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Background
Almost two decades after the completion of the Human Genome Project, the function-
ality of many genes remains largely enigmatic [1]. Many such “enigmatic genes” have 
immense biological significance, exemplified by the associations of thousands with can-
cer outcome [2]. Even genes which are well-characterized often play unexpected roles 
in different biological contexts (e.g., EZH2 is both a tumor-suppressor and an oncogene 
in different cancers [3]). Gene co-expression correlations provide a robust methodology 
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for predicting gene function, as genes which share a biological process are often co-reg-
ulated [4–6]. Similar insights can be gained from using protein interaction (for exam-
ple STRING [7] and InterologFinder [8]), phenome data, or even the combination of 
both [9]. Irrespective, generating expression data remains a cost-effective approach 
and co-expression analysis remains a prominent tool for exploratory systemic evalua-
tion, largely because it is capable of considering gene co-expression across the genome. 
However, the applications which have been developed for such inference are hampered 
by key limitations. Tools like COXPRESdb [10] and GeneFriends [11] calculate gene set 
over-representation on an arbitrary number of co-expressed genes. Alternatively, Gene-
MANIA [12] and GIANT [13] construct co-expression networks and calculate gene set 
over-representation on an arbitrary number of nodes. Neither approach is sensitive to 
the genome-wide distribution of co-expression correlations or, with the exception of 
GIANT, differences between tissue/disease conditions. Furthermore, these functional 
predictions are limited in scope and do not generate relevant, user-friendly visualiza-
tions, limiting their utility for biologists without bioinformatics skills.

Recently, Lachmann et al. introduced ARCHS4, a database with thousands of stand-
ardized RNA-Seq datasets [14]. We re-processed these data, calculating co-expression 
correlations with respect to tissue and disease (cancer/normal) condition and provided 
the results in a publicly accessible database. We now present Correlation AnalyzeR, a 
user-friendly interface to this co-expression database with a suite of tools for de-novo 
prediction of gene function, gene–gene relationships, and biologically relevant gene sub-
groups to facilitate discovery of novel relationships within genes of interest.

Construction and content
Code availability

We have provided the source code for the correlationAnalyzeR R package and the Corre-
lation AnalyzeR web application for public use. All preprocessing scripts, custom regex 
dictionaries, and scripts for generating any figures not generated by Correlation Ana-
lyzeR can be found in the misc/ directory of the correlationAnalyzeR repository. Github 
repositories: [R-package: https://​github.​com/​Bishop-​Labor​atory/​corre​latio​nAnal​yzeR, 
Shiny app: https://​github.​com/​Bishop-​Labor​atory/​corre​latio​nAnal​yzeR-​Shiny​App].

ARCHS4 data source

Re-processed RNA-Sequencing counts were generated by the authors of the ARCHS4 
repository [14]. This data source comprises standardized counts across 238,522 human 
sequencing samples (ARCHS4 v8, Feb 2020) generated from the Illumina HiSeq 2000, 
HiSeq 2500, or NextSeq 500 platforms. Each sample has a corresponding entry in the 
Gene Expression Omnibus (GEO) database, complete with a tissue description, among 
other metadata categories.

Generation of tissue‑ and disease‑specific correlation data from RNA‑Seq counts

We downloaded read counts and metadata from ARCHS4 and pre-processed them with 
custom R scripts in multiple stages:

https://github.com/Bishop-Laboratory/correlationAnalyzeR
https://github.com/Bishop-Laboratory/correlationAnalyzeR-ShinyApp
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1.	 Categorization
2.	 Filtering
3.	 Normalization, transformation, and correlation calculation

We have provided final correlation matrices via the getCorrelationData function in 
the correlationAnalyzeR R package, through the Correlation AnalyzeR web interface, 
or through SQL query using the access credentials provided in the getCorrelationData 
function source code.

