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Introduction
Voltage-gated sodium channels (NaVChs) are pore-forming proteins embedded in cell 
membranes. They are members of the ion channels superfamily and their main physi-
ological role is to control transport of sodium ions into the cell. The human NaV1.7 
channel is encoded by the SCN9A gene and is preferentially expressed in peripheral 
neurons (e.g., dorsal root ganglion (DRG) nociceptors) responsible for networking pain 

Abstract 
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signals. The structure of the NaV1.7 α-subunits is that of a pore-forming tetramer via 
assembly of four heterogeneous domains (DI-DIV). Three intracellular linkers (L1-L3) 
form structural interconnections among subsequent domains. Each domain comprises 
six transmembrane helices (S1-S6) organized into a pore module (PM) forming an ion-
conduction pathway coupled with a voltage-senor (VS). Mechanistic description of 
NaV1.7’s function is that VSs react to extracellular changes in ionic concentrations by 
moving outwards thus exerting a pulling force upon the PM which opens the channel 
pore. Closed-to-open conformational change leads to channel activation, i.e., renders it 
conductive to sodium ions. Missense mutations in the SCN9A gene can destabilize the 
NaV1.7’s functional architecture thus disrupting physiological sodium-ions current and, 
consequently, deregulate flow of sodium ions through the pore. At a cellular level, these 
genetically-caused destabilizations can affect neuronal excitability by inducing a gain-of-
function (GOF) effect, i.e., by increasing the net sodium-ions currents, thus triggering a 
wide spectrum of pain diseases such as inherited erythromelalgia (IEM) [1–30], parox-
ysmal extreme pain disorder (PEPD) [31–37] and small fiber neuropathy (SFN) [38–42]. 
A proof of concept for the GOF-pain correlation hypothesis came from identification of 
missense SCN9A-gene mutations inducing a loss-of-function (LOF) effect, i.e., decreas-
ing net sodium-ions current, that is causally related to clinical symptoms of loss of pain 
sensation [43–45].

Hydropathic interactions (HIs) represent a summary of fundamental molecular inter-
actions [46] driving molecular phenomena such as protein folding, protein hydropho-
bic-core stability, self-assembly of amphiphilic molecules, and “dewetting” of molecular 
surfaces (for a review in HIs-driven phenomena see [47]). Within the field of ion chan-
nels research, experimental and computational studies have shown that pore-lining 
patches of hydrophobic residues are crucial regulators of, both, pore’s gating behavior 
(a phenomenon termed as “hydrophobic gating” [48]) and channel stability [49], e.g., via 
formation of hydrogen-bonds networks expanding through their surroundings [50, 51]. 
Crucially, hydrophobic patches (HPs) are widely conserved across voltage-gated chan-
nels and often associated with the formation of centrally-located cavity (CC) [52]. Muta-
tions perturbing this hydrophobic motif can lead to drastic changes of net ion currents 
[53–56].

Computational modeling of HIs combined with biophysical observations extracted 
from in  vitro NaVCh pathophysiological characterization can propel our understand-
ing of mechanistic linkages between mutation-induced perturbations and human pain 
pathophysiology. Key-studies toward this direction were these of Lampert et al [57], and 
of Yang et al [58] demonstrating how the F1449V mutation, and the in-frame-deletion 
L955Del, respectively, can disrupt a hydrophobic ring stabilizing the putative activation 
gate (AG) of the NaV1.7 thus acting as disease-causing molecular triggers. Moreover, 
computational modeling successfully deduced an energetic coupling between two differ-
ent IEM-related mutations foreseen by their geometrical proximity in NaV1.7 structure 
[7]. A question that naturally arose from these studies was whether a detailed exami-
nation of HIs network characteristics within a NaV1.7 structure can reveal statistically-
significant but also biophysically-relevant differentiations among the WT structure and 
its variants. This question was probed by Kapetis et al [59]; a network-theoretical com-
putational framework was introduced in order to capture changes in interatomic HIs 
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within a NaV1.7 structural model induced by pain-related mutations. The study reported 
on a betweenness centrality network measure achieving a statistically-important differ-
entiation of pain-related variants from a collection of neutrals, i.e., variants not caus-
ing pain disease. Notably, this approach highlighted the prominent role that HIs play 
in NaV1.7’s stability and reported on plausible mutation-mechanism scenarios disrupt-
ing hydrophobic contacts among neighboring and distant residues. Another remark on 
the multi-scale nature of HIs was made by the authors of [60] suggesting that a patho-
genic mutation in the KCNA1 gene encoding the human voltage-gated potassium chan-
nel KV1.1 can de-tune HIs equilibrium (and, consequently, destabilize KV1.1’s pre-open 
conformation) implying that mutation-induced perturbation effects can destroy finely-
tuned network-like HIs expanding throughout the structure as a whole. Interestingly, the 
fine-tuning hypothesis was proposed also for the NaV1.7; a recent study employing a 
machine learning (MLE) computational pipeline for predicting NaV1.7’s variant patho-
genicity suggested that the fine-tuning of the NaV1.7 channel is so delicate that limits 
classification accuracy of practically any computational approach [61]. Taken together, 
these observations highlight the highly-cooperative nature of HIs [46] and suggest that 
even small changes in the hydropathic spatial distribution profile of a channel struc-
ture can have a detrimental impact on the functional architecture which, in turn, might 
induce clinically-observed alterations of electrophysiology.

Following [59, 61], this study aims at probing the finely-tuned hypothesis for the 
NaV1.7’s atomic hydropathic environment towards predicting whether a NaV1.7 variant 
causes pain or not. We demonstrate our approach on a closed-state NaV1.7 structural 
model (first presented in [7] and later also used in [30, 58]) by investigating cumulative, 
i.e., scale-dependent, hydropathic properties of its porous atomic environment in rela-
tion to structural locations of missense SCN9A-gene mutations. In order to tackle spatial 
complexities emerging from the highly-cooperative nature of HIs we adopt a modeling 
approach rooted in the hypothesis that proteins can be represented as self-organized 
criticality (SOC) [62] archetypes; protein structures are thought to have been evolu-
tionary optimized with respect to extrema in some thermodynamic property (or prop-
erties) capturing a qualitative reorganization of the atomic environment [63, 64]. The 
intra-channel locations where these macroscopic thermodynamic changes take place 
correspond to so-called critical points of the atomic structure [63, 64]. The highly-coop-
erative nature of HIs has placed structure-retrieved hydropathic properties in the epi-
center of SOC hypothesis [63–66]). It is important to note that computational evidence 
for a universal hydrophobic-to-hydrophilic (or inside-outside with “inside” referring to 
the hydrophobic core, and “outside” referring to the hydrophilic exterior) spatial transi-
tion in protein systems was first provided before the formulation of the SOC hypothesis 
(see [67]). Departing from this phenomenological basis, we here utilize the finite-size 
scaling analysis methodologies presented in [68, 69] for screening hydropathic morphol-
ogy around NaV1.7’s pore [68] toward identification of critical points associated with 
NaV1.7’s functional architecture. Biophysical relevance of retrieved observations is justi-
fied not only in terms of the scale-invariance of a carefully-chosen cumulative hydro-
pathicity-property function but also with respect to conserved structural NaV features 
such as the PM-VSs spatial transition [70, 71] and the architecture of the selectivity filter 
(SF) [72]. In particular, we demonstrate that the atomic cumulative distribution function 
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around NaV1.7’s pore exhibits a sigmoid profile with inflection points matching closely 
the conserved PM-VSs spatial transition. This provides a rigorous description of atom-
packing geometry and, consequently, a macroscopic partitioning of the atomic environ-
ment around the pore allowing for mapping the spatial profile of the atomic cumulative 
hydropathicity-property function and mutation sites on two dimensions. The SOC 
hypothesis is then accepted (or rejected) depending on whether the cumulative hydro-
pathicity-property function is globally maximized and exhibits power-law-like scaling 
behavior in the vicinity of the inflection point (or not).

