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Background
Extrapolating quantitative data from morphological observations enables rigorous sta-
tistical analyses. Thus, it is the goal of all cell biology studies. This step needs to be car-
ried out objectively, so that one can interrogate the effects of different experimental 

Abstract 

Background:  Genetic testing is widely used in evaluating a patient’s predisposition to 
hereditary diseases. In the case of cancer, when a functionally impactful mutation (i.e. 
genetic variant) is identified in a disease-relevant gene, the patient is at elevated risk of 
developing a lesion in their lifetime. Unfortunately, as the rate and coverage of genetic 
testing has accelerated, our ability to assess the functional status of new variants has 
fallen behind. Therefore, there is an urgent need for more practical, streamlined and 
cost-effective methods for classifying variants.

Results:  To directly address this issue, we designed a new approach that uses altera-
tions in protein subcellular localization as a key indicator of loss of function. Thus, 
new variants can be rapidly functionalized using high-content microscopy (HCM). 
To facilitate the analysis of the large amounts of imaging data, we developed a new 
software toolkit, named MAPS for machine-assisted phenotype scoring, that utilizes 
deep learning to extract and classify cell-level features. MAPS helps users leverage 
cloud-based deep learning services that are easy to train and deploy to fit their specific 
experimental conditions. Model training is code-free and can be done with limited 
training images. Thus, MAPS allows cell biologists to easily incorporate deep learning 
into their image analysis pipeline. We demonstrated an effective variant functionaliza-
tion workflow that integrates HCM and MAPS to assess missense variants of PTEN, a 
tumor suppressor that is frequently mutated in hereditary and somatic cancers.

Conclusions:  This paper presents a new way to rapidly assess variant function using 
cloud deep learning. Since most tumor suppressors have well-defined subcellular 
localizations, our approach could be widely applied to functionalize variants of uncer-
tain significance and help improve the utility of genetic testing.
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conditions or variabilities between samples. Cell biologists typically quantify image data 
by measuring predetermined criteria such as cell size, cell shape or fluorescence signal 
intensity. Recent technological advancements in microscopy, including higher resolu-
tion and better automation, have empowered us to capture images in superior detail and 
with greater throughput. However, these advancements also significantly increase the 
data burden. The conventional workflow of manually adjudicating or measuring cellular 
and subcellular phenotypes can no longer keep pace with the increasing data load. As a 
result, demands for automated image analysis solutions have surged.

Computational image analysis techniques, which are a part of the larger interdisci-
plinary field of computer vision, can be grossly divided into those that utilize machine 
learning algorithms and those that do not. Classical computer vision processes are sta-
ble and efficient, and are already widely used by cell biologists since many of them are 
pre-packaged into open software platforms like ImageJ and CellProfiler [1]. In compari-
son, machine learning involves iterative cycles of training and fitting that simulates the 
human learning process of decision making, making them more flexible at the expense 
of computational complexity and training time. For instance, given a task of segment-
ing cells in microscopy images (i.e. detecting individual cell boundaries), classical 
computer vision techniques include thresholding, edge detection or watershed, while 
machine learning techniques include clustering, artificial neural network, random forest 
or support vector machine [2]. All methods can achieve good performance if they are 
well-suited and fine-tuned for the task. Also, different techniques are frequently used 
in concert when building up an image analysis pipeline. Choosing the right algorithms 
therefore requires experience and empirical testing.

Machine learning, in particular, is an attractive method for classifying image-based 
phenotypes due to its ability to extrapolate patterns in the data and make predictions. 
This approach has been used to screen cell size mutants and to screen small-molecule 
therapeutics [3, 4]. The success of machine learning models is dependent on careful fea-
ture engineering in which quantitative measures such as cell shape, pixel intensity and 
texture are derived from single-cell images [5]. However, these features need to be pre-
defined, and the initial high-dimensional feature space will require feature selection and 
feature reduction before it can be effectively used to train a machine learning classifier 
[6]. Thus, this type of analysis pipeline is usually hand-tuned for each dataset and cannot 
easily incorporate new data or be transferred to an entirely new dataset.

