pattern while the other selected genes 
formed another group with the same expression patterns (e.g. CCL2, HRAS, CXCL8, 
PTGS2, HSPD1, IL1A, and JUN). Figure 2 displays the functional protein-association net-
works for the 21 selected genes.

Table 2  Genes selected by elastic-net regularized multinomial logistic regression for the association 
between the genes and the dominant genotypes of M.tb strains

Lambda is the tuning parameter and it is for controlling the overall strength of the penalty. Alpha is a controlled parameter 
between LASSO (L1) and ridge (L2) penalties. Alpha = 0.5 corresponds to elastic-net regularization. Importance value for 
each selected gene was reported, p values adjusted by Benjamini-Hochberg-FDR correction at α = 0.05

Gene 
Symbol

Elastic net Fold 
Regulation 
(L3-CAS1 
vs. Con.)

Adjusted 
P-value 
(L3-CAS1 
vs. Con.)

Fold 
Regulation 
(L4.5 vs. 
Con.)

Adjusted 
p value 
(L4.5 vs. 
Con.)

Fold 
Regulation 
(L4.5 vs. 
L3-CAS1)

Adjusted 
p value 
(L4.5 vs. 
L3-CAS1)

1 CFLAR 100%  − 1.544 0.082 1.376 0.117 2.125 0.044

2 TIFA 93.9%  − 1.392 0.199  − 1.206 0.399 1.154 0.256

3 HRAS 91.8% 3.279 0.0001 6.681 0.0001 2.038 0.001

4 IRAK1 82.36% 1.395 0.082 1.136 0.503  − 1.228 0.256

5 CD14 77.93% 4.724 0.0001  − 1.217 0.171  − 5.749 0.0001

6 BTK 67.28%  − 4.258 0.055  − 440.602 0.001  − 103.476 0.0001

7 MAPK8IP3 59.63%  − 13.117 0.0002  − 12.323 0.0003 1.064 0.114

8 IFNG 55.51%  − 24.028 0.0001  − 9.426 0.0002 2.549 0.001

9 JUN 41.91% 3.146 0.0001 12.582 0.0002 3.999 0.001

10 IL1A 39.77% 2.204 0.0001 3.160 0.0001 1.434 0.081

11 CD80 33.64%  − 3.630 0.0001  − 5.856 0.0002  − 1.613 0.044

12 PSIP1 31.03%  − 3.972 0.045  − 2.075 0.126 1.914 0.011

13 PTGS2 29.73% 40.880 0.0001 84.449 0.0001 2.066 0.001

14 BCL3 26.79%  − 12.098 0.035  − 1.617 0.188 7.482 0.0001

15 HSPA1A 26.63% 10.581 0.0001 4.009 0.0002  − 2.639 0.001

16 RHOA 26.27%  − 1.245 0.055 1.526 0.003 1.900 0.011

17 CCL2 26.23% 2.023 0.045 5.993 0.0002 2.962 0.001

18 CXCL8 24.92% 6.364 0.0001 20.966 0.0001 3.294 0.0001

19 HSPD1 23.79% 7.345 0.0001 9.759 0.0002 1.329 0.114

20 TLR2 22.52%  − 8.980 0.0001 1.651 0.0017 14.826 0.0001

21 EGFR 21.83%  − 3.547 0.035 1.286 0.433 4.561 0.0001

Misclassi-
fication 
error 
rate

14.8% – – – – – –

lambda 0.00849 – – – – – –

Alpha 0.50 – – – – – –
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Furthermore, results of the literature search demonstrated 20 out of the 21 genes had 
been previously reported in the literature to be associated with lung cancer or lung function 
diseases (Table 3). We identified MAPK8IP3 as a novel gene, which has not been previously 
detected in lung function studies. These selected genes may deserve special attention for 
the future development of therapeutics intervention.