Sample categorization

We categorized samples based on their tissue descriptions from GEO, using a manually 
curated regex dictionary in conjunction with the Cellosaurus ontology [15]. For exam-
ple, the terms “^pfc$” and “\bstriatum\b” positively identify brain samples with high 
specificity. However, we also implemented a logical matching system that could rule out 
an incorrect mapping which arises from term ambiguity. For example, brain samples are 
positively identified by “cortex”. However, since this could also refer to the kidney, brain 
samples are also negatively matched to the “kidney” term. This means that the brain label 
might be applied if “cortex”, but not “kidney”, is found in that sample’s tissue description 
in the GEO database. Category assignments were checked for sanity via manual inspec-
tion of randomized samples and the regex dictionary was adjusted accordingly when 
mistakes were noted. We assigned sample disease status using a manually curated dic-
tionary of disease-related regex terms. Cancer, but not other diseases, was readily identi-
fiable from available sample metadata, allowing classification of samples into cancer and 
normal (non-cancer) groups.

Dataset filtering

We filtered the read count data using a three-step procedure:

1.	 Single cell RNA-Seq (scRNA-Seq) samples were identified from the GEO metadata 
using a custom regex dictionary and removed because of the demonstrated unsuit-
ability of single cell data for co-expression network inference by Pearson correlation 
[16].

2.	 Samples with fewer than 5 million raw read counts were discarded to improve the 
quality of gene co-expression calculations by reducing noise from low-quality sam-
ples [17].

3.	 Tissue-disease groups with fewer than 30 distinct samples were removed to limit the 
effects of bias from individual samples and improve the performance of co-expres-
sion calculations [17].

The final set of filtered and labeled samples along with original tissue descriptions 
from GEO, number of reads aligned to the genome, GEO sample IDs, and GEO Series 
IDs is provided here (Additional file 2: Table S1).
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Normalization, transformation, and correlation calculation

We normalized and transformed the count data in a single step using the vst function 
of the DESeq2 R package [18]. This function first calculates sample geometric means, 
estimates dispersions for each gene, fits a mean-dispersion trend, and then transforms 
the data to make it homoscedastic. Then, we calculated gene–gene Pearson correlations 
separately for each tissue-disease group using the cor function of the WGCNA package 
[19]. Each correlation matrix row was subsequently transformed into a string of comma-
separated values, uploaded to an Azure MySQL server, and indexed for rapid query. The 
VST counts were also uploaded to the MySQL database.

Comparison of Pearson and Spearman correlation methods

Due to the assumptions made by Pearson correlation about linear relationships between 
continuous features, it was important to compare it to a correlation method that can 
find non-linear, monotonic relationships, for which the Spearman method was a logical 
choice. To test these correlation methods, we obtained the “Hallmark” collection from 
the Molecular Signatures Database (MSigDB) v7.2 [20–22], via the msigdbr R package 
[23]. This collection was curated using a combination of unsupervised learning, manual 
curation, and independent validation [20]. The gene sets in this database are known to 
be both co-expressed and functionally related [20], indicating that a suitable co-expres-
sion metric for Correlation AnalyzeR should be capable of recognizing them as corre-
lated. Then, we performed a permutation experiment with 2832 simulations in which 
each involved randomly selecting a “Hallmark” gene set and then randomly selecting a 
gene pair within that gene set. For each selected gene pair, the Pearson and Spearman 
correlation was calculated using the VST-transformed expression values for those genes 
and the cor function. The distribution of correlation values was compared using a one-
tailed t-test based on the hypothesis that Pearson would prove more effective. We also 
used the difference between the Pearson and Spearman coefficients to identify the top 
Pearson-specific and Spearman-specific gene pairs. The results of this analysis are found 
in the Choice of Pearson correlation subsection of the Discussion.