To overcome this challenge, a specialized branch of machine learning, deep learning, 
has recently gained momentum in the computer vision field. Deep learning is based on 
multiple layers of artificial neural networks and does not require features to be prede-
fined. Instead, a series of convolutional filters are incorporated into the network (i.e. 
convolutional neural network (CNN)) to extract pixel-level features for training and 
classification [7]. This learning structure is inherently flexible at handling a wide vari-
ety of image data. Trained networks can also be updated with new data through trans-
fer learning [8]. Thus, CNNs have accelerated computer vision research because of their 
ability to solve challenging biomedical image analysis problems, such as 2D/ 3D cell seg-
mentation, organelle segmentation, anatomical segmentation, cell detection, false fluo-
rescent labeling or feature extraction [9–13]. For these reasons, deep learning techniques 
are well-suited for automating the analysis of high-content microscopy (HCM) data, in 



Page 3 of 19Chao et al. BMC Bioinformatics          (2021) 22:202 	

which high information content is captured for each sample [14]; or high-throughput 
microscopy data, in which multiple samples are imaged in rapid succession [15]. For 
example, CNNs was used to classify the localizations of fluorescently-tagged proteins in 
yeast from HCM images with superior accuracy [10, 14].

Nevertheless, applying deep learning requires substantial computational expertise. We 
were motivated to lower this technical threshold. Therefore, in this manuscript, we pre-
sent an image analysis pipeline that uses cloud deep learning tools that require very little 
programming. We named the pipeline MAPS for machine-assisted phenotype scoring, 
and applied it to score changes in protein localizations caused by genetic variations from 
HCM data.

Many different strategies have been undertaken to classify genetic variants. The gene-
specific approach is to develop an assay that interrogates the biochemical function of 
the protein product, followed by quantitatively measuring such function in variants. This 
strategy has been applied to BRCA1 variants, where the homology-directed DNA repair 
function of BRCA1 is the key measure [16]; to EGFR variants, where the transforming 
potential of EGFR is used to assess its mutants [17]; and to TP53, where the anti-prolif-
erative function of p53 is used to annotate its variants [18]. In contrast, the gene-agnos-
tic approach is to develop a generalizable assay that exploit the universal attributes of 
gene products. One technique, called VAMP-seq, measures the relative intracellular 
abundance of the expressed protein, where lower expression is indicative of loss of func-
tion caused by the genetic variation [19]. Gene expression profiling has also been used to 
fingerprint the molecular functions of a gene and to reveal changes induced by its vari-
ants [20].

Previously, we developed a gene-specific assay for the tumor suppressor PTEN [21]. 
While the assay is clinically relevant and scalable, we wanted to engineer a generaliz-
able assay that can be used to functionally assess potentially any gene without needing 
prior knowledge of gene function. It is well-recognized that the subcellular localizations 
of proteins are usually crucial for their functions. For instance, the DNA repair activi-
ties of p53 and BRCA1 are dependent on their localizations to the nucleus and muta-
tions that disrupt their localizations will significantly impede their functions [22]. Thus, 
we hypothesized that screening for mutations that alter a protein’s wildtype localization 
could potentially help discover evidence of pathogenicity. Based on this principal, we 
assed PTEN variants using automated widefield fluorescent microscopy. We then dem-
onstrated using MAPS to rapidly classify variant phenotypes from the large amount of 
microscopy data. Our new method for assessing variants is simple, scalable and effective, 
and our software can help the research community more easily utilize deep learning to 
automate image analysis.

Results
Variant assessment workflow

We first established the workflow for visualizing the localizations of PTEN variants 
(Fig. 1a). We cloned different PTEN alleles into an expression vector that expresses GFP 
and PTEN as a fusion protein interspersed by a P2A self-cleaving peptide, the same 
design as we previously published [21]. GFP and PTEN were then expressed as individu-
ally folded proteins in 1:1 ratio. After transfection, we carried out immunofluorescence 
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(IF) to visualize PTEN localizations. Finally, we used automated widefield fluorescent 
microscopy to capture images and used MAPS to perform automated image analysis and 
phenotype scoring.

MAPS includes the following modules: (1) image quality control, (2) cell detection, 
(3) feature extraction/phenotype discovery and (4) phenotype scoring (Fig. 1b). Each of 
these modules can be executed independently, allowing users to incorporate or substi-
tute their preferred software such as CellProfiler, ImageJ or MATLAB scripts into the 
pipeline. We organized each MAPS module as a standalone Jupyter Notebook, which 
provides an interactive interface for fine-tuning parameters. This is similar to the design 
of the Allen Cell Structure Segmenter [23]. To give a brief overview, the first deep learn-
ing model will perform cell detection and isolate regions of interest (ROIs). Next, the 
second deep learning model extracts features from each ROI, and ROIs with similar fea-
tures are clustered to help the user discover and define novel phenotypes. Finally, a third 
deep learning model will classify all cells identified by the cell detection module.
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Fig. 1  Overview of the experimental and analytical setup. a Workflow for expressing and visualizing variants 
via  IF and automated widefield fluorescent microscopy. b MAPS software contains the following four 
modules: (1) image quality control (see Fig. 3); (2) cell detection (see Fig. 4); (3) phenotype discovery (see 
Figs. 5, 6); and (4) phenotype scoring (see Fig. 7). All figures are generated using Adobe Illustrator version 
23.0.6
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Loss of function mutations alter the subcellular localization of PTEN