Our mapping procedures reveal the formation of a HP incorporating NaV1.7’s CC and 
AG. We report on two “hot” map areas attracting pain-related mutation sites distrib-
uted along HP’s boundary. Probing the SOC hypothesis for HIs around NaV1.7’s pore 
reveals that “hot” structural locations tend to cluster at a distance of ∼33.4 Å from the 
SF. Stability implications of these observations can be deduced by considering that in 
the vicinity of the critical point the range and intensity of HIs increase in a power-law 
fashion thus favoring amplification and propagation of mutation-induced perturbations 
peripherally to the HP and at critical HIs-distance from the SF thus not directly affecting 
neither of them. The clinical translational value of our findings is tested by predicting 
pathogenicity of 84 NaV1.7 variants; a weighted average of HP- and SF-related distance 
metrics can classify up to 29 (out of 36) pain-related variants and 45 (out of 48) neutral 
variants correctly.

Methods
All computations were performed in R [73] environment unless stated differently.

3D structure preparation

The NaV1.7 atomic structural model used throughout this study was constructed via 
homology modeling procedures based on the pre-open NaVAb template [PDB code: 
3RVY] [74] according to [7]. In short, the first step undertaken was to generate struc-
tural models of the four transmembrane domains (DI-DIV) by utilizing the membrane-
bound protein predication algorithm GPCR-ITASSER [75–77]. Then, each domain 
was aligned upon the pre-open NaVAb template by using the TM-align algorithm [78]. 
Finally, the four transmembrane domains were placed together in a clockwise order 
viewed from extracellular side (ES) according to [79, 80], and the resulting four domain 
complex structural model was refined by fragment-guided molecular dynamics simu-
lations aiming at removing interdomain clashes, optimizing hydrogen atoms network, 
and, consequently, increasing model quality [75, 76, 81]. The retrieved model consists of 
1140 protonated amino acids (DI: P229:K417, DII: P839:T972, DIII: M1296:G1461, DIV: 
K1617:T1763). A comparison via superposition of the retrieved model with a recently 
resolved cryo-electron microscopy (cryo-EM) NaV1.7 structure [PDB code: 6J8J] [82] is 
presented in Additional file 1: S1.

In continuation, principal axes of the NaV1.7 model structure were estimated by using 
the VMD software [83]. A global coordinate system (x̂, ŷ, ẑ) was introduced with its 
center at O and the NaV1.7’s principal pore axis, i.e., the axis approximating the direction 
of the channel’s pore, was aligned with the z-axis with orientation from the ES toward 
the intracellular side (IS) with respect to ẑ . The atomic center e = 1

M

∑Nc
i=1mi · ci of the 
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3D structure was set to overlap with O, where ci = (cx,i, cy,i, cz,i) is the atomic center of 
the ith atom, mi is the mass of the ith atom, Nc = 18567 is the total number of atoms, 
and M =

∑Nc
i=1mi is the total molecular mass (values of atomic masses are the same as 

[68, 69]).

Geometrical characteristics of the pore

We navigated through the skewed NaV1.7’s pore by introducing a set of pore points 
p ∈ P (see Additional file 1: S2). The pore radius at p is given by [? ]

where || · || is the euclidean norm and vdWi is the van der Waals radius of the ith atom 
(values of van der Waals radii are the same as [68, 69]). The distance between p and its 
nearest neighbor atom corresponds then to

and the outer surface radius at p is given by [68, 69]

where the unit of measurement for R(p) , D(p) and L(p) is expressed in [Å].

Finite‑size sampling around the pore

The atomic environment around p is sampled with concentric spheres placed at p of 
increasing radius [68, 69]

where Kα is the total number of sampling spheres and α denotes the index of the sam-
pling sphere (i.e., the scaling index). lα(p) indicates the size, i.e., molecular scale, of the 
spherical cluster of atoms around p in [Å] and L(p) the finite channel size measured with 
respect to p . Accordingly, the atomic cumulative distribution function (CDF) at p is 
given by [68, 69]

where θ(·) is the heaviside function. Note that N (p, lα(p)) essentially describes how 
atoms are packed around p . In computational practice Kα is set to be “large enough” 
approximating the continuous case via dense sampling.

Mathematical modeling of atomic CDF

Modeling of the atomic CDF was performed by employing the GROFIT routine [84]. 
Hypothesis underlying this modeling approach is that the atomic CDF for a given p fol-
lows a sigmoid pattern. Hypothesis is approved if GROFIT manages to fit any of available 

(m2)R(p) = min
i=1,2,...,Nc

{||ci − p|| − vdWi}

(m3)D(p) = min
i=1,2,...,Nc

{||ci − p||}

(m4)L(p) = max
i=1,2,...,Nc

{||ci − p|| + vdWi}

(m5)lα(p) = D(p)+ α ·
L(p)− D(p)

Kα

for α = 1, 2, . . . , Kα → ∞

(m6)N (p, lα(p)) =
Nc∑

i=1

θ(lα(p)− ||ci − p||)
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candidate models to the CDF data. Available candidate models are a re-parametrized 
algebraic forms [85] of the Logistic model [86]

, of the Gompertz model [87]

with e = exp(1) , of the the modified Gompertz model [85]

and of the Richards model [88]

were fitted on N (p, lα(p)) along lα(p)-direction where 
{A(p), t(p), s(p), q̃(p),w(p), lshift(p)} are model parameters. The candidate model that 
best fits the atomic CDF is then selected based on minimization of an Akaike informa-
tion criterion (see [84] for algorithmic details).

Following [69], model parameters interpretation was performed with respect to the 
inflection point

that determines the location along lα(p)-direction where the radial distribution function 
(RDF), ∂n(p,lα(p))

∂lα(p)
 , maximizes. The RDF maximum value is given by the parameter t(p) 

accounting for the maximum atom-packing rate (or, equivalently, for the maximum 
atomic density) around p . Parameter A(p) is the asymptote value of the fitted model, i.e., 
n(p, lα(p) → ∞) = A(p) , describing what happens when L(p) becomes arbitrary large. 
Parameter s(p) determines the location along lα(p)-direction where the lag atom-pack-
ing domain ends, i.e., its size. Notably, parameter t(p) can be expressed in terms of the 
ratio t(p) = A(p)

os(p):=o(p)−s(p) with o(p) determining the location along lα(p)-direction 
where the asymptote atom-packing domain begins. Parameter q̃(p) affects the shape of 
the Richards model curve, as well as, the location of the inflection point thus plays the 
role of the summary atom-packing parameter. Parameters w(p) , and lshift(p) of the modi-
fied Gompertz model indicate the location, and the slope, respectively, of a second 
increase in the modified Gompertz model curve [84]. The Logistic and the Gompertz 
model are retrieved from the Richards model for q̃(p) = 1 , and for q̃(p) → 0 , respec-
tively, as shown in [89], thus they are considered as special cases of the Richards model.