Comparison of selected genes expression between M.tb L4.5 and L3‑CAS1 sub‑lineages 

groups

We investigated the differential expression of the 21 selected genes between M.tb L4.5 
and L3-CAS1 sub-lineages groups. A comparison of M.tb L4.5 to L3-CAS1 sub-lineages 
showed significant differences in the expression of 13/21 (61.9%) genes. Among these 13 
genes, CFLAR, HRAS, IFNG, JUN, PTGS2, BCL3, CCL2, CXCL8, TLR2, and EGFR were 
significantly up-regulated in the L4.5 sub-lineage group compared to the L3-CAS1 sub-lin-
eage group, while CD14, BTK, and HSPA1A genes were significantly down-regulated in the 
M.tb L4.5 sub-lineage group compared to the M.tb L3-CAS1 sub-lineage group (Table 2). In 
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Fig. 1  Spearman’s rank correlation matrix for co-expression between the selected genes: heatmap for 
agglomerative hierarchical clustering of the 21 selected genes based on their patterns of gene expression. 
The IFNG gene is not correlated with other genes and has not shown in the heatmap
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addition, MAPK8IP3 was not changed in the M.tb L4.5 sub-lineage group compared to the 
M.tb L3-CAS1 sub-lineage group (adj. P = 0.114).

Discussion
In the present study, we investigated lung cancer-related genes that differentially were 
regulated by different genotypes of M.tb in lung adenocarcinoma cell line using the 
statistical penalized algorithm. In our analyses, we identified 21 potentially lung can-
cer-related genes during infection with M.tb L3-CAS1 and L4.5 sub-lineages.

Various inflammatory processes and functional pathway-associated genes, 
which are involved in carcinogenesis, have been investigated in different studies. 
Chemokines secretion is one of the main ways for recruitment of host cell and inhi-
bition of antitumor immune responses in cancerous cells [21, 22]. MCP-1 is one of 
the chemotactic stimuli that is secreted from cancerous cells and induces immuno-
suppressive microenvironments [23]. There are some controversies about the role of 
this chemokine in lung cancer pathogenesis [24, 25]. However, Fridlender et al. found 
that the blockade of MCP-1 could inhibit lung tumorigenesis and could be proposed 
as a promising approach to lung cancer treatment [26]. Besides, the role of IL8 as 
another chemokine, which typically plays a role in the induction of angiogenesis and 
its overexpression, has been reported in lung cancer. In addition, the overexpression 
of COX-2, an inflammation-associated gene, has been found in different stages of lung 

Fig. 2  STRING protein–protein interaction networks for the 21 selected genes
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cancer [27]. This up-regulation may be explained the functional role of this gene in 
lung tumorigenesis and prediction of patient outcomes. In line with lung cancer stud-
ies, in our analysis, the expression of MCP-1, IL-8, and COX-2 was up-regulated in 
the cancerous cell line in response to the infection with M.tb L4.5 sub-lineage when 
compared to the infection with M.tb L3-CAS1 sub-lineage (p < 0.001).

IFN-γ is generally considered as a cytokine with antitumor activity. However, there are 
significant controversies about the role of this cytokine. Increasing evidence suggested 
that IFN-γ may have dual aspects in its function and act as both an anti-tumorigenic 
and a pro-tumorigenic cytokine [28]. The pro-tumorigenic property of IFN-γ is based 
on the upregulation of immunosuppressive cells such as Treg cells and Th17 [29]. The 
pivotal role of this cytokine in regulating the Programmed death-ligand 1 (PD-L1) gene 
expression, as a factor that has an inhibitory role in cancer immunity, and promoting 
the immune evade has been found in tumor cells [30]. Besides, the upregulation of 
PD-L1 expression and induction of lung carcinoma by IFN-γ have been revealed [30]. 
Similarly, in vitro and in vivo concomitant H37Rv infection in non-small cell lung cancer 
showed that lung cancer progression facilitated by enhancing Treg cells proportion and 
the upregulation of PD-L1 expression that induced by H37Rv as a part of M.tb lineage 4 
[31]. In the current study, based on the expression of IFN-γ in response to the infection 
with M.tb L4.5 sub-lineage, compared to L3-CAS1 sub-lineage, this expression profile 
might be favor for better control of M.tb L4.5 sub-lineage strain compared to L3-CAS1 

Table 3  Confirmation of the associations of 21 selected genes with lung cancer/or lung function 
by literature reviewing in PubMed with keywords ((“Lung Cancer” OR “Lung Function”) AND “name of 
each selected gene”) in the title and abstract fields

Gene Symbol Number of studies References (PMIDs)