We carried out pilot experiments to test the pipeline. We first localized PTEN in the 
non-tumorigenic human breast epithelia cell line MCF10A via IF. Wildtype PTEN has 
been reported to shuttle between the cytoplasm and the plasma membrane (PM), which 
is essential for its tumor suppressor function in dephosphorylating phosphatidylinosi-
tol-3,4,5 trisphosphate (PI(3,4,5)P3) [24]. Although PTEN does not contain a canonical 
nuclear localization signals (NLS), nuclear PTEN is apparent in quiescent cells, but not 
typically found in dividing cells [25]. Consistently, we noticed that wildtype PTEN local-
ized mostly in the cytosol with minor PM staining, but is excluded from the nucleus. In 
contrast, the localization of a known tumour-associated non-functional variant, C124R 
[26, 27], was predominantly nuclear (Fig.  2). Since there were clear differences in the 
localizations of selected PTEN variants, we felt confident to use alterations in PTEN 
localizations as the key phenotypic measure for scoring variant function.

Module 1: Image quality control

Next, we acquired images using automated microscopy. We expected that automated 
microscopy instruments will occasionally not focus on the desired focal plane. Also, they 
do not discriminate against images containing aberrations such as air bubbles, scratches 
or foreign fibers. To ensure the quality of downstream analyses, we implemented quality 
control (QC) measures to remove low quality images. Performing image QC by visual 
inspection is difficult because automated microscopy generates gigabytes of image data. 
Thus, manually screening HCM data is time consuming and undesirable. A number of 
strategies are commonly used to perform image QC, such as building custom software 
solutions [28] or implementing a QC pipeline in CellProfiler’s MeasureImageQual-
ity module [29]. In order to integrate seamlessly with the other modules, we decided 
to build custom functions to compute focus measures using variance of Laplacian to 
calculate the amount of edges in an image. In-focus images will generate high variance, 

PTEN widltype GFP reporter merged

PTEN C124R GFP reporter merged

Fig. 2  Representative microscopy images showing the localizations of wildtype and C124R allelic variant of 
PTEN. PTEN and the GFP reporter were expressed in 1:1 ratio. PTEN was visualized via IF
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while blurry images will have low variance (Fig.  3a) [30, 31]. However, air bubbles or 
overexposed cells (due to cells overexpressing the target protein) will have well-defined 
edges which interfere with focus measure calculations. To overcome these issues, we 
implemented image dilation to remove the edges from air bubbles (Fig. 3b), and mask-
ing followed by Gaussian blurring to remove edges from overexposed cells (Fig. 3c). We 

out-of-focus image: 
low variance

in-focus image: 
high variance

artifact: air bubble

artifact: overexposed cells

processedbefore

before processed

focus detection performance

accuracy precision recall

test 1 (n=40) 0.800 0.917 0.733

test 2 (n=29) 0.759 0.800 0.615

test 3 (n=46) 0.870 0.885 0.885

average 0.809 0.867 0.744

a

b

c

d

Fig. 3  Module 1: image   quality control. a Laplacian variance was used as a focus measure operator 
to differentiate blurry and in-focus images. b, c Aberrations such as air bubbles or overexposed cells 
interfered with focus measure calculations and were further processed to obtain accurate focus measures. d 
Performance metrics from three independent tests. Test images were randomly sampled from all experiments
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performed three separate focus detection tests to challenge our QC module in removing 
blurry images. The true negatives were blurry images that were correctly removed, and 
false negatives were in-focus images that were incorrectly removed. The true positives 
were in-focus images that were not removed, and false positives were blurry images that 
were not removed. On average, our QC module can remove blurry images with an accu-
racy of 0.809, precision of 0.867 and recall of 0.744 (Fig. 3d).

