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Introduction
Dysregulation of transcription and gene expression has been linked to conditions such 
as diabetes [1], different subtypes of cancer [2] and neurological [3], autoimmune [4] 
and developmental disorders [5]. However, due to the complexity of the process of 
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transcriptional regulation in eukaryotes, the mechanistic underpinnings of many of 
these diseases are yet unknown. Databases such as the Encyclopedia of DNA elements 
(ENCODE) [6], FANTOM5 [7] and gene expression omnibus (GEO) [8] have provided 
researchers with the opportunity to explore gene expression regulation using com-
putational methods. These databases contain information about the binding sites of 
transcription factors (TFs), coordinates of regulatory elements such as promoters and 
enhancers as well as epigenetic markers, and changes in expression patterns in response 
to external stimuli on a genome-wide level. Furthermore, with significant advancement 
in sequencing technology in the past decade, more and more genetic variants associ-
ated with the aforementioned disorders have been identified [9–13]. A majority of these 
variants are present within the transcriptional regulatory elements and TF binding sites 
(TFBS) [9–13]. However, despite the availability of the epigenomic, transcriptomic, and 
genomic data, there is a dearth of integrative algorithms that consolidate these data 
types into models of regulatory impact on gene expression. Such models would provide 
relative weights of TF influence over gene expression, and could also be used to annotate 
and prioritize regulatory variants within genetic association tests for several diseases. 
Furthermore, knowing the relative TF weights would help in characterizing their roles in 
occurrence and pathogenicity of these diseases.

Current computational approaches typically model gene expression utilizing basic 
information corresponding to cis/local regulatory mechanisms such as histone modifica-
tion and TF binding strengths [14–18]. Early work conducted by Ouyang et al. built lin-
ear regression models to predict gene expression in embryonic stem cells (ESCs) using 
TF association strengths (ChIP-Seq intensity relative to transcription start site) of 12 
essential TFs and principal components to capture their “multi-collinearity” [18]. Cheng 
et al. [17] and Zhang et al. [15] extended this work by including ChIP-seq data for his-
tone modifications overlapping transcription start and termination sites and applying 
support vector regression. Schmidt et al. [16] developed the TEPIC method to calculate 
TF-target gene(TG) affinity scores using a biophysical model of binding based on open 
chromatin assay data; using affinity scores as input features, they used regularized lin-
ear regression models to predict gene expression. More recently, deep learning models 
have become popular for this task [19–21], although inferring biologically relevant infor-
mation from these complex models has remained a challenge. All of these approaches 
have produced prediction models with varying accuracy, though none of these models 
have attempted to incorporate additional trans regulatory effects such as expression lev-
els of the TFs themselves and the co-operative interactions among TFs. Despite their 
important role in gene regulation, these trans regulatory mechanisms have largely been 
excluded from the modelling approaches described above due to the difficulty in quanti-
fying their effects.

Weighted gene regulatory networks (GRNs) attempt to fill this gap by capturing infor-
mation corresponding to multiple cis and trans-acting transcriptional regulatory mech-
anisms in the form of edge-weights between a regulator and its TG [22]. The Passing 
Attributes between Networks for Data Assimilation (PANDA) algorithm generates such 
a GRN by extracting information from heterogeneous networks built using multiple big 
“omics” data sources corresponding to different TF-based regulatory mechanisms [23]. 
Published approaches (except for a recent extension of the TEPIC framework [24]) have 
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also not yet considered the impact of chromatin conformation on transcriptional regu-
lation despite its increasing availability from high throughput assays such as Hi-C [25]. 
Condensed chromatin within the cell is heavily restructured during the process of tran-
scription, leading to increased accessibility of gene promoters and closer physical prox-
imity of distal transcription machinery and enhancer elements [26].

In this study, we generated a multi-omics PANDA GRN based on TF-TG features 
derived from multiple cis and trans acting transcriptional regulatory mechanisms to 
predict gene expression in the GM12878 immortalized lymphoblastoid cell line and the 
K562 chronic myelogenous leukemia cell line. We further derived TF feature weights 
in  the   form of linear effect estimates from our learned models in order to character-
ize the individual influence of each TF on gene expression. In addition, we compared 
the prediction performance of models built using TF binding sites (TFBS) found within 
various regulatory elements such as introns, promoters and distal regulatory regions, 
and further assessed the impact of long distance interactions between TF binding distal 
regulatory elements and promoters on gene regulation by integrating Hi-C data into our 
GRNs and prediction models. Finally, in order to show the utility of our framework, we 
utilized the TF feature weights to perform rare cis-regulatory variants based weighted 
sequence kernel assocation test (SKAT) using depression genes and network (DGN) 
dataset for discovery [27] and the genotype tissue and expression (GTEx) dataset for 
replication [28]. Our in-silico prediction framework has the flexibility of including data-
types from multiple heterogeneous sources for estimating the relative influence of mul-
tiple regulatory mechanisms on gene expression. It also provides a potential blueprint 
for researchers of incorporating functional transcriptomic and genomic data in order to 
gain mechanistic understanding of diseases.

