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Background
Genome-wide association studies (GWAS) have shed light on the genetics of com-
plex traits and diseases, but single-locus analyses fail to detect the epistatic gene–gene 
interactions, which play a crucial role in the genetics of complex traits [1–3]. This has 
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resulted in a proliferation of methods for detecting gene–gene interactions [4], for exam-
ple: regression methods, including regularized regression techniques such as LASSO 
[5, 6]; ensemble methods such as random forests [7–9]; and multifactor dimensionality 
reduction [10, 11].

We focus here on the class of techniques based on information theory, which for-
mulate entropy-based measures sensitive to multi-gene epistatic interactions. These 
approaches are powerful due to being inherently model-free and particularly sensitive to 
nonlinear relationships [3]. This has led to its own proliferation in entropy-based meas-
ures of epistatic interaction, including: Conditional Mutual Information [12], Informa-
tion gain [13–18], Relative Information Gain [16, 19–21], Total Correlation [22–27], 
Synergy [28, 29], and the Information Delta [30, 31].

Though these different formulations vary, they share many of the same advantages 
inherent to the information theory-based approach, but also many of the same weak-
nesses, and of particular note here is the recurrent difficulty in constructing statistical 
tests for the significance of a detected interaction. There is typically no simple analytic 
formulation for the null distributions of these estimators, and thus significance tests 
require either some approximation or, more reliably, permutation testing. Permutation 
testing is often considered the “gold standard” for multi-test significance analysis [32, 
33], and is the approach utilized by the majority of the above studies [20–27, 29, 34, 35].

Even in a single-locus GWAS, permutation testing is computationally costly [33]. SNP 
arrays may contain hundreds of thousands of individual SNPs, and thus there are hun-
dreds of thousands of pairwise SNP-phenotype relationships to be tested. Higher-order 
relationships quickly lead to computationally intractable problems: this same number of 
SNPs leads to billions of possible three-way SNP–SNP-phenotype interactions, and to 
tens of trillions of four-way SNP–SNP-SNP-phenotype interactions. Detecting and test-
ing these interactions becomes difficult on both statistical and computational levels.

In its simplest naive form, permutation testing consists of iterations of randomly 
permuting the phenotype labels and re-running the analysis pipeline. However, this 
approach can be optimized considerably, especially when performed multiple times: 
for example, standard packages such as PLINK [5] by default use an adaptive approach, 
which iteratively checks if the permutations already performed are sufficient to rule any 
of the observed SNP-phenotype associations as statistically insignificant, and drops 
insignificant SNPs from subsequent computations. Even the cost of this approach can 
be further reduced by an order of magnitude, and there exist multiple approaches for 
optimizing these single-locus analyses, including PRESTO [36], SLIP and SLIDE [37], 
and PERMORY [38].

In this paper, we develop an approach which reduces the computational cost of per-
mutation tests by orders of magnitude for all information theory based measures. We 
identify the construction of count tables as the largest computational bottleneck, and 
devise a method for directly transforming these count tables to replicate a permutation 
test, without having to reconstruct them. We find that this reduces the computation 
time of each permutation by over three orders of magnitude. This approach therefore 
allows for the principled assessment of statistical significance in a multi-SNP association 
study, and enables the consideration and comparison of multiple candidate measures for 
multivariable dependence.
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Results
Construction of count tables

Genotype and phenotype data can be represented with an n×m genotype array G and a 
length-n phenotype vector p, where m SNPs are measured for n individuals. The number 
of three-way SNP–SNP-phenotype interactions is typically quite large, as this scales as 
m2 . In this case of large n and m, we find that the bulk of the computation consists of 
merely computing the count tables for each possible tuple.

The computation of the joint entropy between the variables in a given tuple first 
requires the calculation of a count table. Consider a tuple consisting of two SNPs and a 
single phenotype. Each SNP takes a value 0, 1, 2 (for homozygous major, heterozygous, 
and homozygous minor alleles respectively), and the phenotype is binary with possible 
values 0 and 1. The count table C is then a 3× 3× 2 array:

where cijk is the number of individuals for whom the first SNP has a value of i, the sec-
ond SNP has a value of j, and the phenotype has a value of k. Clearly, the elements sum 
to the total number of individuals n; dividing this array by n gives the joint probability 
estimates, from which the various joint entropies can be calculated, which can then be 
used to calculate information-theoretic measures for the corresponding tuple.

Notation and reasoning

A count table C must be constructed for each of the billions of tuples. A naive approach 
to permutation testing would simply randomly shuffle the phenotype vector p and 
repeat the entire analysis, including the reconstruction of count tables from the data. 
We instead seek a transformation which, starting from a count table C, will generate a 
randomized count table C∗ from the same distribution of randomized count tables given 
by naive permutation. The first crucial observation is that the sum over the third axis of 
C will remain constant over a permutation test:

where nij is the number of individuals for whom the first SNP is i and the second SNP is 
j. With this notation, we can write:

We need only compute the k = 0 layer of this array, from which the k = 1 layer immedi-
ately follows. We also have the constraint that:
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n0 is the total number of individuals with phenotype label 0, which will also remain con-
stant as the labels are shuffled.