Module 2: Cell detection using cloud deep learning

After image QC, we needed to isolate individual cells as ROIs. The goal is to later group 
ROIs with similar PTEN localization patterns together in Module 3 so that we can define 
distinct phenotype classes. These classes will then be used to train the final classifica-
tion model in Module 4. Cell detection places bounding boxes around each ROI and is 
different from cell segmentation which aims to identify cell boundaries as defined by 
the plasma membrane (e.g., in mammalian cells) or by the cell wall (e.g., in yeast cells). 
Although in certain cases cell segmentation would be desirable, such as when the cell 
culture is confluent, cell detection was well-suited for our application since we used sub-
confluent cultures. To carry out cell detection, we took advantage of the Custom Vision 
module of Azure, Microsoft’s cloud-based machine learning platform. We trained a cell 
detection model on Azure and used the endpoint to predict bounding boxes. This set 
of training images (n = 141) were obtained from the wildtype PTEN localization experi-
ment, and the ground truth labels were 530 manually labeled bounding box coordinates. 
Bounding boxes were drawn using the Azure Custom Vision graphical user interface. 
Both the training data and the .csv file containing the ground truth bounding box coor-
dinates are available in our GitHub repository. Training took ~ 30 min on Azure, and this 
preliminary model showed reasonable performance with precision = 0.706, recall = 0.82, 
and average precision (A.P.) = 0.83. A.P. is the area under the precision-recall curve 
[32]. To improve the performance of this preliminary model, we implemented data aug-
mentation, a common technique used in deep learning to boost the training data [9]. 
We implemented 14 different image transformations techniques including image rota-
tion, flipping, contrast adjustments, color inversions and adding noise (Fig.  4a), and 
boosted the original training data to 1,974 images. Training on the augmented dataset 
took ~ 45 min and raised the precision to 0.767, recall to 0.831 and A.P. to 0.864 (Fig. 4b).

We next interrogated the noise threshold of the Azure object detection model. We 
assembled a test set with 100 images, and increased the image noise step-wise which 
lowered the signal to noise ratios (SNR) of the test set (Fig.  4c, d). We found that 
although the model maintained precision, recall gradually decreased at higher noise 
levels to eventually failing catastrophically at 3 × noise (Fig. 4c) or average SNR below 
1.5 (Fig. 4d). Using a sample image from the test set as an example, we saw that as the 
SNR decreased the model was still able to detect PTEN-expressing cells (Fig. 4e, white 
boxes) with precision and only detected one irrelevant ROI at 2 × and 3 × noise (Fig. 4e, 
red arrows). However, as the noise level increased the model failed to detect all relevant 
ROIs (Fig. 4e, white arrows), suggesting lower recall or sensitivity. Thus, from our test 
results we would suggest keeping the average SNR of input images above 1.5 for best 
performance.
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Module 3: Phenotype discovery

Earlier, we observed that wildtype PTEN was nuclear-excluded, while the non-func-
tional C124R variant was nuclear-enriched (Fig. 2). Both of these localization patterns 
have been previously reported [24]. However, we did not know whether other variants 
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Fig. 4  Module 2: cell detection and training augmentation. a Sample images from training augmentation. 
The original image (top left) underwent 14 different transformations including brightness and contrast (bc) 
adjustments, color inversion (flip color), noise addition and image rotation. b The precision, recall and average 
precision (A.P.) of our cell detection model after and before training augmentation. c The precision and recall 
metrics of our model at detecting 100 test images at increasing noise levels. d The frequency distributions 
of the SNR of the 100 test images at increasing noise levels. e A test sample illustrating the model’s ability to 
detect cells at increasing noise levels. White arrows, relevant ROIs that were not detected at higher noise. Red 
arrows, irrelevant ROIs detected
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might induce additional PTEN localization. Thus, in Module 3 we will explore novel 
phenotypes. The objectives of phenotype discovery are to: (1) remove noise or outli-
ers; (2) inspect the detected ROIs for novel phenotypes in order to (3) define the class 
labels and formulate the training data for the final phenotype classification model in 
Module 4.