Results
Accounting for trans acting mechanisms in addition to cis regulatory mechanisms 

improved gene expression prediction significantly

We first sought to extend existing approaches for building general models of gene 
expression genome-wide based on TF-TG interactions. We hypothesized that account-
ing for trans-acting mechanisms in addition to cis acting ones would improve overall 
prediction of gene expression. To test this hypothesis, we first constructed GRNs using 
the PANDA algorithm utilizing three separate networks: a motif network, a protein–
protein interaction (PPI) network and a co-expression network for GM12878 and K562 
cell lines as shown in Fig. 1.

For the motif network, we first identified TFs interacting with the cis-regulatory 
region of each protein coding TG by isolating the TF ChIP-seq peaks occurring within 
the regulatory window demarcated by the most upstream and downstream occurring 
CTCF ChIP-seq peaks within a 50  Kb region surrounding the gene body (Fig.  1). We 
further filtered these positional TFBS based on statistical significance using the FIMO 
algorithm and TF binding affinity using the TEPIC algorithm (see Defining transcription 
factor binding of Methods). The number of TFs, TGs and TFBS corresponding to our 
three different TFBS identification algorithms (positional/Pos, FIMO, and TEPIC) for 
both cell lines are also provided in Table 1. After identifying different sets of TFBS, we 
created corresponding adjacency matrices to generate the motif networks for building 
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the PANDA GRNs. We created binary (binding/no-binding) TF-TG adjacency matrices 
using the positional and FIMO TFBS. For the TEPIC based adjacency matrix, we used 
affinity scores of the TEPIC TFBS as weights. We combined these matrices with PPI data 
and cell type specific co-expression to fit a GRN using the PANDA algorithm (see Gen-
erating Gene Regulatory Network Weightings of Methods).

After fitting these three GRNs corresponding to the different TFBS identification 
methods (Pos GRN, FIMO GRN and TEPIC GRN), we constructed corresponding gene 
expression prediction models using the TF-TG features derived from each PANDA GRN 
edge-weight set, and a model based on TEPIC affinity scores. Models were constructed 
using elastic-net based regularized linear regression (ENET) for each cell line. Predictive 
performance for the models was measured using mean-squared error (MSE), and Pear-
son’s correlation coefficient (PCC) between predicted and observed expression values 

Fig. 1  Workflow for building prediction models using multi-omics GRNs. ChIP-seq data for 153 TFs 
(GM12878) and 382 TFs (K562) having peaks passing the optimal irreproducible discovery rate (IDR) 
threshold defined by ENCODE were mapped to the regulatory region of each gene to define TFBS. The 
most distant CTCF peaks within a 50 Kb window upstream and downstream of the gene body were used to 
demarcate regulatory boundaries. Statistically significant TFBS from these regions were identified by FIMO 
and TEPIC based TF-TG affinity scores were calculated. PANDA GRNs were then generated using weighted 
and unweighted adjacency matrices. PPI data from BioGRID corresponding to TFs for each cell lines and 
cell line specific co-expression were obtained from GEUVADIS (GM12878) and ENCODE (K562). Elastic Net 
(ENET)-based regularized regression models were built from the resulting input features to predict log FPKM 
values (gene expression) of independent datasets for the two cell lines

Table 1  Number of TFs, TGs and TFBS obtained from different TFBS identification algorithms for 
GM12878 and K562 cell lines

The “Pos ChIP-Seq” row contains TFBS identified by simply extracting the TF peaks in the cis regulatory regions around 
each gene, “FIMO” row contains statistically significant positional TFBS identified using the FIMO algorithm and the TEPIC 
row contains positional TFBS extracted based on the TEPIC affinity scores. The remaining rows contain the positional TFBS 
present within different regulatory elements utilized for the subsequent analyses in the paper. All the ChIP-seq data for the 
analysis was downloaded from the ENCODE database

GM12878 K562

TFs TGs TFBS Unique TF-TG Pairs TFs TGs TFBS Unique TF-TG Pairs

Pos ChIP-Seq 149 17,106 4,209,133 1,216,272 309 18,190 11,614,248 2,372,274

FIMO 85 16,850 2,444,195 714,167 110 18,173 7,349,429 1,138,823

TEPIC 80 11,784 – 517,226 86 10,239 – 880,554

Promoter 149 11,509 458,959 276,138 308 15,668 1,293,933 681,847

Distal 149 16,964 3,750,174 1,128,079 309 18,152 10,320,315 2,312,490

Intronic 149 17,106 5,896,338 1,378,129 309 18,224 14,764,766 2,820,604
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of the test set TGs within a fivefold cross-validation framework repeating for 20 itera-
tions (see “Generating training and test data sets for the prediction models” section of 
the Methods). Each of the PANDA GRNs was generated from cis and trans TF based 
regulatory mechanisms, while the TEPIC affinity scores used only cis/local regulatory 
mechanisms, thus providing a direct test of our hypothesis.