Validation of correlation values with external databases

To validate our correlation values, we compared them to ARCHS4 [14], COXPRESdb 
[24], and GeneFriends [11]. For three genes (BRCA1, AURKB, and HSP90AA1), genome-
wide correlations were downloaded from each service. Of note, we derived the Correla-
tion AnalyzeR correlations from all tissues and disease conditions so that they would 
be comparable with these external databases. We calculated and visualized the Spear-
man correlation between databases using the PerformanceAnalytics R package [25]. The 
top 500 correlations for each gene were also compared to the list of protein interactors 
for that gene (BioGRID) [26]. We calculated the overlap between correlations and pro-
tein interactors, assessing significance with the hypergeometric test from the R phyper 
function and visualizing the overlap using the VennDiagram R package [27]. The results 
of this analysis are found in the Comparison with existing datasets subsection of the 
Discussion.
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Correlation AnalyzeR

The Correlation AnalyzeR application is written in the R language [28] and can be 
accessed conveniently through a user-friendly web interface written in R-Shiny [29] 
[http://​gccri.​bishop-​lab.​uthsc​sa.​edu/​corre​lation-​analy​zer/] or installed locally as an R 
package [https://​github.​com/​Bishop-​Labor​atory/​corre​latio​nAnal​yzeR]. Correlation 
AnalyzeR contains methods for retrieving tissue- and disease-specific co-expression cor-
relations and implements four main modes of analysis:

1.	 Single gene
2.	 Gene versus gene
3.	 Gene versus gene list
4.	 Gene list topology

Single gene

Single gene mode (called by the analyzeSingleGenes function within the R-package 
implementation) is the cornerstone of the Correlation AnalyzeR approach to gene func-
tion prediction. For any gene of interest in any tissue-disease group, this method rapidly 
retrieves genome-wide correlations and infers gene function using a custom implemen-
tation of Gene Set Enrichment Analysis (GSEA) [21]. GSEA is classically utilized to deter-
mine the top differentially expressed pathways between two conditions. Our approach, 
termed corGSEA, leverages genome-wide Pearson correlations as a ranking metric 
for the GSEA algorithm to determine the gene sets correlated with a gene of interest. 
Of note, the implementation of GSEA used here is the “pre-ranked” method [21]. The 
results of corGSEA provide novel insights into the functions of a gene within various 
tissue and disease contexts. This approach also leverages a light-weight implementation 
of GSEA, fGSEA, that benefits from an approximate 10 × speed increase compared to 
the original algorithm [30]. The Molecular Signatures Database (MSigDB) v7.2 [20–22], 
accessed via the msigdbr R package [23], provides the annotations used by corGSEA. 
Finally, there is a second analysis mode within Single gene mode, called Group mode. 
In this mode, the correlations and expression levels for a single gene across all available 
tissue-disease groups are returned.

Gene versus gene

Gene versus gene mode (called by the analyzeGenePairs function within the R-package 
implementation) predicts the differences between any two genes, tissue types, and can-
cer vs normal conditions using genome-wide Pearson correlations and corGSEA-derived 
gene set enrichment. For example, an analysis of two different genes with the same tissue 
or disease condition would proceed as follows: for each gene, genome-wide correlations 
are retrieved and corGSEA is calculated using the analyzeSingleGenes function. For each 
of the two genes queried, the variance between each of their gene correlations (Pearson’s 
R) is calculated (using the rowVars function from the matrixStats package [31]), thus 
revealing the top diverging co-expression correlations between the two genes of inter-
est. The same approach is applied to find the top diverging corGSEA results between the 
two genes, using the variance of the normalized enrichment score (NES) as the metric. 

http://gccri.bishop-lab.uthscsa.edu/correlation-analyzer/
https://github.com/Bishop-Laboratory/correlationAnalyzeR
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Group mode is also available in Gene versus gene mode, allowing users to return the 
gene versus gene correlations across tissue-disease groups (automatically applied when 
gene one is different from gene two), or cancer versus normal correlations across tissue 
groups (automatically applied when gene one is the same as gene two).

Gene versus gene list

Gene versus gene list mode (called by the geneVsGeneListAnalyze function within the 
R-package implementation) compares a gene of interest to a list of secondary genes 
or an MSigDB gene set of interest to explore the degree of correlation between them. 
Significance testing uses a permutation t-test comparing the selected secondary genes 
to a list of random genes of the same size, implemented with the boot R package [32]. 
The p value distribution constructed during permutation testing approximates the 
likelihood that the primary gene and secondary gene list are correlated greater than 
would be predicted by random chance.