Operationally, the phenotype discovery process consists of two steps. In step 1, we 
extract features from each ROI using convolutional filters, shown in Fig. 5a; in step 2, we 
group ROIs with similar features together using unsupervised machine learning tech-
niques, shown in Fig. 6a. To begin step 1, we first pooled ROIs from different variants 
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Fig. 5  Module 3: phenotype discovery. a Overview of this module. In step 1, ROIs from all variants were 
pooled and their feature maps extracted. In step 2 (see Fig. 6), clustering algorithm grouped ROIs with 
similar features together. b Details of the feature extraction process. Each ROIs was processed through a 
reconfigured and pretrained VGG-16, resulting in a feature map containing 8192 features. c 16 of the 128 
convolutional filters from the first layer of the second convolutional block of VGG-16. d 16 intermediate 
feature maps extracted by the convolutional filters in c 
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together and randomly sampled 1,289 ROIs. Per ROI feature maps were extracted 
through a reconfigured VGG-16 model, a very deep convolutional neural network [33]. 
Since we only needed VGG-16 for feature extraction and not image classification, we 
reconfigured VGG-16 to use its first four convolutional blocks with weights from pre-
training with ImageNet [34] (Fig.  5b). To illustrate the feature extraction process, we 
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the predominant PTEN localization for that cluster was indicated
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visualized 16 convolutional filters from the first convolutional layer of the second con-
volutional block of VGG-16 (Fig.  5c). We also plotted the intermediate feature maps 
extracted from the 16 convolutions (Fig. 5d).

The extracted feature maps (1289 ROIs × 8,192 features) were of very high dimensions. 
To begin step 2, we reduced the dimensions from 8192 to 30 using UMAP, a manifold 
learning technique [35]. Dimensionality reduction with UMAP enabled efficient cluster-
ing. As a result, a 2D manifold of the reduced feature maps showed two distinct clus-
ters (Fig. 6b). Upon inspection, the ROIs in the smaller cluster (n = 43) were noise and 
should be eliminated (Fig. 6c), while the larger cluster (n = 1246) contained useful ROIs 
and required further partitioning. To determine the ideal number of sub-clusters, we 
calculated the mean Silhouette Coefficient [36]. The highest Silhouette Coefficient was 
achieved at 4 sub-clusters, indicating that the tightness and separation of all data was 
optimal (Fig. 6d). Thus, we applied spectral clustering [37] to partition the larger cluster 
into 4 sub-clusters (Fig. 6e).

We next visualized representative ROIs from each sub-cluster. We inspected 20 near-
est neighbors of each of the centroids (Fig. 6e, blue crosses), and found that they shared 
similar PTEN localization patterns within the cluster. The green cluster (1) showed cells 
with predominantly nuclear-localized PTEN; the blue cluster (2) showed cells with dif-
fused PTEN localizations; the orange cluster (3) showed mostly nuclear-excluded PTEN; 
the dark red cluster (4) showed a mixture of diffused and nuclear PTEN (Fig. 6e). All 
in all, we discovered three major PTEN localization patterns amongst the ROIs from 
all tested variants: nuclear, nuclear-excluded and diffused. We defined these three class 
labels as the ground truth dataset for training the phenotype classification model in 
Module 4.