(m7)nLOG(p, lα(p)) = A(p) ·
{
1+ exp

(4 · t(p)

A(p)
·
(
s(p)− lα(p))+ 2

)}−1

(m8)nGOM(p, lα(p)) = A(p) · exp
(
− exp(

e · t(p)

A(p)
· (s(p)− lα(p))+ 1)

)

(m9)
nMGOM(p, lα(p)) = A(p) · exp

(
− exp

(e · t(p)

A(p)
· (s(p)− lα(p))+ 1

))

+ A(p) · exp
(
w(p) · (lα(p)− lshift(p))

)

(m10)

nRIC(p, lα(p)) = A(p) · {1+ q̃(p) · b(p) · exp(−k(p) · lα(p))}
−1/q̃(p)

with b(p) = exp(1+ q̃(p)+ k(p) · s(p)) and k(p) =
t(p)

A(p)
· (1+ q̃(p))1+1/q̃(p)

(m11)ξ(p) = {lα(p)
∣
∣
∂2n(p, lα(p))

∂lα(p)2
= 0}
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Cumulative hydropathicity‑property functions

The hydropathic density of the atomic environment around p was approximated in 
terms of [68]

where h(0)(p, lα(p)) corresponds to the cumulative zero-order hydropathic pore moment 
function [90] with HIwi = HIi + wi representing the ith atomic hydrophobic index in 
accordance with the Kapcha&Rossky atomic hydropathic scale [91] with additive Gauss-
ian noise wi ∈ N (µ = 0, σ = 0.001) . The superscript “(0)” indicates the moment order.

The hydropathic interatomic interaction strength (HIIS) at p , i.e., the average 
interaction strength between an atomic component found within the cluster of size 
N (p, lα(p)) and its surroundings, was approximated in terms of the hydropathic 
imbalance (or interaction strength) pore function [68, 69]

where �h
(1)
(p, lα(p)) corresponds to the cumulative first-order hydropathic pore moment 

function [90] quantifying the hydropathic inter-cluster interaction strength (HIcIS) with 
�rp,i being the vector from p to ci . The superscript “(1)” indicates the moment order.

Introduction of a weak noise source wi practically guarantees that sca-
lars |h(0)(p, lα(p))| and ||�h

(1)
(p, lα(p))|| are non-zero for every combi-

nation of p and lα(p) while their scaling behavior remains practically 
unaffected. Throughout this study we consider pore’s physichochemical field char-
acteristics to be adequately described in terms of the HIIS axial field component, 
�m(1)
z (p, lα(p)) = �h

(1)
z (p, lα(p))/N (p, lα(p)) = m

(1)
z (p, lα(p)) · ẑ given that the magni-

tude of the radial field component, ||�h
(1)
xy (p, lα(p))|| , is statistically expected to remain 

always smaller than || �m(1)
z (p, lα(p))|| after a cut-off, lag-domain scale and, thereafter, to 

gradually shrink (see Additional file 1: S3). Accordingly, we focus only on the scaling 
behavior and topology of the HIIS axial field component which can occupy only two 
orientation-states; an “in” orientation-state which is characterized by �m(1)

z (p, lα(p)) 
pointing towards the intracellular side (IS), i.e., by m(1)

z (p, lα(p)) > 0 , and an “out” 
orientation-state which is characterized by �m(1)

z (p, lα(p)) pointing towards the ES, i.e., 
by m(1)

z (p, lα(p)) < 0 . Topological changes in HIIS axial field component are detected 
according to the algorithmic scheme presented in [68] (see Additional file 1: S4).

(m12)

m(0)(p, lα(p)) =
h(0)(p, lα(p))

N (p, lα(p))
∼ kcal/(mol ≡ atom)

with h(0)(p, lα(p)) =
Nc∑

i=1

θ(lα(p)− ||ci − p||) ·HIwi

(m13)

�m(1)(p, lα(p)) =
�h
(1)
(p, lα(p))

N (p, lα(p))
∼ kcal·Å/(mol ≡ atom)

with �h
(1)
(p, lα(p)) =

Nc∑

i=1

θ(lα(p)− ||ci − p||) ·HIwi · �rp,i

= h(1)x (p, lα(p)) · x̂ + h(1)y (p, lα(p)) · ŷ
︸ ︷︷ ︸

�h
(1)
xy (p,lα(p))

+ h(1)z (p, lα(p)) · ẑ
︸ ︷︷ ︸

�h
(1)
z (p,lα(p))
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Finite‑size scaling of HIIS axial field component

In accordance to [69], a scale-invariant interval of the HIIS axial field component cor-
responds to combinations of p with α for which the power-law approximation

is accurately satisfied indicating that HIIS axial field component stabilizing the cluster 
of N (p, lα(p)) atoms around p span a range up to ∼ lα(p) Å. Sign of γ (p) quantifies the 
rate at which intensity and range of HIIS axial field component increase or decrease for 
increasing atomic cluster size. From a HIs-network standpoint, γ (p) indicates whether 
HIs network interconnectivity is up- or down-regulated, i.e., whether HIs contacts, e.g., 
hydrogen bonds, are created or destroyed within the structure. The energy levels asso-
ciated with HIs contacts creation (or destruction) guaranteeing stability of the atomic 
cluster can then be approximated by

measured in kcal/(mol≡atomic cluster).

Results
In Fig.  1 we demonstrate that atomic CDF around NaV1.7’s pore follows a sigmoid 
profile which can be adequately described by the Richards model (Additional file 1: 
S5). The atomic environment around the pore can thus be partitioned into three 
consecutive atom-packing domains spanning the channel from the inside (i.e., pore-
lining environment) to the outside (i.e., voltage-sensing environment) (Fig.  1b, c). 
The innermost domain corresponds to the lag domain consisting primarily of struc-
tural elements lining the pore (approximately 95% of lag-domain structural compo-
nents belong to S5–S6 helices). The outermost domain corresponds to the asymptote 
domain consisting mostly of structural elements drawn from the S1–S4 voltage-sens-
ing helices (approximately 63.3% of asymptote-domain structural components belong 
to the S1–S4 helices). In-between the lag and asymptote domain, a structurally-heter-
ogeneous inflection domain is formed consisting of two parts separated by inflection 
points, ξ(p) . Structural locations of the inflection points correspond to intra-chan-
nel regions where the atomic RDF maximizes and, as demonstrated in Fig. 1a, they 
closely match the PMs-VSs spatial transition described by ν(p) (see Additional file 1: 
S6 for calculation of PMs-VSs spatial transition characteristics). Accordingly, ξ(p) 
serves here as a macroscopic boundary line splitting the atomic environment around 
NaV1.7’s pore into two phases, namely, a pre-inflection phase for lα(p) ≤ ξ(p) and a 
post-inflection phase for lα(p) > ξ(p) accounting for atomic sub-environments con-
taining mainly structural components belonging to the PMs and VSs, respectively 
(Fig. 1b).