As shown in Fig. 2, GRN based prediction models containing cis and trans regulatory 
mechanisms were more accurate than models built using only cis-regulatory TF-TG 
TEPIC affinity scores. Specifically, the median PCC for TEPIC GRN based models was 
higher compared to that of TEPIC models for GM12878 (0.42 vs. 0.30, Wilcoxon rank 
sum test p value = 1.45e − 11 Fig. 2a) and K562 (0.30 vs. 0.28, Wilcoxon rank sum test 
p value = 3.50e − 2 Fig. 2c), while the median MSE for the former was lower than that 
for the latter for GM12878(0.83 vs. 0.91, Wilcoxon rank sum test p value = 4.35e − 10 
Fig.  2b),  and for   K562 (0.91 vs. 0.93, Wilcoxon rank sum test p value = 3.26e − 02 
Fig. 2d). Results from all analyses (median measures and p values) are provided in Addi-
tional file 3: Tables S3A–S3I. We also applied the approach to the liver carcinoma cell 
line HepG2 (Additional File 1), and the results show similar trends.

We also made the following observations from our analyses: (1) Prediction models 
derived from PANDA GRNs containing biologically relevant CTCF boundary defined 

Fig. 2  GRN based prediction models outperform those built using TEPIC affinity scores. a and b correspond 
to prediction performance for 20 random sets of 1729 GM12878 TGs while C and D were obtained from 
1892 K562 TGs. Prediction performances for models corresponding to different inputs were compared using 
Wilcoxon rank sum test (*** − p < 0.0001,** − p value < 0.001, * − p value < 0.05, ns-not significant)
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cis-regulatory TFBS adjacency matrices outperformed the ones built using TFBS derived 
from a 50Kbp cis-regulatory window (Additional file 7: Figure S1). (2) Pos GRN models 
for GM12878 and K562 had the best performance of all models tested. However, after 
doing further analyses (Additional File 1), we observed that at least for K562, TEPIC 
GRN outperformed the Pos GRN models when we used a common set of TF features 
highlighting the utility of TEPIC in capturing TF-TG regulatory relationships in the form 
of affinity scores. (3) GM12878 models had the best prediction performance among all 
the cell lines, which we attributed to the larger sample size (N = 462) utilized for con-
structing the co-expression network in the PANDA GRN as described in the Additional 
File 1.

Expression prediction highlights the regulatory roles of transcription factors

Transcription factors may influence gene expression via a sparse regulatory model where 
a subset of core TFs have large effects on gene regulation, or via a distributed regulatory 
model where multiple TFs contribute small collective effects. ENET regression models 
allow for this heterogeneity by linearly combining two penalizing terms, LASSO (L1) 
and Ridge (L2), that identify the most influential features (TFs) and shrink the weights 
of lesser features by either reducing them to 0 (L1), effectively selecting a set of strong 
factors, by reducing them to a very small number (L2), allowing larger numbers of weak 
factors in the model. The optimal ratio (α) between these two penalty terms was 0.5 
(Additional file  7: Figure S2), indicating a balance between a sparse and a distributed 
regulatory model. This penalizing strategy also helped us in highlighting the correlated 
functional roles of the TFs (Additional file 1).

We next averaged the effect estimates of 149 TFs(GM12878) and 309 TFs(K562) from 
the Pos GRN models fit for 20 iterations using the optimal α of 0.5 (balancing L1 and 
L2 penalties) and Eq. (1) (see Calculating TF average effect estimates of the Methods). 
Histograms in Fig.  3 are colored by quintile of these mean effect estimates. We per-
formed a GO enrichment analysis for TFs in each bin and reported the top 5 enrichment 
terms for biological processes and molecular functions in Additional file  7: Figure S3 
for both cell types. We observed that as we moved from positive to negative TF effect 
coefficients (bin 5 to bin 1), the corresponding GO terms reflect transcriptional activa-
tion (bin 5) to those indicating transcriptional repression (bin 1). From this approach, we 
could derive functions of unannotated TFs based on the bins in which they are placed. 
For instance, K562 bin 1 contained MYNN(βK562 =  − 0.0059) whose function is largely 
unknown. However, based on its placement in the bin containing strong repressors such 
as CBX1 (βK562 =  − 0.0188), HDAC6 (βK562 =  − 0.0045) and BMI1(βK562 =  − 0.0341), 
we predict its function is related to transcriptional repression. Similarly, bin 5 for 
both K562 and GM12878 contained TFs related to core promoter activity and positive 
gene expression regulation such as TAF1 (βGM12878 = 0.6334), TBP (βGM12878 = 0.2142), 
ELF1 (βGM12878 = 0.2249), POLR2A (βK562 = 0.1123), POLR2G (βK562 = 0.0233), CHD1 
(βK562 = 0.0492) and MYC (βGM12878 = 0.1481). Relatively lesser known TF ZZZ3 
(βGM12878 = 0.1359; βK562 = 0.0375), which was also present in that bin may most likely 
play a similar transcriptional activation role. We also note that TFs with mean effect esti-
mates very close to or equal to zero were present in bin 2 for GM12878 and in bins 2 
and 3 for K562. These TFs were enriched for cofactor activity terms, and their functional 
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annotations reflected their roles as secondary TFs that required binding of the primary 
TFs to the DNA to exert their influence.