Module 4: Phenotype classification using cloud deep learning

Using the three phenotype classes defined in Module 3, we curated a training dataset 
consisting of > 100 ROIs per class and their labels as ground truth (Fig. 7a). Training an 
image classification model on Azure with this dataset took ~ 45 min. The performance 
for this model was listed in Fig. 7b. Next, we used the trained model to perform auto-
mated phenotype scoring on wildtype PTEN and 12 variants: M35V, G44D, C124R, 
G127R, G129E, R130P, M134I, R142W, Q171E, R173H, Y180H and P246L (Fig.  7c). 
We noticed that a low percentage of wildtype cells showed nuclear PTEN localization 
(~ 10%); in contrast, known pathogenic variants including C124R, G127R, G129E and 
R130P had much higher nuclear PTEN (> 50%, pathogenicity classifications taken from 
ClinVar). This was consistent with our initial observation (compare Figs.  2, 7c). We 
hypothesized that nuclear PTEN accumulation could be indicative of loss of function 
(LOF). Thus, we compared the localization distributions to the LOF scores that we pre-
viously measured for these variants using a spheroid assay (Fig.  7d [21]). Notably, the 
percentage of cells with nuclear PTEN correlated strongly with LOF scores (Fig.  7e, 
Pearson’s correlation = 0.759, p = 0.003). There were two variants that stood out. First, 
the variant R173H had a low LOF score but high nuclear PTEN. This suggested that the 
R173H mutation did not sufficiently disrupt PTEN’s physiological function in the con-
text of anchorage independent cell adhesion, but it did alter PTEN’s subcellular localiza-
tion. Second, the G127R variant had the highest LOF score, but its nuclear PTEN was no 
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higher than that of G44D or M134I. Considering that G127R is classified as likely patho-
genic according to ClinVar and so is M134I (G44D is pathogenic), the two assessment 
methods both indicate that G127R as LOF although they produce scores of different 
magnitudes. Hence, we reasoned that assessing variant function by subcellular localiza-
tion could complement the spheroid assay to increase the overall detection sensitivity. In 
conclusion, we reasoned that the gene-agnostic localization scoring method could be an 
effective replacement of the gene-specific spheroid assay.
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Discussion
The current strategies for assessing variant functions, including in silico predictions 
or in vitro testing, all have limitations. In silico prediction software are computational 
classifiers that utilize calculated features such as amino acid properties [38], protein 
sequence conservation [39], protein stability [40], or evolutionary genomic features [41] 
as inputs. Certain software, like Polyphen-2, combine multiple streams of information to 
improve performance [42]. This type of software is capable of processing a large number 
of sequence variations very quickly. Although versatile, their generalist designs and the-
oretical assumptions result in different models frequently producing conflicting classifi-
cations [43]. Studies using independent datasets to benchmark various in silico models 
indicate that their real-world performances are likely lower than originally reported [44, 
45]. In comparison, in vitro testing methods consume more time and resources. They 
are also regarded to be more reliable [46], as they utilize gene-specific assays to directly 
interrogate the effects of sequence variations on protein function. Although each assay 
is tailored to the physiological function of the gene, this approach requires significant 
investments in development and execution. We also chose the in vitro approach when 
we previously developed a 3D tumor spheroid assay for functionalizing PTEN variants. 
Hence, we sought to merge the merits of both approaches when developing MAPS by 
scoring alterations in protein localization as a measure of loss-of-function.

The most prominent function of PTEN is its ability to dephosphorylate PI(3,4,5)
P3 which is the main product of the PI3K/ AKT pathway that promotes cell survival 
and proliferation [47]. Therefore, loss of PTEN’s lipid phosphatase activity will have 
significant consequences in tumor initiation and progression. Since the main intracel-
lular pool of PI(3,4,5)P3 is on the PM [48], we can expect to find PTEN localizing to 
the intracellular side of PM. Consistently, PTEN has been found to traffic between 
the cytoplasm and PM [24]. Correct PTEN subcellular localization is therefore crucial 
for its anti-malignancy effects. However, different studies have documented conflict-
ing sightings of PTEN localizations. On one hand, nuclear accumulation of PTEN has 
been detected in invasive breast tumors [49], and certain cancer-derived PTEN mis-
sense mutations result in an increase of nuclear PTEN [50]. On the other hand, the 
absence of nuclear PTEN has also been reported in other types of solid cancers as 
well as cell lines [51, 52], adding to the confusion of whether nuclear PTEN is asso-
ciated with tumorigenicity. It was later determined that wildtype PTEN containing 
no mutations should be predominantly nuclear in quiescent cells such as neurons or 
those in G0-G1, but mainly cytoplasmic in actively dividing cells such as tumor cells or 
those in S phase [25]. Since our assay used sub-confluent cultures of non-tumorigenic 
MCF10A cells, our observation that wildtype PTEN was mostly nuclear-excluded was 
consistent with the literature. Therefore, we reasoned that our assay design was well-
suited for assessing PTEN function based on disruption of its cytoplasmic localiza-
tion. Our approach is then an excellent platform that enables the systematic survey of 
the subcellular localization of PTEN allelic variants. By automating phenotype scor-
ing, we alleviated the constraint in data processing and analysis. This allowed us to 
focus on generating a variant library which is the bottleneck of all variant assessment 
workflow.
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Our phenotype scoring pipeline has a number of differences than the convention. A 
common strategy for scoring phenotypes involves first quantitatively measuring pre-
defined cell-level morphological features. Then, the features are handed over to a clas-
sical ML algorithm such as random forest or SVM for classification [5, 53]. Since the 
features, such as cell size, texture, shape or protein fluorescence intensity [5] are manu-
ally defined, the classification may be unsuccessful or biased if important features were 
missed. This approach was the standard practice before deep learning became main-
stream. In contrast, our deep learning approach involves using learned convolutional 
filters to extract relevant features to perform classification [12]. This is a more flexible 
solution because the same CNN architecture can be trained on different datasets to per-
form distinct image classification tasks. Importantly, CNNs do not require an expert 
to pre-select features. However, hardware and software limitations often prevent the 
wide-spread adoption of deep learning in image analysis pipelines. On the hardware 
side, recent deep learning libraries benefit significantly from having GPU (graphical pro-
cessing unit) acceleration during model training, but GPU hardware is expensive. On 
the software side, programming CNNs is not trivial even with the release of high-level 
deep learning libraries such as Keras and PyTorch. In the past, these considerations have 
driven scientist to develop generalist CNN models that have been trained to detect all 
possible subcellular protein localizations, so that the community can utilize the trained 
end point to classify the localization of their protein of interest. Some examples of this 
approach are DeepLoc, a CNN model that can classify 15 localizations in budding yeast 
[14], or DeepYeast, which can classify 12 localizations [10]. Nevertheless, these pre-
trained networks require transfer learning [8] to work on images obtained from different 
microscopy instruments. They also may not perform when the cell types are different. 
Therefore, an easily retrainable model without stringent hardware requirements will 
mitigate all of these issues.