CFLAR 8 29,258,089, 29,165,042, 27,186,395, 24,387,758, 
21,430,781, 20,713,531, 19,860,666, 17,450,141

TIFA 1 29,975,933

HRAS 37 30,196,239, 29,641,535, 29,636,358, and etc

IRAK1 4 25,550,857, 29,667,303, 26,262,504, 24,144,839

CD14 100 30,325,558, 30,112,108, 29,343,695, 29,448,000, and etc

BTK 5 28,990,652, 28,734,581, 27,437,104, 27,111,445, 17,327,079

MAPK8IP3 0 -

IFNG 12 29,516,506, 24,244,422, and etc

JUN 200 29,262,633, 29,858,032, and etc

IL1A 3 25,554,695, 12,752,325, 12,737,276

CD80 30 11,422,893, 26,702,740, and etc

PSIP1 1 24,670,920

PTGS2 22 22,761,909, 22,464,751, and etc

BCL3 2 20,420,878, 26,122,346

HSPA1A 5 22,037,874, 29,137,250, 28,331,811, 26,093,302, 20,404,511

RHOA 100 29,995,590, 29,337,059, 28,888,686, and etc

CCL2 66 30,061,946, 29,892,522, 29,722,145, and etc

CXCL8 55 27,578,214, 29,636,079, 28,836,545, and etc

HSPD1 5 28,978,099, 28,698,656, and etc

TLR2 32 27,097,965, 22,952,638, 24,630,931, and etc

EGFR 3692 30,350,450, 30,349,313, 30,343,004, and etc



Page 7 of 12Hadifar et al. BMC Bioinformatics          (2021) 22:154 	

sub-lineage in infected host cell, in addition may contribute to the pathogenesis and 
deterioration of lung cancer during infection with M.tb L4.5 sub-lineage strain. Evaluat-
ing the expression level of IL-8, MCP-1 and IFN-γ genes in A549 cell line in response to 
infection with F15/LAM4/KZN(LAM sub-lineage), F11(LAM sub-lineage), F28 (S sub-
lineage) and Beijing (L2-Beijing sub-lineage) genotypes showed that the higher level of 
upregulation in the both genes are induced in response to infection with M.tb LAM sub-
lineages compared to the other sub-lineages[32],While they failed to detect the expres-
sion of IFN-γ in response to all strains. However, the M.tb L4.5, LAM and S strains are 
members of lineage 4, differentially induced host response. The strain‐specific charac-
teristic of M.tb population may have the potential to be considering in lung cancer cells 
studies.

Deregulation of apoptosis and cell proliferation pathways are the key mechanisms 
playing important roles in cancer pathogenesis [33]. The blockade of apoptosis can be 
mediated by the overexpression of anti-apoptotic proteins such as FLIP. The upregula-
tion of FLIP also has been detected in lung carcinoma [34, 35]. In line with lung can-
cer study, the expression of FLIP was upregulated in response to L4.5 sub-lineage when 
compared with L3-CAS1 sub-lineage in our study (p < 0.05). The overexpression of FLIP 
by M. tb L4.5 sub-lineage may contribute to exacerbation of lung cancer during infection 
with this strain. This overexpression and inhibiting of the apoptosis is also favor for M.tb 
pathogenesis.

In addition, it has been demonstrated the blockade of the Rho/Rho-kinase pathway, 
which is involved in cancer proliferation and invasion, inhibited tumor migration and 
invasion [36, 37]. The knockdown of RhoA as the member of the Rho family inhibits 
lung cancer cell proliferation and induces apoptosis [38]. In our study, the expression 
of RhoA did not change in response to L4.5 sub-lineage when compared with L3-CAS1 
sub-lineage. In addition, the deregulation of the HRAS gene, which is involved in the 
proliferation of different cancers, has been reported [39, 40]. Overexpression of the Ras 
oncogene family member was identified in response to L4.5 sub-lineage when compared 
with L3-CAS1 sub-lineage. This upregulation can contribute to the progression of can-
cerous cells.