As an additional test of the qualitative impact of including GRN information in our 
gene expression prediction models, we performed a similar aggregation analysis for the 
TF effect estimates learned from the TEPIC GRN and the TEPIC only models for the 
two cell lines, rank-ordering the TFs based on their effect estimates (Additional file 7: 
Table S2). Compared to the TEPIC only model, we observed an increase in ranks for TFs 
associated with transcriptional activation as well as a decrease in ranks for the repressive 
TFs in the TEPIC GRN models. As such, in addition to improving the overall predic-
tion of gene expression, the effect estimates learned from the TEPIC GRN models more 
accurately represented the GO annotated functional roles of the TFs compared to the 
TEPIC only models. We provide mean effect estimates for all the TFs for the two cell 
lines along with their GO enrichment results (Additional file 4: Tables S4A–S4D), and 
ranks for all the TFs based on their average ENET effect estimates for TEPIC and TEPIC 
GRN models for the two cell lines (Additional file 5: Tables S5A and S5B).

Accounting for chromatin interactions between TFBS and gene promoters improves 

expression prediction

We next examined the impact of TFBS based on the local regulatory context in which 
they occur. First, we partitioned the TFBS into promoter, intronic, and distal categories 
(Table 1), and built prediction models using GRNs containing TFBS found only in those 
regions to assess their predictive performance (see “Additional gene regulatory elements 
analyses” of the Methods).

The promoter region (5 Kb upstream of the TSS of the gene) is important for tran-
scription initiation and regulation and it contains binding sites for pivotal pioneer TFs 
such as TAFs, POL2 subunits, and TBP. As expected, the median PCC and MSE for 
the promoter TFBS based ENET models were significantly better than that of the ones 
containing the distal TFBS alone (Fig.  4a, b) for GM12878 (MSE p = 3.26e − 02; PCC 
p = 2.92e − 04), K562 (MSE p = 3.75e − 02, PCC p = 3.26e − 02). Also, models containing 
intronic TFBS performed significantly better than those without (Fig. 4c, d) with respect 

Fig. 3  Mean ENET effect estimates reflect the important functional roles of various TFs. Histograms of the 
average effect estimates for calculated for (a) 309 K562 TFs and (b) 149 GM12878 TFs 3 using the “Pos GRN” 
ENET models. We also created 5 bins (quintiles) based on the effect estimates, which are color coded in the 
histogram
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to median MSE (GM12878 p = 4.72e − 04) and median PCC (GM12878 p = 1.33e − 08; 
K562 p = 2.45e − 02).

We next used Hi-C data corresponding to GM12878 and K562 in order to capture 
long distance interactions between distal TF binding and gene promoters. We used the 
motif adjacency matrices from the Pos GRN and weighted them based on the number of 
normalized Hi-C contacts between TF peaks and TG promoters for both cell lines using 
Eq. (2) as shown in Fig. 5a (see Generating Hi-C Weightings of the Methods). Prediction 
models including Hi-C adjusted distal TFBS were significantly more accurate compared 
to the ones built using normal distal TFBS as shown in Fig. 5b with regards to both PCC 
(GM12878 p = 7.33e − 03; K562 p = 2.00e − 06) and MSE (GM12878 p = 1.43e − 03; 
K562 p = 5.61e − 03) for both cell types.

Next, we expanded this weighting scheme to include promoter TFBS. As promoters 
are regions of high TFBS activity (as seen in our models, Fig. 4a, b), we expected a high 
degree of Hi-C contact points within promoter regions. Unexpectedly, these models 
performed significantly worse; we observed a large number of promoter TFBS (59% for 
GM12878 and.

90% for K562) that showed no evidence of within-promoter contacts, and using this 
weighing approach effectively down-weighted promoter TF-TG interactions (Hi-C DP). 
We therefore also considered an approach that applies the maximum Hi-C weight to all 
promoter TFBS (Hi-C UP), shown in Fig. 5a. These Hi-C UP based prediction models 
significantly outperformed all the other models for both cell types as shown in Fig. 5c. 
These Hi-C UP based prediction models significantly outperformed all the other mod-
els for both cell types as shown in Fig. 5c and Additional file 7: Figure S4. Thus, Hi-C 
data added important regulatory information to our models capturing the effect of long 

Fig. 4  Intronic and Promoter TFBS are important for predicting gene expression. (a) PCC and (b) MSE 
obtained from the expression prediction of GM12878 and K56 TGs using models built from GRNs containing 
promoter and distal TFBS. (c) PCC and (d) MSE produced by models predicting expression for GM12878 and 
K562 TGs built using GRNs containing intronic TFBS versus those built without them. The non-intronic TFBS 
input weights were derived from Pos GRN for both cell types
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distance interactions between TFs binding to distal regulatory elements and the TG 
promoter.