Our goal was to make MAPS adaptable and applicable. Building deep learning models 
should be simple and intuitive. Therefore, we adopted cloud deep learning to eliminate 
hardware and software barriers. As a result, MAPS can help different user easily train 
and deploy a new experiment-specific model. Since imaging experimental conditions 
vary greatly and can involve a variety of cell types, fluorescent labels and instruments, 
it is more practical to quickly build specific models rather than using pretrained ones. 
Cloud platforms also has the advantage of providing consistent training and predic-
tion performances at a fraction of the cost of purchasing and maintaining GPU-capable 
local machines. We tested the three leading cloud machine learning platforms including 
Microsoft Azure, Amazon Web Service (AWS) and IBM Watson, and found that Azure 
has the most intuitive graphical user interface. Importantly, the Custom Vision module 
on Azure allows users to create object detection or classification models entirely code 
free, and can achieve reasonable performance using very few (~ 20) training images. This 
is immensely more convenient than building deep learning models from scratch which 
typically requires hundreds if not thousands of manually labeled images for training and 
validation [7]. Thus, we chose to implement Modules 2 and 4 on Azure. Module 3, phe-
notype discovery, was implemented using the prebuilt and pretrained VGG-16 model 
from Keras and runs on Google’s Colab GPU which is currently free. Therefore, MAPS 
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can serve as the foundation for building a custom deep learning image analysis pipeline 
at low cost.

So far, functional characterizations of variants have relied on specific assays tailored 
to interrogate each protein’s function. For instance, as homology-directed DNA repair 
is crucial for BRCA1′s tumor-suppressing activity, it is often used to assess the func-
tional consequences of BRCA1 variants [16, 54]. Nonetheless, the DNA repair activities 
of BRCA1 are also dependent on its import into the nucleus via two nuclear localiza-
tion signals (NLS) [55], and cancer-associated mutations often disrupt its nuclear import 
[56]. Similarly, p53 has 3 NLS and its import into the nucleus is also required for its 
function in suppressing malignant transformation [57]. In fact, most tumor suppressors 
have well-defined subcellular localizations that become altered in cancer (see [58] for 
summary). It is important to note that loss of protein localization is used clinically to 
facilitate cancer diagnosis and prognosis. For example, cell membrane-associated tumor 
suppressors such as Cadherin-1 and beta-catenin play important roles in maintaining 
cell adhesion, and loss of their PM localization and nuclear accumulation is present in a 
wide variety of solid tumors and is associated with poor prognosis [59–62]. Additionally, 
a class of cancer therapeutics specifically targets protein localization as its mechanism 
of action. For example, selective inhibitors of nuclear exporters are small molecules that 
increase the nuclear retention of p53 and p21 [63]. Thus, we anticipate our approach 
of detecting loss-of-function variants by screening variant localizations can be broadly 
applied to other tumor suppressors.

All in all, we not only developed a new framework for rapidly assessing the functional 
effects of genetic variations at scale, but also provided an accessible way for cell biolo-
gists to automate image analysis with deep learning. Our code base can be immediately 
useful to the research community to leverage the intuitive creation and flexible deploy-
ment of deep learning models on the Azure cloud platform. We think our work will help 
biologists expand their capacity of handling the increasing amount of image data and 
will help drive the throughput of more complex microscopy-based studies.