Among the 21 selected genes, BCL3 has an inhibitory function. The deregulation 
of this gene as an atypical member of the IκB family has been shown in different solid 
tumors[41]. In addition, Dimitrakopoulos et al. described the role of this gene in lung 
carcinogenesis [42]. They reported an increase in BCL3 expression in lung cancer. This 
overexpression could be directly related to the increased level of EGFR expression. Aber-
rant EGFR expression are implicated in the progression of malignant cells manner [43, 
44]. EGFR can promote angiogenesis by upregulation of main angiogenesis mediators 
such as Vascular endothelial growth factor (VEGF). Angiogenesis plays important role 
in the solid tumors growth and metastasis spreading [45]. Moreover, the expression of 
HDM2 as a negative regulator of p53 that is a tumor suppressor gene was induced by the 
upregulation of BCL3[46]. In our analysis, based on the expression of BCL3 and EGFR in 
response to L4.5 sub-lineage when compared to L3-CAS1 sub-lineage, we hypothesize 
that infection by the L4.5 sub-lineage strain may be potent to deteriorate lung carcinoma 
by promoting tumor growth and angiogenesis.
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Besides, it has been proposed that HSPA1A (HSP70), a chaperone molecule, is strongly 
involved in promoting and development of different tumor cells and overexpression of 
this heat-shock protein has been shown to be associated with the progression of several 
tumors such as lung cancer [47]. The current findings were consistent with the previous 
studies. However, level of HSP70 expression in response to infection with M.tb L4.5 sub-
lineage was lower in compared to L3-CAS1 sub-lineage.

It is noteworthy that some inconsistent results were found in the current study. It has 
been shown TLRs pathway molecules such as IRAK1and TLR2 have important roles in 
neoplasm diseases [48] and the significant upregulation of IRAK1 and its involvement 
in the development of solid tumors including lung cancer have been reported [49, 50]. 
Besides, high expression of TIFA [51] and IL1A as a gene, which regulates tumor growth, 
angiogenesis, and metastasis in lung carcinoma cell has been reported. [52]. Contrary, 
no changes in the expression of all aforementioned genes were observed during infection 
with M.tb L4.5 sub-lineage compared to L3-CAS1 sub-lineage. Although the expression 
of the genes is controversial, the expression profile of other genes suggested the possibil-
ity that infection with the M.tb L4.5 sub-lineage strain drive cancer cell to progression. 
In the other word, the risk of progression might have promoted in lung cancer patients 
with lung that infected by M.tb L4.5 sub-lineage strain compared to M.tb L3-CAS1 sub-
lineage strain. These patients also are more potent to secondary infections.

In contrast to our results, Mvubu et al. [32] showed that the expression level of IRAK1 
and IL1A were increased in response to infection with LAM sub-lineages(F15/LAM4/
KZN, F11), S sub-lineage (F28) and Beijing sub-lineage. Level of this increase was higher 
in response to LAM sub-lineages compared to the other sub-lineages. It is possible that 
infection with LAM sub-lineages similar to L4.5 sub-lineages is more potent to drive 
cancer cell to progression.

In our analysis, we also identified MAPK8IP3 as a novel and potent target that has not 
been reported in previous lung cancer studies. MAPK8IP3 is a scaffold gene, also known 
as JIP3, that exhibits function in the JNK pathway[53]. The overexpression of this gene 
has been shown in different tumor cells [53, 54]. Therefore, MAPK8IP3 may have the 
potential to be recognized as a novel biomarker in lung cancer investigation.

Based on the results of previous studies that demonstrated elastic net penalized logis-
tic regression frequently performed better than Ridge, LASSO, and some statistical-
based learning algorithms for model selection consistency and prediction accuracy 
[55], the use of this modern and accepted computational method in high dimensional 
gene expression data is a strength of the current study. The validation of all the results 
by literature review, the use of an appropriate cross-validation method (repeated 5-CV), 
the address of potential sources of bias and the use of STRING networks are the other 
strengths of the present study. However, the main limitations of our study are that the 
cell line selection was confined to adenocarcinoma of lung cell line and protein levels of 
selected genes were not assessed.

Conclusions
The evidence of epidemiological association between TB infection and lung cancer is 
well established. This preliminary study provides new insights into the mechanistic 
association between TB infection and lung cancer. The two studied M.tb sub-lineages 
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promoted cancer development by creating an inflammatory environment through dif-
ferentially down/up-regulation of gene involved in TLRs and NF-κB signaling pathways. 
This environment has crucial impact on cell proliferation, apoptosis and angiogene-
sis. Based on significant strain‐specific behavior of M.tb population in host–pathogen 
interactions and according to our findings, investigation of linking TB infection to lung 
cancer in the context of the genetic background of M.tb strains might be more effec-
tive to gain a better understanding of this association, identification of M.tb strain‐spe-
cific behavior and therapeutic intervention. Further investigations with a large number 
of M.tb strains, encompassing the other main M.tb lineages and using the whole tran-
scriptome of the host cell are inevitable. However, providing further information to fully 
understand of significant M.tb strain‐specific behavior related to lung cancer progres-
sion and minimizing bias are needed by means of high throughput methods.

