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Abstract 

Background:  Computational mathematical models of biological and biomedical sys-
tems have been successfully applied to advance our understanding of various regula-
tory processes, metabolic fluxes, effects of drug therapies, and disease evolution and 
transmission. Unfortunately, despite community efforts leading to the development 
of SBML and the BioModels database, many published models have not been fully 
exploited, largely due to a lack of proper documentation or the dependence on propri-
etary software. To facilitate the reuse and further development of systems biology and 
systems medicine models, an open-source toolbox that makes the overall process of 
model construction more consistent, understandable, transparent, and reproducible is 
desired.

Results and discussion:  We provide an update on the development of modelbase, 
a free, expandable Python package for constructing and analysing ordinary differential 
equation-based mathematical models of dynamic systems. It provides intuitive and 
unified methods to construct and solve these systems. Significantly expanded visuali-
sation methods allow for convenient analysis of the structural and dynamic properties 
of models. After specifying reaction stoichiometries and rate equations modelbase 
can automatically assemble the associated system of differential equations. A newly 
provided library of common kinetic rate laws reduces the repetitiveness of the com-
puter programming code. modelbase is also fully compatible with SBML. Previous 
versions provided functions for the automatic construction of networks for isotope 
labelling studies. Now, using user-provided label maps, modelbase v1.2.3 streamlines 
the expansion of classic models to their isotope-specific versions. Finally, the library 
of previously published models implemented in modelbase is growing continu-
ously. Ranging from photosynthesis to tumour cell growth to viral infection evolu-
tion, all these models are now available in a transparent, reusable and unified format 
through modelbase.

Conclusion:  With this new Python software package, which is written in currently one 
of the most popular programming languages, the user can develop new models and 
actively profit from the work of others. modelbase enables reproducing and replicat-
ing models in a consistent, tractable and expandable manner. Moreover, the expansion 
of models to their isotopic label-specific versions enables simulating label propagation, 
thus providing quantitative information regarding network topology and metabolic 
fluxes.
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Background
Mathematical models are accepted as valuable tools for advancing biological and medi-
cal research [1, 2]. In particular, models based on ordinary differential equations (ODEs) 
have found application in a variety of fields. Most recently, deterministic models simu-
lating the dynamics of infectious diseases gained the interest of the general public dur-
ing the Covid-19 pandemic. Consequently, a large number of ODE based mathematical 
models were developed and discussed, even in nonscientific journals [3–5]. Such focus 
on mathematical modelling is not surprising, because computational models allow for 
methodical investigations of complex systems under fixed, controlled and reproducible 
conditions. Hence, the effect of various perturbations of the systems can be inspected 
systematically in silico.

The model building process itself plays an important role in integrating and systema-
tising vast amounts of available information [6]. Properly designed and verified compu-
tational models serve various purposes. They are used to develop hypotheses to guide 
the design of new research experiments (e.g., in immunology to study lymphoid tissue 
formation [7]). Models can also support metabolic engineering efforts (e.g., identifica-
tion of enzymes to enhance essential oil production in peppermint [8]). More recently, 
models contribute to tailoring medical treatment to individual patient in the spirit of 
precision medicine (e.g., in oncology [2]). Finally, modelling results guide political deci-
sion making and governmental strategies (see the review on the impact of modelling for 
European Union Policy [9]). Considering their potential impact, models must be openly 
accessible so that they can be verified and corrected, if necessary.

In many publications, modelling efforts are justified by the emergence of extraordi-
nary amounts of data provided by new experimental techniques. However, arguing 
for the necessity of model construction only because a certain type or amount of data 
exists, ignores several important aspects. Computational models are generally a result 
of months, if not years, of intense research, which involves gathering and sorting infor-
mation, simplifying numerous details and distilling out the essentials, implementing 
the mathematical description in computer code, carrying out performance tests, and, 
finally, validating the simulation results. Our understanding of many phenomena could 
be deepened if, instead of constructing yet another first-generation model, we could effi-
ciently build on the knowledge that was systematically collected in previously developed 
models. Moreover, the knowledge generated during the model construction process is 
often lost, e.g. because the main developer left the research team.

Preservation of the information collected in the form of a computational model has 
become an important quest in systems biology, and has, to some extent, been addressed 
by the community. Development of the Systems Biology Markup Language (SBML) [10] 
for unified communication and storage of biomedical computational models, and the 
existence of the BioModels repository [11] already ensures the survival of models beyond 
the academic life of their developers, or the lifetime of the software used to create them. 
However, a model in SBML format rarely reveals the logic of model construction. The 
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structure of modelbase code promotes consistent and transparent description of the 
model components (such as reaction rates), hence the logic of construction becomes 
inherently clear. Such knowledge loss can be prevented by providing simple-to-use tool-
boxes that enforce a universally readable model construction format.