Conclusions
We developed MAPS to automate phenotype scoring of  HCM data and used it to iden-
tify loss-of-function genetic variants. MAPS stands out for other software tools by help-
ing users build custom deep learning models using Microsoft’s Azure cloud computing 
platform, completely code-free. Also, the computation-intensive steps are carried out 
by cloud GPUs which significantly accelerate computation and lowers the hardware 
requirements of the user’s local machines. We think MAPS can help empower cell biolo-
gists with the analytical power of deep learning. Finally, assessing variant function using 
microscopy is a simple and easily scalable approach, and is a more cost-effective alterna-
tive than developing gene-specific assays.

Materials and methods
For detailed instructions on our immunofluorescence workflow, please see: https://​
dx.​doi.​org/​10.​17504/​proto​cols.​io.​bn68m​hhw

https://dx.doi.org/10.17504/protocols.io.bn68mhhw
https://dx.doi.org/10.17504/protocols.io.bn68mhhw
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Cell culture

The PTEN–/– cell line (MCF10A background) was purchased from Horizon Discov-
ery and verified by western blotting. Cell were cultured according to published pro-
tocols [64] and were maintained in a 37 °C incubator with 5% CO2. Mycoplasma was 
tested monthly by direct DNA staining with DAPI.

Plasmids and transfections

PTEN expression vectors were generated as previously described [21]. Transfection 
was carried out 24 h after seeding 50,000 cells in a 12-well dish containing 22 × 22 mm 
glass coverslips (Thermo Fisher Scientific) using Lipofectamine 2000 (Thermo Fisher 
Scientific) according to manufacturer’s protocols. Successful transfection was con-
firmed by direct visualization of GFP expression using a fluorescent microscope.

Immunofluorescence

24  h after transfection, cells were fixed using 4% paraformaldehyde in PBS. Cells 
were permeabilized with 0.1% triton x-100 in PBS, blocked with 10% BSA, and incu-
bated overnight with rabbit anti-PTEN antibody (138G6, Cell Signaling Technology). 
Coverslips were then incubated with mouse anti-rabbit Alexa Fluor 568-conjugated 
antibody (Invitrogen), followed by DAPI, and mounted using ProLong Gold antifade 
mountant (Thermo Fisher Scientific).

High‑content microscopy

Images were acquired using a Cellomics Arrayscan (Cellomics Inc.). using a 
20 × objective. A minimum of 500 images were acquired per coverslip at 3 channels 
(green/ red/ blue) per image.

Notes on algorithms

Deep learning models

For image recognition tasks, deep CNNs are usually the de facto choice in modern 
pipelines for their proven performance and efficiency. We chose Microsoft’s Azure 
Custom Vision to perform cell detection (Module 2) and phenotype classification 
(Module 4) because they provide a user-friendly graphical interface for model train-
ing and validation. The process is completely code-free. Additionally, users can access 
a cloud GPU instance at a reasonable cost which significantly accelerates the work-
flow. For these reasons, Azure is a sensible choice that will appeal to a wide audience 
in the cell biology field. For Module 3, we opted to use VGG-16, a well-recognized 
deep CNN architecture with over 52,000 citations (at the time of this writing), to per-
form feature extraction [33]. 1.1.1. Noise operations.

To add noise to images, we used NumPy’s random sampling routine to add Gauss-
ian noise. We adopted the common convention for estimating SNR in image process-
ing [65]:

SNR =
Mean pixel value

Standard deviation of pixel values
.
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VGG‑16 modifications

We removed the last convolutional block and the fully connected layers from VGG-16 
because we did not need to perform classification with VGG-16. Model weights were 
pre-trained on ImageNet [7]. Each ROI is scaled up to 148 × 148 during pre-processing.

UMAP hyperparameters

To preserve global data structures, we followed the UMAP documentations and set n_
neighbors = 100 and min_dist = 0.1. We used the Chebyshev distance metric. We also 
used PCA initialization to reduce feature dimensions down to 500 before UMAP.

Computational requirements

MAPS was written in Python 3.6.10. Other libraries include NumPy (1.18.1), pandas 
(1.0.3), opencv-python (4.1.1.26), matplotlib (3.1.3), UMAP (0.5.0), and Keras with Ten-
sorFlow backend (2.4.1). Azure is accessed using Microsoft Azure Custom Vision SDK 
(3.1.0). For detailed instructions on using MAPS, please see our Jupyter notebooks at 
https://​github.​com/​jesse​canada/​MAPS/. For detailed implementation guide, please visit 
our protocols.io article at https://​dx.​doi.​org/​10.​17504/​proto​cols.​io.​bn7dm​hi6.
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