Weighting rare variants using GRN derived effect estimates enriches the SKAT based 

identification of significant TGs

Determining the impact of rare non-coding variants on TG regulation is a major 
challenge in the field of human genetics [29]. Here, we demonstrate the utility of the 
understanding relative TF influence derived from our integrative GRN based predic-
tion framework by weighting rare genetic variants within a kernel-based association 
test to improve its statistical performance. We used the DGN dataset [27] contain-
ing HRC-imputed variant genotypes and RNA-seq from the whole blood of 922 indi-
viduals in order to perform SKAT [30] based rare variant analysis. We generated a 
PANDA GRN for GM12878 based on intronic TFBS motif network weighted using 
HiC-UP weighting scheme described earlier and then used it to build ENET predic-
tion models and subsequently derived average TF feature weights in the form of effect 
estimates. We extracted approximately 9.4 million rare SNPs (MAF < 0.01) from the 
DGN dataset and scored them based on their impact on TF binding intensity using 
the QBiC-Pred algorithm [31]. By merging this score with the average effect estimates 
of the corresponding TFs, based on Eqs. (3) and (4), we created a variant scoring 

Fig. 5  HiC data is capable of capturing the effect of long distance interactions between TF binding within 
distal TFBS and gene’s promoter on gene expression. (a) We used the cell line specific Hi-C data to weight 
the distal TF-TG interactions in the motif adjacency matrix. We also down-weighted or up-weighted the 
interactions with the promoter TFs which would have been missed otherwise due to the low resolution 
nature of Hi-C data. (b) We predicted expression of GM12878 and K562 TGs using distal TFBS based GRNs 
with and without HiC data integration in order to evaluate its predictive value for the models. C shows the 
predictive performance of the models using GRNs containing HiC normalized motif edges based on the 
Hi-C UP weighting scheme compared to those built using unweighted binary motif network without HiC 
information
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metric representing the estimated average effect of a base-pair change on TF-TG reg-
ulation in the genome (see QBiC-Pred-GRN rare variant association analysis section 
of Methods).

We used the merged scores to perform SKAT associations to the normalized expres-
sion value of TGs in the DGN dataset. We compared the performance of this model to 
that obtained from aggregated QBiC-Pred z-scores, representing the unweighted effect 
of rare variants on TF-binding alone. As shown in Fig. 6a, both SKAT models were able 
to detect 175 common TGs at the multiple hypothesis correction significance threshold 
of p value < 4.18e − 06. Merge score based SKAT model was able to detect 158 unique 
TGs while z-score based model detected 56 unique TGs at this threshold. We also per-
formed a replication analysis using the whole blood sequencing and expression data 
from 369 individuals within the GTEx dataset [28]. We were able to replicate 32% of the 
TGs uniquely identified by merge score based SKAT model (p value < 0.05), while only 
21% of the TGs uniquely identified by the QBiC-Pred z-score SKAT model replicated 
(Fig. 6b). Thus, utilizing TF-TG regulatory information learned from our GRN frame-
work for weighting rare variants enriched the identification of TGs, which would have 
been missed if we had only utilized variant influence over TF binding. We have provided 
the results from all the SKAT models in Additional file 6: Tables S6A–S6C.

Discussion
In this study, we developed a modelling framework to predict gene expression within 
two cellular contexts using gene regulatory networks to capture the trans effect of coop-
erativity and co-regulation on cis regulatory factors relative to their TGs. Our models 
significantly outperformed the ones built using TF-TG affinity scores for cis-regulatory 
features alone by explaining more variance in the TG expression trait.

We further estimated the influence of individual TFs on gene expression outcomes 
based on their effect coefficients learned from our models. This led to a ranked list 
of activating and repressive factors influencing transcriptional regulation in both cell 
lines, including classifications of TFs with previously unknown effects. We observed 
substantial changes to the ranking of TFs relative to analyses using cis-factors alone, 

Fig. 6  Merging QBiC-pred z-scores with GRN derived TF ENET effect estimates enriches identifications of TGs 
significantly associated with expression trait. (a) shows the venn diagram containing significant TGs (N = 389, 
p value < 4.18e − 06) obtained from the initial discovery analysis based on fitting the merge score and z-score 
SKAT models using the DGN dataset. (b) Shows the significant TGs (N = 127, p value < 0.05) identified within 
the replication analysis done using the GTEx dataset



Page 11 of 19Patel and Bush ﻿BMC Bioinformatics          (2021) 22:200 	

illustrating the importance of accounting for the cellular context in interpreting TF 
effects. While TFs with the strongest and the weakest effects were roughly the same 
between our baseline TEPIC model and the model overlaid with GRN weights, many 
TFs with activating and repressive properties show stronger effect estimates after 
accounting for information captured by the GRN.

As expected, we observed that the highest ranking TFs are crucial for transcrip-
tional initiation and activation, binding within promoter regions of a majority of 
protein coding genes. The process by which transcriptional machinery forms at the 
promoter regions of genes has been extensively studied [32]. Promoter TFBS based 
models were also significantly more accurate at predicting gene expression than mod-
els using distal TFBS alone. These results validate our modeling strategy, as these 
findings are consistent with observations from previous studies [17, 33], and further 
highlight the important role that promoter regions play in regulating gene expression.