Based on the geometrical partition scheme summarized in Fig.  1 we proceeded 
with mapping of missense SCN9A-gene mutations on two-dimensions based on their 
intra-channel structural locations. For that, we utilized a collection of well-studied 
GOF NaV1.7 mutations phenotypically related with IEM, SFN and PEPD pain disease 

(m14)|| �m(1)
z (p, lα(p))|| ∼ lα(p)

γ (p)

(m15)U(p, lα(p)): = ||�h
(1)
z (p, lα(p))||/lα(p) ∼ N (p, lα(p)) · lα(p)

γ (p)−1
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(total number of pain-related mutation sites: 36) (Additional file 1: S8). In addition, a 
collection of neutrals SCN9A-gene mutations was introduced consisting of SCN9A-
gene homologous single-nucleotide polymorphisms (hSNPs) and of SCN9A-gene var-
iants not causing biophysical abnormalities (nBABNs) (imported from [59]), as well 
as, of a small number of SCN9A-gene variants previously classified as non-pathogenic 
based on algorithmic procedures described in [92] (total number of neutral muta-
tion sites: 48) (Additional file 1: S8). Given that neutrals are not expected to associate 
with pain disease phenotypes, they are less likely to trigger any significant NaV1.7 

Fig. 1  Atom-packing around NaV1.7’s pore. a Cartoon illustration of the NaV1.7 structural model (side 
view). b Cartoon illustration of the NaV1.7 structural model (intracellular-to-extracellular view). The 
atomic environment around every pore point p ∈ P is partitioned into three consecutive atom-packing 
domains; a lag domain realized for lα(p) ≤ s(p) , an inflection domain consisting of two parts realized 
for s(p) < lα(p) ≤ ξ(p) and ξ(p) < lα(p) ≤ o(p) , respectively, and an asymptote domain realized for 
lα(p) > o(p) (see “Methods” section). s(p) , ξ(p) and o(p) are represented in b in terms of 〈s(p)〉 , 〈ξ(p)〉 , and 
〈o(p)〉 , respectively, roughly indicating the median-statistical value of the radial distance from p at which 
the transition among subsequent domains takes place. The median-statistical value of the radial distance 
from p at which the PMs-to-VSs transition, 〈ν(p)〉 , takes place is also illustrated. Note that 〈ν(p)〉 and 〈ξ(p)〉 
are almost indistinguishable, i.e., �ν(p)� ≈ �ξ(p)� . c Traces of statistical descriptors of the normalized (with 
respect to Nc ) atomic CDF, �N̄(p, lα(p))�α , and of its best-fitted Richards model 〈n(p, lα(p))〉α are plotted in 
log-scale with shaded areas around 〈N(p, lα(p))〉α indicative of 95% confidence intervals. s(p) , ξ(p) , and o(p) 
are represented in c in terms of statistical descriptors 〈αs〉 , �αξ � ≈ �αν� , and 〈αo〉 , respectively, returning the 
median-statistical value of corresponding scaling indices α . All statistical descriptors correspond to median 
values and are calculated according to the scheme presented in Additional file 1: S7
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destabilizations and/or to perturb conserved hydropathic characteristics around 
NaV1.7’s pore.

The majority (i.e., 54% ) of pain-related mutation sites are distributed within the inflec-
tion domain with a tendency to cluster toward a centrally-located map area along the 
inflection-points line αξ (see area “a2” on Fig. 2a in relation to Fig. 2b, c). On the other 
hand, the majority (i.e., 75% ) of neutral mutation sites are distributed within the sec-
ond part of the inflection domain so that their map occupancy rate tends to maximize 
approximately in the middle of the second part of the inflection domain (see area “a3” 
on Fig. 2a in relation to Fig. 2b, c). The rest 46% of pain-related mutation sites are found 
within the lag domain toward the intracellular side of the NaV1.7. In particular, their 
map occupancy rate maximizes in the vicinity of the boundary line αs toward the IS (see 
area “a1” on Fig. 2a in relation to Fig. 2b, c). Taken together, these observations indicate 
that for decreasing molecular scale the probability of a missense SCN9A-gene mutation 
to translate into a pain-related phenotype increases which is of little surprise consider-
ing that mutations perturbing NaV1.7’s interior are more likely to perturb tight packing 
of S5-S6 helices and, consequently, produce electrophysiological alternations.

Mapping of hydropathic density profile reveals the formation of a HP lining NaV1.7’s 
pore (see Fig. 3, blue-colored domains T (0)

1  and T (0)
2  ). Specifically, we demonstrate that 

the center of the pore is lined by predominantly hydrophobic atomic components 
expanding toward the IS where occlusion of the pore takes place by the ring of Y405 
(DI), F960 (DII) F1449 (DIII) and F1752 (DIV) residues which are known to form the 

Fig. 2  Mapping of missense SCN9A-gene mutation sites around NaV1.7’s pore. a Mapping of missense 
SCN9A-gene mutation sites for p ∈ P and α = 1, 2, . . . , Kα = 800 . Two sets of missense SCN9A-gene 
mutation sites are employed; a pain-related set containing IEM, PPD and SFN mutation sites, and a neutral 
set containing mutation sites which are not expected to associate with pain disease phenotypes (Additional 
file 1: S8). Scaling indices lines αs , αξ and αo highlight the boundaries among consecutive atom-packing 
domains. Specifically, αs denotes the ending and beginning of the lag and inflection domain, respectively. 
αo denotes the ending and beginning of the inflection and asymptote domain, respectively. αξ denotes 
the location of inflection points and the ending and beginning of the first and second part of the inflection 
domain, respectively. Labels “a1”, “a2”, and “a3” indicate map areas where the number of mutation sites 
maximizes, i.e., mutation sites occupancy rates maximize. a Map occupancy rate of mutation sites along α
-direction. c Map occupancy rate of mutation sites along p-direction. Red- and blue-colored histograms 
account for map occupancy rates of pain-related, and neutral mutation sites, respectively
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NaV1.7’s activation gate (AG) (see Fig.  3, blue-colored domain T (0)
2  ). Hydrophobic 

expansion toward the ES is disrupted by the weakly-hydrophilic SF so that the pore is 
lined by a small-sized hydrophobic cluster located in-between the strongly-hydrophilic 
ES mouth and the weakly-hydrophilic SF (see Fig. 3, blue-colored domain T (0)

1  ). Macro-
scopically, the wide CC translates into a structural contraction event as the outer surface 
radius is locally minimized so that the channel is split into two funnel-like structural 
compartments (see Fig. 3, trace of L(p) ). Structural combination of the PMs with the VSs 
results in a hydrophilic atomic environment as indicated by the red-colored T (0)

3  domain 
covering the largest map area and incorporating both the SF and the ES mouth, as well 
as, the IS channel end (see Fig. 3). The SF’s microenvironment is formed by the residues 
D361 (DI), E930 (DII), K1406 (DIII) and A1698 (DIV) where a bare sodium ion of radius 
∼ 1.8 Å  can exactly fit in (Fig. 3).