For these reasons we developed modelbase[12], a Python package that allows the 
user to easily document the model building process. On the one hand, we defined the 
core of the model construction process, while on the other hand, the software does not 
make these definitions too strict, and fully integrates the model construction process 
into the Python programming language. This differentiates modelbase  from many 
other Python-based modelling tools (such as ScrumPy [13], PySCeS [14], PySB [15] or 
tellurium [16, 17]) and other mathematical modelling languages (recently reviewed from 
a software engineering perspective by Schölzel and colleagues [18]). We would in par-
ticular like to stress a fundamental difference in the philosophy of modelbase, which 
distinguishes it from the other Python-based tools. In ScrumPy, PySCeS and tellurium, 
models are objects that are constructed by either SBML import or by a human-readable 
string (e.g. the Antimony representation chosen in tellurium [17]), which have methods 
for their numeric simulations and analysis. However, once constructed, the objects are 
not designed to be further modified. A modular design of different, but similar models, 
which all depend on sets of analogous modules, is thus difficult to represent. PySB aims 
at providing systematic construction methods, adding e.g.  ’monomers’ and ’rules’ how 
these are converted. However, PySB deliberately ignores and overrides standard Python 
behaviour, making it difficult to keep multiple models in one namespace. In model-
base, models and simulations are two different types of objects. In analogy to experi-
ments, a model corresponds to the biological entity, such as a cell, whereas a simulation 
corresponds to a particular experiment that is performed on the entity. A model object 
can be arbitrarily modified by numerous methods. Typically, a model is systematically 
constructed by instantiating an empty model object, to which components are added 
by dedicated methods. In this way, the model construction process remains maximally 
transparent, is fully integrated into the Python programming language, and is com-
pletely reproducible. Flexibility to modify and alter the model structure (incl. parame-
ters) is ensured in this way.

Here we report new features in modelbase v1.2.3, developed over the last two years. 
We have significantly improved the interface to make model construction easier and 
more intuitive. The accompanying repository of replicated, published models, available 
from our GitLab project, has been considerably expanded, and now includes a diverse 
selection of biomedical models (see Additional file 1: Table 2). This diversity highlights 
the general applicability of our software. Essentially, every dynamic process that can be 
described by a system of ODEs can be implemented with modelbase.

Implementation
modelbase  is a Python package to facilitate construction and analysis of ODE based 
mathematical models of biological systems. Version 1.2.3 introduces changes not com-
patible with the previous official release, version 0.2.5 [12]. All API changes are summa-
rised in the official documentation hosted by ReadT​h eDocs and the differences between 
the versions are summarised in Table 1.

https://modelbase.readthedocs.io/en/latest/source/api-changes.html
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The model building process starts by creating a modelling object of the dedicated 
Python class Model and adding to it the chemical compounds of the system. Then, fol-
lowing the intuition of connecting the compounds, the reaction network is constructed 
by adding the reactions one by one. Each reaction requires stoichiometric coefficients 
and a kinetic rate law. The latter can be provided either as a custom function or by 
selecting one from the newly provided library of rate laws. The usage of this library 
(ratelaws) reduces the repetitiveness by avoiding boilerplate code. It requires the user 
to explicitly define reaction properties, such as directionality. This contributes to a sys-
tematic and understandable construction process, following the second guideline from 
the Zen of Python, the guiding principles for Python’s design1: “Explicit is better than 
implicit”.

From this, modelbase automatically assembles the system of ODEs. It also provides 
numerous methods to conveniently retrieve information about the model. In particular, 
the get_* methods can be used to inspect all the components of the model, and calcu-
late reaction rates for given concentration values. These functions have multiple variants 
that return all the common data structures (array [19], dictionary, data frames [20]).