Hi-C data was useful for characterizing long distance interactions between distal 
TFBS and the gene’s promoter. Integrating this data into the PANDA GRNs improved 
the prediction performance of the models when scaled relative to promoter TFBS. 
This improvement was also observed in the recently published extension of the TEPIC 
framework [24].We observed significant improvement in both cell lines despite differ-
ences in Hi-C resolution (1 Kb for GM12878 and 5 Kb for K562), however the resolu-
tion difference may account for the greater improvement in prediction for GM12878 
relative to K562.

Our results also indicate that intronic TFBS provide significant prediction power 
to the models. There are two likely explanations for this observation. First, introns 
may bind regulatory TFs or splicing factors that alter the rate of transcription. Previ-
ous studies looking at the role of first introns in regulating transcription in C. elegans 
found genome wide occurrence of TFBS in these regions are important in driving 
gene expression [34, 35]. Second, introns could house alternate promoters for a gene, 
as noted by analyses of GTEx and FANTOM datasets [36]. For our analyses, we used 
the upstream TSS of the longest transcript to define gene promoter regions.

Finally, we utilized the TF-TG regulatory information learned from our GRN based 
framework in order to weight rare variants. This weighting approach led to a signifi-
cant improvement in power of kernel based SKAT models to detect significant asso-
ciations with TG expression relative to using weights capturing TF binding affinity 
alone. While we used linear regression based QBiC-Pred to score TF binding affinity, 
more complex scoring approaches could also be used within the framework. These 
analyses demonstrate the utility of our models for annotating otherwise difficult to 
characterize regulatory variants.

The most direct comparison of predictive performance for our models against pub-
lished methods is the TEPIC method, which we outperformed. Other approaches have 
included either more complex modeling techniques or additional histone modifica-
tion data to improve model performance [15, 17]. Non-linear prediction models such 
as support vector regression or multi-layer perceptrons applied within our framework 
may capture more complex interactions among TFs and improve performance. It also 
remains unclear to what extent the epigenetic context influences the effect a tran-
scription factor has on gene expression. Zhang et  al. [15] have demonstrated some 
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redundancy between histone modification and TF binding intensities with respect to 
gene expression prediction. Thus, inclusion of both histone modification data and TF 
binding as predictors could diminish the effect of individual TFs, clouding the inter-
pretation of our predictions.

At present, our approach is limited by the availability of ChIP-seq data. Although large 
scale efforts such as the ENCODE consortium have produced binding data for a large 
number of TFs in different cell types, this number is still small compared to the actual 
TFs being expressed in a cell at any given time [37]. This dearth in data availability is due 
to the difficult and expensive nature of the ChIP-seq experiments themselves [38]. One 
way to potentially incorporate histone modification and chromatin accessibility data is 
through the imputation of TF binding not directly measured by ChIP-seq experiments 
for a given cellular context through techniques like DeepSEA or FactorNet [39, 40]. In 
future work, these TF binding predictions could supplement the set of inputs to our 
GRN-based framework to produce better models.

Conclusions
The modelling approach presented here has multiple applications for studying general 
factors influencing gene expression. Our models provide an approach for annotating the 
regulatory structure of a given gene in a tissue or cell-type specific manner, for ranking 
TFs in order of their likely impact on gene expression, and for clustering genes based on 
their weighted regulatory features. Our framework also allows for the inclusion of addi-
tional functional genomics information, such as higher resolution chromatin interaction 
data, to evaluate their effect on gene expression. As our understanding of chromatin 
accessibility and conformation grows, the framework can also be used to better define 
the cis-regulatory window surrounding a gene, which can be useful for eQTL map-
ping and other downstream analyses. Finally, prioritizing TFs relative to gene expres-
sion allows for better prioritization of genetic variants and their influence on nearby 
gene expression traits. More generally, our approach provides a roadmap for integrat-
ing multiple “omics” data sources and assembling fundamental aspects of transcriptional 
regulation into a coherent portrait of gene expression, which could ultimately help in 
elucidating mechanisms causing several diseases.

Methods
All the published algorithms and datasets used in this study have been described in sup-
plementary data.

Defining transcription factor binding sites

We used three methods to define the TFBS between the TFs and the TGs for both the 
cell types using ChIP-seq data described in Additional file 2: Table S1 and Ensembl gene 
annotations from GrCh37 human genome assembly:

(1)	 Positional TFBS We isolated all the ChIP-Seq peaks within a 50  Kb window 
upstream of the TSS of the longest transcript and downstream of the body of each 
protein coding TG. We then used the most distant CTCF peaks to demarcate the 
cis-regulatory boundaries for these TFBS, as it is a well-known insulator protecting 
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the enhancers of TG gene from acting upon the promoters of another as shown in 
Fig. 1 [41].

(2)	 FIMO TFBS We applied the FIMO algorithm [42] from the latest release of the 
MEME-suite tools(v.5.1.1) on the “Positional TFBS” data to find statistically sig-
nificant set of TFBS. We extracted genomic sequence underneath the TF peak 
corresponding to each TFBS and the JASPAR(v.2020) based TF position weight 
matrices(PWM) to find statistically significant TFBS at the p value threshold of 
0.01.