Strikingly, approximately 53% of pain-related mutation sites are found within T (0)
2  with 

a tendency to cluster along HP’s boundary as map areas “a1” and “a2” occupy contour 
map regions where the transition from T (0)

2  to T (0)
3  takes place (Fig. 3). On the other hand, 

Fig. 3  Spatial profile of the hydropathic density around NaV1.7’s pore. Contour map of the hydropathic 
density pore function, m(0)(p, lα(p)) , is illustrated for p ∈ P and α = 1, 2, . . . , Kα = 800 . Blue- and red-colored 
contour domains represent hydrophobic and hydrophilic domains around the pore, respectively. Black lines 
R(p) , D(p) and L(p) indicate geometrical pore characteristics (see “Methods” section). Magenta dashed line 
ν(p) depicts the scales at which the PMs-VSs spatial transition takes place. Dashed black lines s(p) , ξ(p) 
and o(p) account for the boundaries among subsequent atom-packing domains (see “Methods” section). 
Zero-crossing points of m(0)(p, lα(p)) collected in �(0) define HP’s boundary, i.e., the boundary between 
HP-forming domains T (0)1  and T (0)2  , and hydrophilic domain T (0)3  (see Additional file 1: S4 for calculation of 
zero-crossing points and construction of �(0) ). Black arrows [a] , [b] , and [c] highlight domain boundaries. 
Two sets of missense SCN9A-gene mutation sites are employed; a pain-related set containing IEM, PPD 
and SFN mutation sites, and a neutral set containing mutation sites which are not expected to associate 
with pain disease phenotypes (Additional file 1: S8). Mutation sites highlighted in red color correspond to 
misclassified events (classification criterion; median distance from HP’s boundary (see Additional file 1: S9a)). 
Grey-shaded areas “a1”, “a2”, and “a3” highlight contour map regions where the number of mutation sites 
maximizes, i.e., mutation sites occupancy rates maximize. ES, SF, CC, AG, and IS labels mark the locations of 
the extracellular side, of the selectivity filter, of the central cavity, of the activation gate, and of the intracellular 
side, respectively
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10% of neutral mutation sites are located within the T (0)
2  and only one neutral mutation 

site found within T (0)
1  , while area “a3” is distributed solely within T (0)

3  (Fig. 3).
Given that mutations perturbing an ion channel’s hydrophobic interior properties pose 

a high risk for ion current alternations [53–56], we hypothesize that mutations occur-
ring at structural locations in proximity to the HP are more likely to be related with GOF 
pain phenotypes. We tested this hypothesis by statistically approximating the distance 
between each mutation structural location and HP’s boundary (Additional file  1: S9a) 
and feeding retrieved median distances into a binary classifier. We achieved to clas-
sify correctly 29 (out of 36) and 38 (out of 48) of pain-related and neutral, respectively, 

Fig. 4  Binary classification of missense SCN9A-gene mutation sites based on their median distance from 
HP’s boundary. a ROC-curve plot constructed from data of median distances between mutation sites and 
HP’s boundary (for construction of data set see Additional file 1: S9a). Optimal threshold value corresponds 
to specificity and sensitivity values of 0.791 and 0.805, respectively. Area under ROC curve is 0.787. b 
Visualization of ROC curve data. Optimal threshold value 18.13 Å is marked with black dashed line. Shaded 
area around median distance values indicates the 95% confidence intervals. ROC curve is constructed in 
R [73] by using the pROC package [93]. Two sets of missense SCN9A-gene mutation sites are employed; a 
pain-related set containing IEM, PPD and SFN mutation sites, and a neutral set containing mutation sites 
which are not expected to associate with pain disease phenotypes (Additional file 1: S8)
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mutations correctly with a cut-off median distance of 18.13 Å  (Fig. 4). This translates to 
an area under receiver operating characteristics (ROC) curve of 0.787 and pain pheno-
type prediction with specificity of 0.791 and sensitivity of 0.805 (Fig. 4a).

Misclassified pain-related mutations S211P, L823R, W1538R, I720K, I739V and 
T1596I are found outside of the HP thus not in hydrophobic proximity neither to CC 
nor to AG (Figs. 3 and 4b). Only a single pain-related misclassification is found within 
HP, namely, R185H that is located with T (0)

2  (Figs.  3 and 4b). This striking misclas-
sification is due to the elementary statistical approach adopted for calculating dis-
tance scores which fails to fully capture the complex topology of HP-forming T (0)

2  and 
T

(0)
1  (Additional file  1: S8). Misclassified neutral mutations V1428I, T920N, V194I, 

V1613I, T1398N, I1399D, S1419N, D1662A, D1674A and K1700A are found inside 
the HP, and, more precisely, in proximity to HP’s boundary, with a tendency to cluster 
around the SF (Figs. 3 and 4b).

We further investigated the relation between cumulative hydropathic characteristics 
and mutation sites around NaV1.7’s pore by focusing on the HIIS axial field compo-
nent illustrated in Fig. 5a. As we demonstrate in in Fig. 5a, HIIS axial field component 
topology can be summarized into five domains, namely, T (1)

1  , T (1)
2  , T (1)

3  , T (1)
4  and T (1)

5  
(Fig. 5a). The centrally-located T (1)

5  domain covers the largest map area and roughly 
dichotomizes the contour map into two pseudo-symmetric parts, namely, an ES part 
incorporating T (1)

1  and T (1)
3  , and an IS part incorporating T (1)

2  and T (1)
4  . Pain-related 

mutation sites are solely found within the T (1)
4  and T (1)

5  domains with occupancy rates 
of 58% and 42% , respectively. On the other hand, neutral sites are found within the 
T

(1)
3  , T (1)

4  and T (1)
5  with occupancy rates of 14% , 19% and 67% , respectively.

In order to decode mutation sites clustering behavior on the contour map of Fig. 5a 
we adopted a phenomenological approach that presumes the existence of a critical 
point, ξ(pcrit.) , associated with the spatial organization of HIs around the SF [63, 64, 
69] with pcrit. being a critical SF pore point coordinate (Additional file 1: S10). A cru-
cial result that motivated us to adopt such an approach is that pain-related muta-
tion sites are attracted toward the critical point in sheer contrast to neutral mutation 
sites which are repelled from it (Fig. 5b). We refer to this phenomenon with the term 
critical clustering. Geometrically, the formation of the critical mutation-sites cluster 
reflects the tendency of structural locations of pain-related mutations to minimize 
their distance from the surface of the sphere of radius ξ(pcrit.) ≈ 33.4 Å   around the 
SF; intuitive graphical representation of this phenomenon is provided in Fig. 5a where 
we show that “hot” areas I and II intersect with the green radius line ξ(pcrit.) repre-
senting critical sphere’s surface.