Table 1  Key changes between the first published version of modelbase [12] and the current 
update

Functionality modelbase 0.2.5 modelbase 1.2.3

Initialization Model takes only parameters as an 
argument

Model takes as arguments all 
other model components as 
dictionaries

Parameters Hidden as a private attribute Replaced with a vanilla dictionary

Derived parameters No function to calculate from other 
model parameters

Called on initialization and prior to 
any numerical operations

Handling of time-dependent reac-
tions

Time given in kwargs Modifiers argument is introduced

Simulation Integration via timeCourse that 
takes an array of time points for 
Simulation

Integration via simulate that 
takes only the endpoint of the 
simulation, default starting point 
t = 0, otherwise starts where the 
last simulation ended

Labelling features Focused on carbon labelling 
problems

Reference of the word carbon was 
changed to label

Method to calculate relative label 
distribution in steady-state

None available Via LinearLabelModel

Scan steady-state concentrations 
depending on parameter values

None available Via parameter_scan

SBML support Export of model stoichiometries Import of models that match the 
capabilities of modelbase and 
full export of models using 
ratelaw

Metabolic Control Analysis support None available A full suite of methods to calculate 
and plot elasticities via mca 
module

Predefined kinetic laws None available Via ratelaw module

Plotting support Time course plots Phase-plane analysis

1  python-c “import this”.
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After the model building process is completed, simulation and analyses of the model 
are performed with the Simulator class. Currently, we offer interfaces to two inte-
grators to solve stiff and non-stiff ODE systems. Provided the Assimulo package [21] 
is available, as recommended in our installation guide, modelbase will use CVode, a 
variable-order, variable-step multi-step algorithm. The CVode class provides a direct 
connection to Sundials [22] which is a powerful industrial solver and robust time 
integrator, with a high computing performance. If Assimulo is not available, mod-
elbase will automatically use the SciPy library [23]. Specifically lsoda will be used 
to integrate the model, which in our experience resulted in lower computing perfor-
mance [24]. The whole process of assembling a model has been summarised in Fig. 1.

Metabolic control analysis

Sensitivity analysis provides a theoretical foundation to systematically quantify the 
effects of small parameter perturbations on global system behaviour. In particular, 
Metabolic Control Analysis (MCA), initially developed to study metabolic systems, 
is an important and widely used framework providing quantitative information about 
the response of the system to perturbations [25, 26]. The new version of model-
base  has a full suite of methods to calculate elasticities. These can be plotted as a 
heat-map, giving a clear and intuitive colour-coded visualisation of the results. An 
example of such visualisation, for a re-implemented toy model of the upper part of 
glycolysis (Section 3.1.2 [27]), can be found in Fig.  2.

Visualisation support

Many of the existing software packages for building computational models restrict the 
users by providing unmodifiable plotting routines with predefined settings that may not 
suit their personal preferences. In modelbase v1.2.3 plotting functions allow the user 
to pass optional keyword-arguments (often abbreviated as **kwargs), similar to Tellu-
rium [17]. All plot elements are accessible and available for change, providing a transpar-
ent and flexible interface to the commonly used matplotlib library [28]. The easy access 
functions that visualise the results of simulations were expanded from the previous ver-
sion. They now include funcitonality to plot selections of compounds or fluxes, phase-
plane analysis and the results of MCA. An example of the latter is included in Fig. 2.

Models for isotope tracing

modelbase has also been developed to aid the in silico analyses of label propagation 
during isotopic studies. To simulate the dynamic distribution of isotopes, all possible 
labelling patterns for all intermediates need to be created. By providing an atom tran-
sition map in the form of a list or a tuple, all 2N  isotope-specific versions of a chem-
ical compound are created automatically, where N denotes the number of possibly 
labelled atoms. Changing the name of the previous function carbonmap to label-
map in v1.2.3 acknowledges the diversity of possible labelling experiments that can be 
reproduced with models built using our software.
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Isotope tracing under stationary conditions

Sokol and Portais derived the theory of dynamic label propagation under the station-
ary assumption [29]. In steady-state, the space of possible solutions is reduced and 
the labelling dynamics can be represented by a set of linear differential equations. We 
have used this theory and implemented an additional class LinearLabelModel that 

Fig. 1  An example of how to build and analyse a model with modelbase 
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allows rapid calculation of the label propagation given the steady-state concentrations 
and fluxes of the metabolites [29]. modelbase can automatically build the linear label 
model from user provided label maps. An example of such a model is provided in Fig. 3, 
where we simulate label propagation in a linear non-reversible pathway, see Fig. 1 in [29] 
for comparison. The linear label models are constructed using modelbase   rate laws, 
and hence can be fully exported as an SBML file.

Model metadata

Many models lose their readability due to the inconsistent, intractable or misguided 
naming conventions. An example is a model with reactions named v1-v10, without ref-
erencing them properly. By providing metadata fields for all modelbase  objects, the 

Fig. 2  An example of how to use the visualisation methods within the mca package

Fig. 3  An example of how to use metadata functionality
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user can abbreviate component names in a personally meaningful manner and supply 
additional annotation information in accordance with recognised standards, such as 
MIRIAM [30]. An example of how to use metadata functionality is provided in Fig. 4. 
This interface can also be used to supply additional information, such as the unit of a 
parameter.