(3)	 TEPIC TFBS We downloaded the TEPIC software (https://​github.​com/​Schul​zLab/​
TEPIC) along with the position specific energy matrices(PSEMS) for all TFs [16]. 
We used these PSEMS, the Ensembl Homo_sapiens.GRCh37.87.gtf annotation, and 
our predefined Positional TFBS to find affinity scores for TFs binding in the 50 Kb 
window around each TG’s TSS.

Generating gene regulatory network weightings

We converted the unique TF-TG interactions obtained from each TFBS identification 
method into weighted (TEPIC) and unweighted (Pos ChIP-Seq and FIMO) adjacency 
matrices. We used these matrices, along with BioGrid (v.3.5.188) [43], a method for 
defining protein–protein interactions (PPI), and cell-type specific co-expression net-
works to generate three different PANDA outputs.  After 25 iterations, we obtained 
convergence by setting the threshold for Hamming’s distance at 0.001 and by using 
the value of 0.1 for the update parameter for each GRN.

Generating training and test data sets for the prediction models

We used four different input datasets, for each cell type, for our prediction models 
based on PANDA GRN edgeweights (“Pos GRN”, “FIMO GRN”, “TEPIC GRN”) and 
TEPIC affinity scores (“TEPIC”) as shown in Fig.  1. Using these matrices as inputs, 
we predicted the expression for independent datasets of GM12878 (ENCSR889TRN) 
and K562 (ENCSR545DKY) using the linear regularized elastic net(ENET) regres-
sion models. We used the python-based implementation of the ENET model from 
the scikit-learn library to build the prediction models, setting the value of α (the ratio 
between the lasso and ridge norms) at 0.5.

We used the log10-normalized FPKM (fragments per kilobase of transcripts per 
million) for TGs, that were common among different input matrices described in 
Table 1 and also contained promoter Hi-C contacts with distal TFBS, as the response 
vector for the ENET prediction models. Thus, the models contained 8,644 TGs for 
GM12878, and 9460 TGs for K562. We also applied our approach to 12,013 TGs for 
HepG2 for additional validation and generalization.

We split the input feature matrix and the output expression vector into 80% train-
ing data and 20% test data. We used the training data to train the ENET models, 
using 20-fold inner cross validation. We then predicted the expression of the test set 
genes, using the learned ENET models and calculated mean squared error (MSE) and 

https://github.com/SchulzLab/TEPIC
https://github.com/SchulzLab/TEPIC
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Pearson’s correlation coefficient (PCC) to measure the predictive performance for the 
models. We repeated this process for 20 iterations as shown in Fig. 1.

Calculating TF average effect estimates

We calculated the average effect estimate for TF T βT using the following equation:

Here N  is the set of random instances that we used to build our prediction models and 
βT ,n is the effect estimate of T for instance n . We only used the GM12878 and K562 Pos 
GRN prediction models in order to calculate these estimates. We further divided the TFs 
based on these mean effect estimates using the xtile function of R(v.3.4.2) into 5 roughly 
equal bins.

Additional gene regulatory elements analyses

We generated additional TFBS datasets by extracting TF peaks overlapping TG intronic 
regions, promoter regions (5 Kb upstream of the TSS) as well the ones present in distal 
region beyond the promoter (Additional file 7: Figure S5A). The number of correspond-
ing TFBS and TF-TG interactions for each cell-type representing these regions is pro-
vided in Table 1. In order to get the intronic regions for each TG, we first obtained the 
exonic regions corresponding to all the transcripts for a given TG and then subtracted 
them from the regions spanning the respective transcript lengths using bedtools (Addi-
tional file 7: Figure S5B). We added the TFBS present in the intronic regions to the posi-
tional ChIP-Seq TFBS dataset to create the intronic TFBS dataset for each cell line. We 
used TF-TG interactions based on these additional TFBS datasets to create motif-based 
adjacency matrices and used them to build additional PANDA GRNs, which we ulti-
mately used to predict gene expression for TGs common between the models we were 
comparing.

Generating Hi‑C weightings

We accessed Hi-C data for K562 (GSM1551620) with 5 Kb resolution and for GM12878 
(GSM1551688) with 1  Kb resolution. We defined the promoter as the 5  Kb region 
upstream of the TSS of the longest transcript for each gene. We normalized the Hi-C 
interactions using the Knight Ruiz (KR) normalization and created sparse contact matri-
ces for both cell types. We calculated the number of contact points between each TF 
peak within a gene’s distal regulatory region and its promoter using bedtools v.2.27.1. We 
then calculated the HiC adjusted edge-weights between each TF and TG using the fol-
lowing formula:

Here Ci,g is the Hi-C adjusted edge weight between TF i and TG g , Ni,g is the num-
ber of ChIP-seq peaks corresponding to i in the regulatory region of g , Pi,g is the set 
of peaks corresponding to i in the regulatory region of g and cp is the number of KR 
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normalized contacts made by peak p with the promoter of g . We used the MinMax scal-
ing function of the scikit-learn library to scale the mean contacts within the (0, 0.99) 
range. Thus, if the TF did not contain any peaks interacting with a gene’s promoter, the 
Ci,g would be equal to 1 and the maximum value for Ci,g would be 1.99. We generated the 
cell type specific “Hi-C DP” motif adjacency matrix using these scaled interactions. We 
then extracted all the promoter-based TF-TG interactions that were down-weighted to 
1.0, or were found to have no Hi-C interactions, in the “Hi-C DP” matrix and gave them 
maximum weight of 2.0 to create the cell-type specific “Hi-C UP” adjacency matrix. We 
created two new GRNs using these adjacency matrices as motif networks along with the 
cell-type specific PPI and co-expression data to build prediction models following the 
workflow described in Fig. 1.