The scaling behavior of HIIS axial field component around pcrit. is adequately 
described in terms of the power-law scheme

accounting for a HIs-network expansion and contraction within the pre- and post-inflec-
tion phase intervals s(pcrit.) < lα(pcrit.) ≤ ξ(pcrit.) and ξ(pcrit.) < lα(pcrit.) ≤ o(pcrit.) 
with rates of γpartI (pcrit.) = 2.27± 0.18 and γpartII (pcrit.) = −5.18± 1.02 , respec-
tively (Fig.  5c, and see also Additional file  1: S10). On the left of the interval 

(r1)m(1)
z (pcrit., lα(pcrit.)) ∼

{
lα(pcrit.)

γpartI (pcrit.) for s(pcrit.) < lα(pcrit.) ≤ ξ(pcrit.)

lα(pcrit.)
γpartII (pcrit.) for ξ(pcrit.) < lα(pcrit.) ≤ o(pcrit.)
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Fig. 5  Spatial profile of HIIS axial field component along NaV1.7’s pore. a Contour map of HIIS axial field component, 
m

(1)
z (p, lα(p)) , for p ∈ P and α = 1, 2, . . . , Kα = 800 . Blue- and red-colored contour domains represent 

configurations of �m(1)
z (p, lα(p)) with orientation “out” and “in”, respectively. Black lines R(p) , D(p) and L(p) indicate 

geometrical pore characteristics (see “Methods” section). Magenta dashed line ν(p) depicts the scales at which the 
PMs-VSs spatial transition takes place. Dashed black lines s(p) and o(p) account for the upper and lower boundary 
of the lag and asymptote atom-packing domains. Critical radius ξ(pcrit .) ≈ 33.4 Å is plotted while inflection points 
line ξ(p) is omitted for clarity. Zero-crossing points of m(1)

z (p, lα(p)) collected in �(1) (see Additional file 1: S4) 
correspond to boundaries among contour domains T (1)1  , T (1)2  , T (1)3  , T (1)4  and T (1)5  . Black arrows [a] , [b] , [c] , [d] , and [e] 
are plotted in order to highlight domain boundaries. Two sets of missense SCN9A-gene mutation sites are employed; 
a pain-related set containing IEM, PPD and SFN mutation sites, and a neutral set containing mutation sites which 
are not expected to associate with pain disease phenotypes (Additional file 1: S8). Mutation sites highlighted with 
red color correspond to misclassified events (classification criterion; distance from the SF (see Additional file 1: 
S9b)). Grey-shaded areas “a1”, “a2”, and “a3” highlight contour map regions where the number of mutation sites 
maximizes, i.e., mutation sites occupancy rates maximize. ES, SFcrit , CC, AG, and IS labels mark the locations of the 
extracellular side, of the critical pore point pcrit . , of the central cavity, of the activation gate, and of the intracellular 
side, respectively. b Traces of normalized (with respect to corresponding maximum values) median distances 
between pain-related and neutral mutation sites from the critical point, ξ(p) , represented as D̄pain

ξ = D̄ξ(p)(Vpain) 
and D̄neut .

ξ = D̄ξ(p)(Vneut .) , respectively, are plotted for p ∈ P (see Additional file 1: S9b for calculation of Dξ(p)(Vpain) 
and Dξ(p)(Vneut .) ). Circles indicate that for p ≈ pcrit . , D̄

pain
ξ  is globally minimized with D̄pain

ξ ≈ 0.17 , while D̄neut .
ξ  

exhibits a local maximum with D̄neut .
ξ ≈ 0.93 . c Trace of m(1)

z (p, lα(p)) for p = pcrit . and α = 1, 2, . . . , Kα = 800 . 
Power-law approximations of m(1)

z (pcrit . , lα(pcrit .)) described by Eq. r1 are plotted in light and dark green color 
accounting for the first and second part of the inflection domain, i.e., for s(pcrit .) < lα(pcrit .) ≤ ξ(pcrit .) and 
ξ(pcrit .) < lα(pcrit .) ≤ o(pcrit .) , respectively. The mean absolute relative fitting errors (MARFEs) of the power-law 
approximation for the first and second part of the inflection domain are 0.09± 0.01 and 0.15± 0.03 , respectively. 
d Trace of AE, U(p, lα(p)) , for p = pcrit . and α = 1, 2, . . . , Kα = 800 . Modeling approximations of U(pcrit . , lα(pcrit .)) 
described by Eq. r2 are plotted in light and dark green color accounting for the first and second part of the inflection 
domain, i.e., for s(pcrit .) < lα(pcrit .) ≤ ξ(pcrit .) andξ(pcrit .) < lα(pcrit .) ≤ o(pcrit .) , respectively. The MARFEs of the 
modeling approximation for the first and second part of the inflection domain are 0.11± 0.02 and 0.14± 0.03 , 
respectively. Extrapolation of model approximations toward the lag domain, i.e., for lα(p) ≤ s(p) , and toward the 
asymptote domain, i.e., for lα(p) > o(p) , are plotted with dashed light and dark green lines, respectively, and result 
in a MARFE of 6.06± 16.0 and 1.55± 6.39 , respectively. Richards model parameters used for modeling AE are 
{A(pcrit .) = 1.03, t(pcrit .) = 0.03, s(pcrit .) = 18.16, q̃(pcrit .) = 0.47}
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ξ(pcrit.) < lα(pcrit.) ≤ ν(pcrit.) , both, the range and intensity of HIIS axial field compo-
nent maximize as the HIs-network configuration exceeds its critical size marking the 
transition from the pre-inflection phase toward the post-inflection phase [69]. The 
energy levels associated with this phase transition are given by

where N (pcrit., lα(pcrit.) can be replaced with its best-fitted Richards model, 
nric(pcrit., lα(pcrit.)) (see caption of Fig. 5 for Richards model parameters), providing with 
an estimation of the atom-packing energy (AE) (Fig.  5c). Similarly to the NaVAb case 
[69], AE maximization occurs in the vicinity of the narrow interval [ξ(pcrit.), ν(pcrit.)] 
so that energetic coupling of the PMs with the VSs is dictated by the phase transition 
(Fig. 5c, d).

Equation  r1 indicates that interatomic HIs law is robust to microscopic modifica-
tions of the atomic structure, e.g., addition, removal or deletion of a small number of 
atoms occurring due to a mutation-induced perturbation of N (pcrit., lα(pcrit.)).1 This 
happens however at the cost of re-tuning HIcIS and, hence, also AE, that in the case of 
small-amplitude perturbations of N (pcrit., lα(pcrit.)) , are expected to be up- and down-
regulated toward and away from the critical point, respectively, in a power-law fashion 
described by r2 (Fig. 5c). Mutation-induced perturbations propagating throughout the 
structure are thus expected to be amplified in the vicinity of the critical point while, on 
the other hand, to be damped out toward the interior (i.e., toward the HP and the SF) 
and toward channel exterior bounded by outer pore surface radius. Given that muta-
tions occurring in the structural proximity of the SF are highly likely to have a deleteri-
ous LOF effect [94], observed damping-out mechanism might act as a shield protecting 
SF’s biological machinery from mutations occurring within the pre-inflection phase. On 
the other hand, mutations occurring in the post-inflection phase are unlikely to perturb 
the SF as they have to overcome a large energy barrier in order to reach channel interior. 
We thus hypothesize that critical clustering of pain-related mutation sites might actually 
reflect a trade-off between the two extremes; a destructive destabilization and an insig-
nificant one.