Gene list topology

Gene list topology mode (called by the analyzeGenesetTopology function within the 
R-package implementation) provides a suite of tools for de-novo prediction of tissue- 
and disease-specific functional groups within a gene list or an MSigDB gene set using 
the co-expression correlations of each list member: (1) Dimension reduction analy-
sis uses principal component analysis (PCA) as the input for hierarchical clustering 
with or without TSNE, implemented with the Rtsne R package [33]. This methodology 
implements dimensionality reduction using genome-wide correlations or the top 2500 
correlations by variance if there are more than 100 genes in the input list. (2) Vari-
ant genes analysis identifies the top 1500 gene co-expression correlations by variance 
among the input gene list to construct hierarchical clustering. These clusters repre-
sent novel groupings within the original input list and identify the top co-expressions 
which contribute to their group identity. (3) Pathway enrichment analysis is a simple 
and convenient wrapper for the clusterProfiler [34] R package’s enricher function. The 
top enriched pathways in the input gene list are returned and visualized with the dot-
plot function of clusterProfiler. Of note, the web version of this function imposes a 
limit of 500 genes, but this limit is not present in the R package implementation.

Implementation

Correlation AnalyzeR is implemented as a stand-alone R package [https://​github.​
com/​Bishop-​Labor​atory/​corre​latio​nAnal​yzeR], which is easily installed using the 
devtools::install_github("Bishop-Laboratory/correlationAnalyzeR") command, and as 
a user-friendly web application written in R-Shiny, accessible at [http://​gccri.​bishop-​
lab.​uthsc​sa.​edu/​corre​lation-​analy​zer/]. Visualizations are generated using ggpubr, 
ggplot2, and pheatmap [35–37]. For the shiny implementation, interactive visualiza-
tions were generated using plotly and heatmaply [38, 39]. Interactive data tables were 
generated using the DT package [40]. The webserver is an Azure B4ms instance with 
4 cores and 16 GB memory running Ubuntu 18.04 and the MySQL server is an Azure 
Basic, 1 vCore instance with 500 GB of storage.

https://github.com/Bishop-Laboratory/correlationAnalyzeR
https://github.com/Bishop-Laboratory/correlationAnalyzeR
http://gccri.bishop-lab.uthscsa.edu/correlation-analyzer/
http://gccri.bishop-lab.uthscsa.edu/correlation-analyzer/
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Utility and discussion
Overview of correlation AnalyzeR

The Correlation AnalyzeR web application provides flexible access to the co-expres-
sion correlation database along with four main analysis modes which generate user-
friendly visualizations and summary tables (Fig. 1): (1) Single gene, (2) Gene vs gene, 
(3) Gene vs gene list, and (4) Gene list topology.

Single gene mode returns co-expression correlations for a gene of interest and 
implements a unique procedure for predicting gene function using these correlations 
as the basis for Gene Set Enrichment Analysis (corGSEA). Visualized using R shiny, the 
result is a user-friendly interface for exploring genome-wide correlations with a gene 
of interest and its top correlated pathways. Within Single gene mode, Group mode is 
an option that allows users to explore a gene’s correlations across multiple tissue and 
disease types. Gene vs gene mode predicts the functional differences for a single gene 
between disease conditions (i.e. normal vs cancer) or tissue types (e.g. brain vs bone). 
It can also predict functional differences between two different genes (e.g. ATM vs 
TP53) or a single gene across different tissue/disease conditions. Using Group mode 
within gene vs gene, users can compare a single gene in normal and cancer conditions 
across tissue types, or they can compare two different genes in all tissue-disease con-
ditions. Gene vs gene list mode allows the user to enter a primary gene and compare 
it to a list of secondary genes or an MSigDB gene set. Topology mode allows users to 
enter a list of genes or an MSigDB gene set and find de-novo sub-groups based on the 
topology of co-expression correlations.