With our notation and the constraints of Eqs. 2 and 4, we can begin to consider the 
effect of a permutation test upon a count table. Firstly, how is c∗000 distributed? Consider 
the n00 individuals with this genotype. If we randomly shuffle the phenotype labels, we 
are, in effect, randomly drawing without replacement n00 labels from the population of 
n labels, n0 of which have a value of 0. This process of drawing from a finite set of labels 
without replacement is described by the hypergeometric distribution, and we can write:

from which c∗001 = n00 − c∗000 immediately follows.
When computing the next element, we must consider that the previous step has 

already assigned n00 labels, c∗000 of which had a value of 0. We again draw without 
replacement n10 labels, now from a total population of n− n00 phenotype labels, of 
which n0 − c∗000 have value 0:

The next element is drawn iteratively in the same manner:

This process is repeated until all of the elements have been assigned.

Algorithm for transformed count tables

More formally, this count transformation process can be written as follows: 

1.	 From the original count table cijk , compute the genotype counts nij , the value-0 phe-
notype count n0 , and the total phenotype count n.

2.	 Assign an (arbitrary) order to the indices (i, j). This will be the order in which the ele-
ments are assigned. For example, let: 

3.	 For each (i, j) in the ordered set, sample from the hypergeometric distribution: 

4.	 Calculate the corresponding number of counts with phenotype value 1: 

Discussion
Comparing generated distributions

To check that this method works as intended, we verified that the distribution of 
count tables generated via our method is indistinguishable from count tables gen-
erated by direct permutation of the phenotype labels. Specifically, we randomly 

(5)c∗000 ∼ Hypergeometric(n, n0, n00)

(6)c∗100 ∼ Hypergeometric(n− n00, n0 − c∗000, n10)

(7)c∗200 ∼ Hypergeometric(n− (n00 + n10), n0 − (c∗000 + c∗100), n20)

{(i, j)} = {(0, 0) < (1, 0) < (2, 0) < (0, 1) < · · · < (2, 2)}

c∗ij0 ∼ Hypergeometric
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generated a total of NP = 1,000,000 permuted count tables using each method, and 
found the distributions of the permuted elements c∗ij0 to be both visually and statis-
tically indistinguishable (via an ensemble of Epps–Singletons tests between the two 
distributions [39]). Further details on how these count tables were generated and how 
the analysis was performed are given in the Methods.

Comparing computational complexity

We can also generate synthetic data (as described in the Methods) to compare the 
computational cost of each approach. Figure 1 compares the computational complex-
ity of the naive direct permutation approach as compared to our method, as a func-
tion of both the number of individuals n and number of permutations Np . In Fig. 1a, 
we calculate the computation time as a function of Np , with a fixed n = 10,000 sam-
ples and 100k SNPs. The computation time of both methods scales linearly with the 
number of permutations (i.e. they are both O(Np) ). However, the linear fits to each 
method imply a time per permutation of 586.6s for the direct permutation method 
and 0.52s for our method. Our method is therefore over 103 times faster for each per-
mutation, for this number of samples.

Figure 1b, which calculates the computation time as a function of number of sam-
ples n with a fixed Np = 20 , shows an even clearer computational advantage of our 
approach. The direct permutation approach scales linearly with the number of sam-
ples (i.e. it scales as O(n) ), whereas the computation time for our method does not 
depend on the number of samples (i.e. it scales as O(1) ). This is not unexpected, since 
our method bypasses the need to perform any operations on the original n×m array. 
This represents a considerable computational savings for datasets with a large num-
ber of samples.

Fig. 1  a Computation time as a function of the number of permutations Np , for a synthetic dataset with a 
fixed number of individuals n = 10,000 and 100 k SNPs. Both direct permutations (in blue) and our method 
(in orange) are O(Np) (note that the horizontal axis is logarithmic, and the best fit lines plotted here are 
indeed linear). Our method is faster by a factor of over 103 per permutation. b Computation time as a function 
of the number of individuals n, for a synthetic dataset with a fixed number of permutations Np = 20 and 
100 k SNPs. Direct permutation is O(n) but our approach is O(1) (i.e. computation time does not depend on 
the number of samples for this approach)
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Conclusion
This paper outlines the algorithm for direct transformation of count tables, shows that 
the results are identical to those obtained by the naive approach of directly permuting 
the phenotype labels, and shows the considerable reduction in computational expense 
using this method. Specifically, we demonstrate a reduction of computation time per 
permutation by a factor of over 103 , and show that our method is insensitive to the total 
number of samples while the naive approach scales linearly. By bypassing the most com-
putationally expensive step of the naive approach to permutation testing, our method 
therefore considerably decreases the cost of permutation testing for information theo-
retic measures.

Future developments on this method should incorporate additional methods for 
decreasing the computational cost of permutation analyses. For example, it is common 
for pairwise GWAS analyses to use an adaptive scheme which iteratively drops interac-
tions if they are clearly not statistically significant (e.g. this is done by default in PLINK 
[5]). A similar adaptive scheme could be implemented here on top of our method.