We tested the critical-clustering hypothesis by calculating the distance of each 
mutation site from SF’s critical point (Additional file 1: S9b) and feeding retrieved dis-
tances into a binary classifier. We achieved to classify correctly 28 (out of 36) and 39 
(out of 48) of pain-related and neutral mutation sites correctly with a cut-off distance 
of ∼5.8 Å . This translates to an area under receiver operating characteristics (ROC) 
curve of 0.824 and pain phenotype prediction with specificity of 0.812 and sensitivity 
of 0.777 (Fig. 6a). Intuitive geometrical depiction of this result requires to think of a 

(r2)

U(pcrit., lα(pcrit.)) ∼

{
N (pcrit., lα(pcrit.)) · lα(pcrit.)γpartI (pcrit.)−1 for s(pcrit.) < lα(pcrit.) ≤ ξ(pcrit.)

N (pcrit., lα(pcrit.) · lα(pcrit.)γpartII (pcrit.)−1 for ξ(pcrit.) < lα(pcrit.) ≤ o(pcrit.)

1  The average number of atoms per amino acid is 19.2 corresponding to a minor fraction of Nc = 18567 
atoms composing the NaV1.7 structural model in use. Hence, a missense SCN9A-gene mutation result-
ing in the substitution or deletion of a single amino acid is expected to induce a perturbation of the form 
N(pcrit . , lα(pcrit .)) → N(pcrit . , lα(pcrit .))+ ǫ(pcrit . , lα(pcrit .)) , with ǫ(pcrit . , lα(pcrit .) being a small-amplitude perturbation 
source describing addition and/or removal of a minor number of atoms across different channel scales. Then, HIcIS 
is regulated according to h(1)z (pcrit . , lα(pcrit .))+ ζ(pcrit . , lα(pcrit .)) ∼ lα(pcrit .)

γ (pcrit .) ·
(
N(pcrit . , lα(pcrit .))+ ǫ(pcrit . , lα(pcrit .)

)
 

with γ (pcrit .) = γpartI(pcrit .) for s(pcrit .) < lα(pcrit .) ≤ ξ(pcrit .) and 
γ (pcrit .) = γpartII(pcrit .) for ξ(pcrit .) < lα(pcrit .) ≤ o(pcrit .) so that HIIS axial field component described by r1 remains 
intact around the critical point.
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“hot” spherical shell squeezed between the spheres of radii ∼ ξ(pcrit.)+ 5.8 Å   and 
∼ ξ(pcrit.)− 5.8 Å  centered at pcrit. incorporating areas “a1” and “a2” thus containing 
the majority of pain-related mutation sites. This tendency can be deduced from Fig. 5 
where we can see that correctly-classified pain-related and neutral mutation sites 
tend to minimize and maximize, respectively, their distance from the critical radius 
ξ(pcrit.) . The opposite holds for misclassified mutation sites. Note however that due to 
the pore points offset, distances of sites from ξ(pcrit.) line on Fig. 5 are not equal with 
the distances of their structural locations from the surface of the sphere of ξ(p) (dis-
crepancies are of order 3.13±4.63 Å). Misclassified pain-related mutations are I136V, 

Fig. 6  Binary classification of missense SCN9A-gene mutation sites based on their distance from SF’s critical 
point. a ROC curve constructed from data of distances between mutation sites and SF’s critical-point (for 
construction of data set see Additional file 1: S9b). Optimal threshold value ∼5.8 Å corresponds to specificity 
and sensitivity values of 0.812 and 0.777, respectively. Area under ROC curve is 0.824. b Visualization of ROC 
curve data. Optimal threshold value ∼5.8 Å is marked with black dashed line. ROC curve is constructed in 
R [73] by using the pROC package [93]. Two sets of missense SCN9A-gene mutation sites are employed; a 
pain-related set containing IEM, PPD and SFN mutation sites, and a neutral set containing mutation sites 
which are not expected to associate with pain disease phenotypes (Additional file 1: S8)
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W1538R, I1461T, R185H, I228M, I720K, I739V and T1596I indicating that sensitivity 
output is qualitatively similar to the HP-based classification attempt. On the other 
hand, quality of specificity differs significantly among classification attempts as criti-
cal-point distance criterion misclassified neutrals M145L, M146S, R1207K, T1210N, 
V1613I, D890N, K1412I, K1415I and S1419N are clustering within the “hot” spherical 
shell in proximity to HP’s boundary.

Finally, in order to harvest the classification power of both predictors, we linearly 
combined distance metrics by calculating a weighted distance average (Additional file 1: 
S11). The weighted distance average achieved to classify correctly 29 (out of 36) pain-
related mutations and 45 (out of 48) neutrals, i.e., sensitivity = 0.805, specificity = 0.937, 

Fig. 7  Binary classification of missense SCN9A-gene mutation sites based on a weighted distance average. 
a ROC curve constructed from data of distances between mutation sites and the weighted combination of 
SF’s critical-point and HP’s boundary (for construction of data set see Additional file 1: S11). Optimal threshold 
value ∼9.6 Å corresponds to specificity and sensitivity values of 0.805 and 0.937, respectively. Area under ROC 
curve is 0.872. b Visualization of ROC curve data. Optimal threshold value ∼9.6 Å is marked with black dashed 
line. ROC curve is constructed in R [73] by using the pROC package [93]. Two sets of missense SCN9A-gene 
mutation sites are employed; a pain-related set containing IEM, PPD and SFN mutation sites, and a neutral 
set containing mutation sites which are not expected to associate with pain disease phenotypes (Additional 
file 1: S8)
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area under ROC curve = 0.872 (Fig. 7a). The threshold weighted distance value is ∼9.6 
Å and it indicates which mutation sites are found in proximity to SF’s critical point and 
HP’s boundary.

The relatively-low sensitivity of the weighted distance average is not surprising if we 
consider that both classifications attempts failed in correctly classifying pain-related 
mutation sites found far away from the HP and from the SF; misclassified pain-related 
mutation sites are I136V, W1538R, I1461T, R185H, I720K, I739V and T1596I and all of 
them are found within the post-inflection phase with the exception of I1461T which is 
located within the lag domain but still far away from the HP and from the SF (Figs. 3, 5a 
and 7). On the other hand, misclassified neutrals R1207K, V1613I and S1419N occupy 
“hot” spots located in proximity to SF’s critical point and HP’s boundary (Figs. 3, 5a and 
7).

Discussion and concluding remarks
Criticality hypothesis in biology aims at explaining how emergence of power-laws 
increases biological system’s robustness and efficiency hand-in-hand with evolution. 
Empirical evidence for complex biological systems operating near critical points include 
cases of gene expression [95], DNA sequences [96], protein structures [63–66], cell 
growth [97] and neuronal dynamics underlying brain activity [98]. In practice, critical-
ity implies that system dynamics are delicately balanced between an ordered state where 
perturbations are damped-out and a disordered state where perturbations are amplified. 
Consequences of critical dynamics are associated with optimal information processing 
[99], enhanced network stability [100] and maximal sensitivity to external stimuli [101].