To exemplify the utility of this database for enabling exploratory data analysis by 
biomedical researchers, we present here an illustrative analysis of BRCA1, a gene 
involved in transcriptional regulation and DNA repair [41], in the context of bone 

Fig. 1  Overview of Correlation AnalyzeR. RNA-Seq read counts were preprocessed into gene co-expression 
correlations, which are analyzed in multiple analysis modes to yield novel biological insights



Page 8 of 19Miller and Bishop ﻿BMC Bioinformatics          (2021) 22:206 

cancer. The plots and tables shown in these results were generated using Correlation 
AnalyzeR with only minor annotations in some cases.

Usage example: exploring the BRCA1‑deficiency phenotype of bone cancers

In a recent study, it was shown that hypertranscription leads to sequestration of BRCA1 
and decreased ability to perform DNA repair by homologous recombination in a pediat-
ric bone cancer, Ewing sarcoma [42]. This leads to Ewing sarcoma having a BRCA-defi-
cient-like phenotype, which is the reason these tumors are sensitive to PARP-inhibitors 
[42]. Interestingly, the most common bone cancer, osteosarcoma, also shows evidence of 
a similar BRCA-deficiency-like phenotype and PARP-inhibitor sensitivity [43, 44]. These 
findings indicate the importance of BRCA1 in mediating bone cancer phenotypes; how-
ever, it is still unclear what the consequences of BRCA1 deficiency are in these tumors, 
or how BRCA1-supported pathways (such as the NRF2 pathway [45]) are impacted.

Single gene mode

A primary area of research in the cancer field is understanding the way in which nor-
mal tissue processes are hijacked and dysregulated in a cancer context. Therefore, we 
began the present analysis by using the Group Mode feature of Single Gene mode to 
assess BRCA1 co-expression correlations across normal tissue types (Additional file 1: 
Figure S1). Interestingly, it was found that the highest expression of BRCA1 occurs in 
prenatal tissues (e.g., embryos, morula, fetal tissues etc.) (Additional file 1: Figure S1A). 
This echoes previous findings which showed that BRCA1 is an essential gene during 
many aspects of development [46]. Furthermore, the interactive heatmap provided by 
this analysis revealed the top 100 genes that are consistently co-correlated with BRCA1 
across tissue groups (Additional file 1: Figure S1B). When analyzed with gene set over-
representation analysis, the co-correlated genes were revealed to belong to processes 
previously connected with BRCA1 biology, including several pathways related to cell 
cycle progression and cancer [47] (Additional file 1: Figure S1C). Interestingly, the sec-
ond most significant gene set was “Pujana Brca2 PCC Network”, a collection of genes 
which are co-expressed with BRCA2 [22]. This suggested a co-expression relationship 
between BRCA1 and BRCA2 in a normal tissue context. To further elucidate this rela-
tionship, we utilized the analyzeGenePairs function of the Correlation AnalyzeR R pack-
age to compare the expression of BRCA1 and BRCA2 across normal samples (Additional 
file  1: Figure S2B), finding that they are highly co-expressed. Additionally, given that 
BRCA1 showed a consistent co-expression with genes related to cancer, it was unsur-
prising to find that BRCA1 (and BRCA2) were both more highly correlated and more 
highly expressed in cancer samples when compared to normal samples (Additional file 1: 
Figure S2A, S2C).