QBiC‑Pred‑GRN rare variant association analysis

We followed the workflow shown in Fig. 7 for the rare variant analysis. We generated 
GM12878 GRN utilizing the intronic TFBS for motif network and HiC up weighting 
scheme described previously. We then fit the ENET models using TF-TG edgeweight 
features from this GRN, and used the learned models to compute average TF effect 
estimates based on Eq. (1). For the initial discovery analysis, we used the depression 
genes and networks (DGN) data set, which contains genotypes and RNA-seq data for 
922 individuals of European descent [27].We further imputed variant genotypes using 
1000 genomes reference panel and the University of Michigan imputation server [44, 
45]. We extracted rare variants at a minor allele frequency (MAF) threshold of 1% (N 
≈ 9.4 M variants) and overlapped them with the GM12878 intronic TFBS.

Out of the 149 TFs, we were able to find trained QBiC-Pred models for 59 TFs. 
We scored these variants using the offline version of the QBiC-Pred software [31] 
which we downloaded from the github repository (https://​github.​com/​vince​ntius​
martin/​QBiC-​Pred). We used the p value threshold of 0.0001 to identify the variants 

Fig. 7  The workflow of our rare variant analysis. We used the DGN dataset for initial discovery analysis and 
the GTEx dataset for the replication analysis

https://github.com/vincentiusmartin/QBiC-Pred
https://github.com/vincentiusmartin/QBiC-Pred
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significantly impacting the TFBS we identified 118,789 rare variants that were present 
within their binding sites.

We merged the z-score obtained from the QBiC-Pred algorithm and the TF effect esti-
mates for each rare variant present within the TFBS for each TG using the following sets 
of equations.

Here zv,pt,g is the QBiC-Pred z-score for variant v significantly impacting the peak 
region(TFBS) pt,g , which is a subset of all the peak regions Pt,g belonging to TF t within 
the regulatory/intronic regions of TG g . βt  is the average ENET effect estimate obtained 
from the learned ENET models for TF t  and Zv,t,g is the scaled QBiC-Pred z-score for 
variant v corresponding to TF t binding cis-regulatory/intronic regions for TG g . Sv,g is 
the merge score for variant v for each TG g computed by averaging the scaled z-scores 
for all the TFs present within the cis-regulatory/intronic regions of TF g(Tg ). We also 
computed aggregate QBiC-Pred z-scores for each variant present within all the TFBS 
for each TG g without utilizing the average effect estimates. In other words, we simply 
removed the effect estimate ( βt  ) from the set of equations described above. We scaled 
both aggregated z-scores and merge scores within the range [− 1,1] and used them for 
weighting the variants.

We used the R implementation of the SKAT algorithm [30] (v 2.0.0) in order to find 
association between these sets of variants and the TG expression levels normalized by 
HCP(hidden covariates prior). We used the merge scores and QBiC-Pred aggregated 
z-scores as variant weights for the SKAT kernel matrices and fit the models for 11,650 
TGs using 74 additional biological and technical covariates provided within the DGN 
dataset.

For replication analysis, we utilized the Genotype-Tissue Expression(GTEx) dataset 
containing whole genome sequencing and RNA-seq data for 369 individuals [28] (Fig. 7). 
We repeated the analysis done for the DGN dataset to extract and score variants and 
then performed SKAT using the normalized expression of TGs that were found signifi-
cant in the DGN analysis and whose expression values were present in the GTEx dataset 
(N = 388). For GTEx analysis, we utilized the 65 covariates provided within the dataset 
to fit the SKAT model.

Statistical evaluations

We used R v.3.4.2 to perform all the statistical analyses in our study. Assuming a non-
normal distribution of the PCC and MSE produced by the prediction models, we 
used the Wilcoxon rank sum test to compare medians of these performance meas-
ures for different models. We used the gseapy package in python for gene ontology 
(GO) enrichment analyses. We divided the TFs into 5 bins (quintiles) based on their 
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average effect estimates and ran the enrichment analysis for GO biological processes 
(GO BP) and GO molecular functions (GO MF) terms using all cell-type specific TFs 
as background. We specifically looked for significant enrichment terms (adjusted p 
value < 0.05) for each bin for both the GO categories. We then extracted the top 5 sig-
nificant enrichment terms for each bin (provided in Additional file 4: Tables S4C and 
S4D) based on their p values and plotted them in Additional file 7: Figure S3.
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