In this work, instead of trying to predict the effect of missense SCN9A-gene mutations 
via comparing mutant NaV1.7 structures in silico, we extracted hydropathic features of 
the wild-type atomic environment encoding NaV1.7’s response to mutation-induced 
variations. Stated differently, we hypothesized that some regions of the atomic environ-
ment around NaV1.7’s pore exhibit higher sensitivity to mutation-induced perturbations 
due to the long-range nature of HIs guaranteeing their stability; a hallmark of SOC is 
that avalanche-like perturbing effects are amplified and fast-spreading throughout criti-
cal network locations [102]. To test this hypothesis we mapped mutation structural 
locations on their corresponding mutation sites and probed topological and scaling 
hydropathic characteristics of the atomic bulk around the pore. Importantly, this is pos-
sible due to the relatively-large number of pain-related mutations providing with the 
opportunity of structure-based mutation statistics and, consequently, identification of 
densely-populated (by mutation sites) structural domains.

We employed a closed-state structural model of the NaV1.7 that is constructed in silico 
via homology modeling procedures based on the pre-open NaVAb template (see “Meth-
ods” section). By doing so, we sought to initiate our investigations from a well-studied 
and precisely-engineered protonated NaV1.7 structure that has previously provided with 
clinically-relevant observations. The fact that the structural model in-use represents a 
protonated state of the NaV1.7 molecule is crucial here as cumulative hydropathicity-
property moments calculations take explicitly into account hydrogen atoms. Biophysi-
cal significance of the structural model in-use was first experimentally validated in [7] 
where structure-based analysis successfully predicted that the IEM-related V400M and 
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S241T mutations are energetically coupled and, hence, both exhibiting pharmacore-
sponsiveness to carbamazepine. The same structural model has later also been used in 
[30, 58] in order to explain mutation-induced electrophysiologal alternations in relation 
to atomic-level NaV1.7 structural changes. The main structural difference between the 
model in use here and the 6J8J NaV1.7 [82] structure is that the latter contains the com-
plete DIII-DIV intracellular linker which is a hotspot for PEPD mutations. Thus work-
ing with the 6J8J NaV1.7 structure will allow to investigate two more mutation cases, 
namely, the PEPD-related mutations F1462V [103] and T1464I [15]. Given however that 
the present scheme fails in classifying correctly the PEPD-related I1461T mutation, it is 
rather unlikely that it will succeed with F1462V or T1464I. The reason for this misclas-
sification is that the IS end of the channel, where the DIII-DIV linker helix is found, is 
predominantly hydrophilic and far away from the SF (see Figs. 3 and 5a).

The starting point of the presented procedures was the approximation of the atomic 
cumulative distribution function around NaV1.7’s pore demonstrating that packing of 
atoms follows a sigmoid pattern. The generality of the Richards model was found to be 
adequate for this modeling purpose verifying the sigmoid CDF hypothesis and, conse-
quently, revealing a biphasic spatial organization of the atomic environment around the 
pore dictated by the spatial transition from the PM from the VSs. We showed that the 
pore is lined by a HP dominating within channel interior and that HIs stabilizing atom-
packing around the SF are critically tuned with respect to the local inflection points. 
This NaV1.7 feature is shared with its evolutionary-ancestor, namely, with the pre-open 
NaVAb channel, suggesting that location and nature of HIs critical tuning might be con-
served from NaVChs of bacterial homomers to NaVChs of mammalian heteromers [69].

Pain-related mutations tend to occupy structural locations in proximity to HP’s 
boundary while maintaining a critical HIs-distance from the SF. Geometrically, this 
result indicates that the majority of pain-related mutations are found within a spher-
ical shell around the SF incorporating parts of the HP. What might be the evolution-
ary principle underlying this non-random mutation distribution around NaV1.7’s 
pore? Given that the hydrophilic DEKA SF sequence is conserved among human and 
non-human NaVCh templates [82], we propose that occurrence of mutations at criti-
cal hydropathic-interactions distance from the SF might reflect an evolutionary trade-off 
between potentially-deleterious destabilizations occurring too close to the SF, and insig-
nificant polymorphisms occurring far away from it. According to this rationale, muta-
tions occupying critical hydropathic-interactions network locations lead to a GOF effect 
by increasing channel’s configurational space and, consequently, expanding physiological 
range of ion currents, while not risking structure deletion or severe destabilizations that 
can induce a LOF effect [94].

Misclassification of seven pain-related events found within the post-inflection phase 
(namely, of I136V, W1538R, I1461T, R185H, I720K, I739V and T1596I) suggests that the 
destabilizing mutation effect within the post-inflection phase and, specifically, within 
the VSs needs to be locally investigated. In particular, misclassified pain-related events 
are likely to perturb local features of the VSs which are however crucial for physiologi-
cal gating behavior. It might therefore be useful for future studies to consider a decou-
pling of the PM from the VSs in order to focus solely on the cumulative hydropathic 
topology and HIs-networking within the VSs. Alternatively, considering biophysical 
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characteristics of substituted amino acids (e.g., size, charge, degree of conservation) 
might also contribute in improving classification accuracy as it would provide a more 
detailed picture of the mutation effect.

Admittedly, a limitation of this study is the small (from a statistics point of view) num-
ber of available mutation sites. To resolve this issue and provide with stronger statistical 
validation, we may consider in future studies to increase number of neutral and pain-
related mutations, for example, by introducing NaV1.7 variants found in the Genome 
Aggregation Database (gnomAD) [104]. A methodological weakness is that we neglected 
radial hydropathic effects. In particular, even if the amplitude of the HIIS radial field 
component is decreasing (in comparison to the amplitude of the HIIS axial field com-
ponent) for increasing molecular scale, its contribution cannot be neglected for interac-
tions between penetrating ions species and pore walls.

In summary, our findings suggest that pathophysiological evaluation of mutation sites 
with respect to cumulative NaV1.7 hydropathic properties can be performed with neg-
ligible computational effort and similar or even higher accuracy to [59] (reported accu-
racy: 0.81) but also to the more recent study of [61] where a MLE computational pipeline 
was employed (reported accuracy on the human NaV1.7 template: 63.5%). Given that the 
formation of a narrow and hydrophilic SF followed by a wide and hydrophobic CC is a 
widely conserved pore-architectural motif, our observations might be relevant for other 
voltage-gated channel species as well. Crucially, hydropathicity-property has been previ-
ously recognized as a key-marker for predicting functional outcome of genetic defects 
not only in NaVChs, but also in voltage-gated calcium [94] and potassium channels 
[105]. Finally, in an era where MLE pipelines become increasingly popular, the phenom-
enological framework curated in this study could provide a phenomenological basis for 
biophysical interpretation of MLE-retrieved predictions regarding NaVChs pathophysi-
ological characterization and help in tracing them back on the atomic structure in a site-
specific manner as recently attempted in [106].
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