Methods
Study design

The study was designed in accordance with our previous study [16] which investigated 
the gene expression profile of infected A549 cell line (ATCC CCL‐185) in response to 
dominant genotypes of M.tb. Briefly, the dominant genotypes of M.tb (L3-CAS1 and 
L4.5 strains) in the capital of Iran were identified based on 24 loci MIRU-VNTR and 
Spoligotyping[19] and confirmed by whole genome sequencing method. Then, the A549 
cell line (maintained in antibiotic- free media) was infected in triplicates with the domi-
nant genotypes an multiplicity of infection (MOI) of ~ 50:1 (50 bacteria:cell) for 72  h 
supplemented Dulbecco’s modified Eagle medium (DMEM) and After the time, cel-
lular response involved in TLRs and NF-κB signaling pathways was evaluated by qRT‐
PCR. RT2 Profiler™ PCR Array kits (QIAGEN), which include RT2 Profiler™ PCR Array 
Human Toll‐Like Receptor Signaling Pathway (QIAGEN, Cat.No. PAHS‐018ZF‐2) and 
RT2 Profiler™ PCR Array Human NF‐κB Signaling Pathway (QIAGEN, Cat.No. PAHS‐
025YF‐2) according to the manufacturer’s instructions was used to perform qRT‐PCR. 
The expression of 168 pathway‐specific genes was evaluated and 39 genes were shared 
between these pathways. Secretion level of 12 cytokines/chemokines was assessed by 
ELISA arrays kit (QIAGEN). Viability of infected and mock cells was evaluated by the 
trypan blue exclusion test based on the manufacturer’s instructions (Sigma Aldrich, 
Germany). In addition, intracellular growth assay and intracellular internalization index 
were carried out [16].

Gene expression analysis

The comparative cycle threshold (Ct) method (2−ΔCt × 103) was used to demonstrate the 
relative gene expression across the samples and the fold change was calculated using the 
2−ΔΔCt method [56]. Next, the primary gene expression data were qualified and normal-
ized. Linear modeling for statistical comparison was applied by “limma” R package [57]. 
The cutoff of the false discovery rate for statistical comparison between the control and 
TB groups was considered at the level of 0.10.
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Gene selection model

Elastic net regularization produced a sparse model with good prediction accuracy 
and good grouping capability. Elastic net frequently has served better than the Ridge, 
LASSO, and many other statistical learning algorithms in gene selection consistency 
and prediction accuracy in gene datasets [55, 58]. Elastic net is introduced as a compro-
mise between these two techniques, combining strength between the Ridge and LASSO 
penalized regression [59]. The elastic net penalized logistic regression was performed 
by “glmnet” R package (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​glmnet). The two M.tb 
sub-lineages were considered as dependent variable and expression level of the 129 
genes were considered as independent/ or predictive variables in the elastic net regular-
ized logistic regression for gene selection. The importance value of each selected gene 
was calculated using “varImp” function in “Caret” R package. Interactive agglomerative 
hierarchical clustering heatmap was applied by “heatmaply” R package in order to draw 
the co-expression heatmap between the selected genes (https://​cran.r-​proje​ct.​org/​web/​
packa​ges/​heatm​aply). Statistical significance was considered at the level of 0.05 in the all 
of statistical methods.

Cross‑validation and literature validation

In order to validate the performance of the elastic net penalized regression, the repeated 
fivefold cross-validation was used. The model split the dataset by using repeated ran-
dom sub-sampling with 100 repetitions in the fivefold cross-validation, permuting the 
sample labels every time. The cross-validated performance was summarized by observed 
misclassification error rate. In addition, to assess the literature validation for any result, 
a literature mining was used in PubMed by the search strategy of (“Lung Cancer” OR 
“Lung Function”) AND (“name of each selected gene”) and related MeSH terms in title 
and abstract fields.
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