Given the recent proliferation of large datasets for which multilocus analyses can yield 
novel biological insights, and given the importance of permutation testing for informa-
tion theoretic measures without a clean analytically known null distribution, we believe 
that our approach is a valuable contribution towards making these large and important 
analyses more computationally tractable. The code for performing these computations 
and replicating the figures in this paper is freely available at https://​github.​com/​kunert/​
permu​te-​counts.

Methods
Synthetic dataset and its count distributions

Each SNP–SNP-phenotype tuple in our synthetic dataset is generated as described in 
this section. SNP data is generated independently for both SNPs by assuming perfect 
Hardy-Weinberg equilibrium with a minor allele frequency of p = 0.45 (i.e. we generate 
a n× 2 genotype array where each element has a probability p2 of being 0, probability 
2p(1− p) of being 1, and probability (1− p)2 of being 2). We similarly generate a binary 
phenotype vector which has a probability q = 0.66 of equaling zero. As we will establish 
later, the values of p and q do not affect our results.

The above parameters lead to a random count table such as the one below, generated 
for n = 10,000 individuals:

We verify that our method is working as desired by permuting the above count table 
NP = 1,000,000 times using two different approaches: (1) the naive permutation test-
ing approach, in which we randomly shuffle the phenotype vector and re-compute the 
count table; (2) our method as outlined in Sect.   of the main text. The distributions of 
the elements c∗ij0 are shown in Fig. 2. As shown in the figure, the resulting distributions 
are nearly identical, and the distributions generated from the two approaches overlap 
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almost perfectly. The computational cost savings of this approach are considerable. On 
our machine, generating NP = 1,000,000 permuted count tables took a total of 761.8 
seconds using the naive method and only 5.7 seconds using our method.

It is immediately obvious from Fig. 2 that the distributions are very close to normal 
distributions, which is not surprising given our relatively large choice of NP . One may 
be tempted to use this fact to formulate a simpler approach to generating random count 
tables: could we simply estimate the normal distributions for each c∗ij0 and sample those 
directly? This approach will not work because the elements are not independent from 
each other, meaning that an iterative procedure such as ours is required.

Distributions of information measures

Having generated an ensemble of 1,000,000 count tables using each method, we 
can compute the joint entropies of our variables as well as any information theo-
retic measure which is a function of the entropies. For example, we can compute the 
multi-information:

Fig. 2  Using the simulated data described in Sect. , we generated 1,000,000 permuted count tables using 
both the naive method of directly permuting the phenotype labels and using our approach. The distributions 
of the count table elements c∗ij0 are plotted here, with the direct permutation result shown in blue and our 
method shown in red. The plot consists almost entirely of the purple overlapping region, as there is almost 
no visible difference between the distributions
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where Hi are the entropies of each individual variable, and H123 is the joint entropy of all 
three variables (i.e. our two SNPs and the phenotype).

The subsequent computation of information measures is considerably less expensive 
than the construction of the count tables. For instance, computing the distributions of 
� values using either set of the 1,000,000 count tables generated in the previous section 
took 1.6 s. Figure 3 shows the distributions of � values based on the count tables gen-
erated by two different permutation methods in the previous section. Once again, we 
see that our method yields a nearly identical distribution to the naive method of direct 
permutation. In the case of real data analysis, these permuted distributions would serve 
as null distributions in our significance analysis. This result verifies that our method pro-
duces a null distribution equally sufficient for significance analysis as the naive permuta-
tion method, but at considerably less computational expense.

Statistical testing of distribution equivalence

The distributions in Figs. 2 and 3 appear to be nearly identical, but we wish to test (1) 
whether or not they may be distinguished via statistical testing, and (2) whether or not 
this result is sensitive to the choice of parameters p and q. We therefore ran 1000 trials of 
the following: 

1.	 Independently choose parameter values p, q from a uniform random distribution on 
(0.01, 0.99), and use this to generate a count table with n = 10,000 samples.

2.	 Generate NP = 1000 permuted count tables using both direct permutation of phe-
notype labels and our method.

3.	 For each c∗ij0 , perform a two-sample Epps–Singleton test comparing the two meth-
ods.

(9)� = −H123 +
∑

i

Hi

Fig. 3  The permuted count tables from Sect.  can be used to calculate the joint entropies, from which we 
can calculate any information theoretic measure which is a function of the entropies. Here we calculate the 
multi-information � using both the count tables generated by direct permutations and by our method, with 
the resulting distributions being nearly identical
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This will yield 9000 p values generated under a broad range of different parameter values. The 
Epps–Singleton test [39] has the null hypothesis that both samples are drawn from the same 
distribution (and is used here since it allows for discrete distributions). By definition, the p 
values should be uniformly distributed under the null hypothesis. In Fig. 4, we show that our 
p values are fully compatible with a uniform distribution, such that the count tables generated 
by naive permutation and those generated by our method are not statistically distinguishable.
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