SBML support

In contrast to the previous modelbase  version, where we only supported the export 
of stoichiometric models to SBML format, we now support both import and export of 
kinetic models. The full summary of the SBML concepts supported by modelbase  is 
documented in the offic​ial SBML test suite​, where the output of our tests is stored. 
Examples where SBML models are imported and exported, using our build_model_
from_sbml and write_sbml_model functions, are supplied in the modelbase   
docum​entat​ion.

Results and discussion
With the newly implemented changes, modelbase is more versatile and user friendly. 
As argued before, its strength lies in its flexibility and applicability to virtually any bio-
logical system with dynamics that can be described using an ODE system. There exist 
countless mathematical models of biological and biomedical systems derived using 
ODEs. Many of these models are rarely re-used, at least not to the extent that could be 
reached, if models were shared in a readable, understandable and reusable way [18]. Our 
package can be used efficiently both for the development of new models, as well as the 

M1 M2 M3 M4 M5 F=1

Fig. 4  Labelling curves in a linear non-reversible pathway. Example of label propagation curves for a linear 
non-reversible pathway of five randomly sized metabolite pools, as proposed in the paper by Sokol and 
Portais [29]. Circles mark the position at which the first derivative of each labelling curve reaches maximum. 
In the original paper, this information has been used to analyse the label shock wave (LSW) propagation. To 
reproduce these results run the label-propagation-2015.ipynb Jupyter Notebook from the Additional file 4: 
Jupyter Notebook label-propagation-2015.ipynb

http://sbml.org/Facilities/Database/Simulator/Details/26
https://modelbase.readthedocs.io/en/latest/index.html
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reconstruction of existing ones. We are confident that modelbase  will in particular 
support users with limited modelling experience in re-constructing already published 
work, serving as a starting point for their further exploration and development. We have 
previously demonstrated the versatility of modelbase by re-implementing mathemati-
cal models previously published without the source code: two models of biochemical 
processes in plants [31, 32], and a model of the non-oxidative pentose phosphate path-
way of human erythrocytes [33, 34]. To present how the software can be applied to study 
medical systems, we used modelbase to re-implement various models, not published 
by our group, and reproduced key results of the original manuscripts. It was beyond 
our focus to verify the scientific accuracy of the corresponding model assumptions. 
We selected these examples to show that despite describing different processes, they all 
share a unified construct. This highlights that by learning how to build a dynamic model 
with modelbase, the user do not learn how to build a one-purpose model, but in fact 
expands the toolbox to be capable of replicating any given ODE based model. All exam-
ples are available as Jupyter notebooks and listed in the Additional file 3: Jupyter Note-
book upper-glycolysis.ipynb.

Compartment model for disease evolution

For this paper, we surveyed available computational models and selected a relatively 
old publication of significant impact, that was published without providing the com-
putational source code, nor details regarding the numerical integration. We chose a 
four-compartment model of HIV immunology that investigates the interaction of a 
single virus population with the immune system described only by the CD4+ T cells, 
commonly known as T helper cells [35]. We implemented the four ODEs describing the 

Fig. 5  The total CD4+ T-cell population versus time after the infection. We have reproduced the results from 
Fig. 4 from the original paper [35] showing the decrease in the overall population of CD4+ T-cell (uninfected 
+ latently infected + actively infected CD4+) over time, depending on the number of infectious particles 
produced per actively infected cell (N). To reproduce these results run the hiv-t4cell.ipynb Jupyter Notebook 
from the Additional file 5: Jupyter Notebook hiv-t4cell.ipynb
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dynamics of uninfected (T), latently infected (L), actively infected CD4+ T cells (A), and 
infectious HIV population (V). In Fig. 5, we reproduce the results from Fig. 4 in the orig-
inal paper, whereby changing the number of infectious particles produced per actively 
infected cell (N) we follow the dynamics of the overall T cell population (T+L+A) over 
a period of 10 years. The model was also used to explore the effect of azidothymidine, 
an antiretroviral medication, by decreasing the value of N after 3 years by 25% or 75%, 
mimicking the blocking of the viral replication of HIV. A more detailed description of 
the time-dependent drug concentration in the body is often achieved with pharmacoki-
netic models. Mathematical models based on a system of differential equations that link 
the dosing regimen with the dynamics of a disease are called pharmacokinetic-pharma-
codynamic (PK-PD) models [36]. The next example explores how modelbase  can be 
used to develop such models.

PK‑PD models and precision medicine

Technological advances forced a paradigm shift in many fields, including medicine, mak-
ing more personalised healthcare not only a possibility but a necessity. A pivotal role 
in the success of precision medicine will be to correctly determine dosing regimes for 
drugs [37]. PK-PD models provide a quantitative tool to support this [38]. PK-PD models 
have proven successful in many fields, including oncology [39], here we use the classi-
cal tumour growth model developed by Simeoni and colleagues, originally implemented 
using the industry-standard software WinNonlin [40]. As the full pharmacokinetic 
model is not fully described, we reproduced only the highly simplified case, where we 
assume a single drug administration and investigate the effect of drug potency ( k2 ) on 
simulated tumour growth curves. In Fig. 6 we plot the simulation results of the mod-
elbase  implementation of the system of four ODEs over a period of 18 days, where 
we systematically changed the value of k2 , assuming a single drug administration on 
Day 9. With the MCA suite available in our software, we can calculate the response to 
perturbation of all other system parameters. Such a quantitative description of the sys-
tem’s dynamics to local parameter perturbation provides support for further studies of 
the rational design of combined drug therapy and the discovery of new drug targets, as 
described in the review by Cascante and colleagues [41].

Modelling of infectious diseases with SIR models

Finally, compartmental models based on ODE systems have a long history of application 
in mathematical epidemiology [42]. Many of them, including numerous recent publica-
tions studying the spread of coronavirus, are based on the classic epidemic Susceptible-
Infected-Recovered (SIR) model, originating from the theories developed by Kermack 
and McKendrick at the beginning of the last century [43]. One of the most important 
insights gained from simulating the dynamics of infectious disease is the existence of 
disease-free or endemic equilibrium, and assessment of its stability [44]. Interestingly, 
periodic oscillations have been observed for several infectious diseases, including mea-
sles, influenza and smallpox [42]. To provide an overview of more modelbase  func-
tionalities we have implemented a relatively simple SIR model based on the recently 
published autonomous model for smallpox [45]. We have generated damped oscillations 
and visualised them using the built-in function plot_phase_plane (Fig.  7). In the 
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x1 x2 x3 x4 cell death
k2 · c(t) k1 k1 k1

growth

Fig. 6  Compartmental pharmacokinetic-pharmacodynamic model of tumour growth after anticancer 
therapy. We have reproduced the simplified version of the PK-PD model of tumour growth, where the PK 
part is reduced to a single input and simulated the effect of drug potency ( k2 ) on tumour growth curves. 
The system of four ODEs describing the dynamics of the system visualised on a scheme above is integrated 
over a period of 18 days. We systematically changed the value of k2 , assuming a single drug administration 
on Day 9. We have obtained the same results as in Fig. 4 in the original paper [40]. To reproduce these 
results run the tumour-growth-2004.ipynb Jupyter Notebook from the Additional file 6: Jupyter Notebook 
tumour-growth-2004.ipynb

Fig. 7  Sample phase portrait obtained with SIR model with oscillations. SIR model with vital dynamics 
including birth rate has been adapted based on the autonomous model to simulate periodicity of 
chickenpox outbreak in Hida, Japan [45]. To reproduce these results run the sir-model.ipynb Jupyter 
Notebook from the Additional file 7: Jupyter Notebook sir-model.ipynb
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accompanying Jupyter notebook we demonstrate using modelbase, how simply the 
SIR model can be built and how to modify it to construct more variants, such as the 
SEIR (E-exposed) or SIRD (D-deceased) models.

Conclusions
Here, we are presenting an update of our modelling software that simplifies the process 
of building mathematical models based on ODEs. modelbase   is fully embedded in 
the Python programming language. It facilities a systematic construction of new models, 
and replication of models in a consistent, tractable and expandable manner. As ODEs 
are a core method to describe the dynamical systems, we hope that our software will 
serve as the base for deterministic modelling, hence its name. With the smoothed inter-
face and clearer description of how the software can be used for medical purposes, such 
as simulation of possible drug regimens for precision medicine, we expect to broaden 
our user community. We envisage that by providing the MCA functionality, users new 
to mathematical modelling will adopt a working scheme where such sensitivity analyses 
are an integral part of model development and analysis. The value of sensitivity analyses 
is demonstrated by considering how the results of such analyses have given rise to new 
potential targets for drug discovery [41]. We anticipate that the capability of model-
base  to automatically generate isotopic label-specific models will prove useful in pre-
dicting fluxes and label propagation dynamics through various metabolic networks. In 
emerging fields such as computational oncology, such models will be useful to, e.g., pre-
dict the appearance of labels in cancer cells.
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