To gain additional insight into the functionality of BRCA1 in bone cancers, we used 
single gene mode to analyze the co-expression correlations in this tissue context (Fig. 2). 
The analysis results reveal the genome-wide co-expressions and their corGSEA enrich-
ment within a user-friendly and interactive interface (Fig. 2). The interface displays a his-
togram of genome-wide correlation values (Pearson’s R and associated p value) with a 
linked data table for interactive exploration (Fig. 2a). The interface also shows the corG-
SEA results with a linked figure and searchable data table layout (Fig. 2b, c).
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Interestingly, this analysis revealed the top co-expressed gene is FANCI (Fig.  2a), a 
gene which is over-expressed in Ewing sarcoma and which seems to play a role in pre-
serving genome stability under conditions of hypertranscription [48]. However, no stud-
ies to date have examined a similar role for FANCI in other bone cancers, indicating a 
promising, unexplored line of experimental inquiry. Furthermore, the top BRCA1 corG-
SEA results (Fig. 2b) predicted several well-established biological roles and relationships 
of BRCA1, such as its transcription by E2F transcription factors [49]. Interestingly, this 
analysis also suggested functionalities for BRCA1 (Fig. 2b) which have only been recently 
uncovered, such as its role in regulating EGFR signaling [50], but which have not yet 
been elucidated in the context of bone cancers. Finally, it was confirmed that expression 
of BRCA1 in a bone cancer context is strongly correlated with markers of Ewing sarcoma 
genomic instability (“Ferreira Ewing Sarcoma Unstable vs Stable Up") [51] (Fig. 2c), as 
predicted by the previous evidence of Ewing sarcoma BRCA1 sequestration [42].

In revisiting the Group Mode results, we examined the tissue-specific co-expression 
correlations of BRCA1 (Additional file 1: Figure S3A) and observed an interesting tissue-
specific relationship between BRCA1 and NQO1 (a target of NRF2 and transcriptional 
proxy for NRF2 activity [52]) (Additional file  1: Figure S3B). BRCA1 shows a positive 

Fig. 2  Analysis of BRCA1 in bone cancer tissue context using Correlation AnalyzeR single gene mode. a 
BRCA1 correlations in bone cancer samples represented as a histogram that can interactively indicate the 
position of a gene selected in the corresponding data table. P values are determined from the Pearson 
correlation coefficient. b corGSEA results for BRCA1 correlations represented. The visualization can 
interactively change when a user selects a new gene set. c corGSEA result for “Ferreira Ewings Sarcoma 
Unstable versus Stable Up” gene set. Search and selection features are demonstrated in the linked data table. 
b, c Enrichment, p values, and p adjusted values determined from GSEA algorithm (see "Methods" section)
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correlation with NQO1 in some tissues, such as thyroid, but shows a negative correla-
tion in others, such as stem-like tissues (Additional file 1: Figure S3B). Given the recently 
documented interplay between BRCA1 and NRF2 [45], the tissue-specific correlation 
between BRCA1 and NQO1 may indicate that this BRCA1/NRF2 interplay is also tissue-
specific. Furthermore, it indicates a potential consequence of BRCA1-deficiency in bone 
cancers in the differential regulation of the NRF2 pathway, a pathway with important 
roles in antioxidant responses [53], drug resistance [54] and metastasis [55].

Gene versus gene mode

The overexpression of BRCA1 was previously demonstrated in two types of bone cancer, 
Ewing sarcoma [42] and osteosarcoma (Cancer Cell Line Encyclopedia; [56]). However, 
it is not known whether this association between BRCA1 overexpression in cancer vs 
normal would be found for other tissue types. By using the Gene vs gene group mode, 
we found that BRCA1 is overexpressed in cancer vs normal in most tissue contexts 
(Fig. 3a). Considering this result and our prior observation that BRCA1 has a tissue-spe-
cific co-expression correlation with NQO1 (Additional file 1: Figure S2B) we decided to 
further evaluate the BRCA1-NQO1 relationship. We used gene vs gene mode to com-
pare BRCA1 and NQO1 in bone cancer samples (Fig. 3b, c, and Additional file 1: Figure 
S4). We found that expression of NQO1 and BRCA1 displays both correlated co-expres-
sion and divergent expressions across different tissues, indicating the likely existence of 
important co-correlated and anti-correlated gene subgroups (Fig. 3b, Additional file 1: 
Figure S4A, and S4B).

Interestingly, by comparing the results of corGSEA between BRCA1 and NQO1, we 
found differential enrichment of several pathways implicated in cancer progression, such 
as “Hallmark Epithelial Mesenchymal Transition” and “Reactome Extracellular Matrix 
Organization” (Fig. 3c). This suggests the possibility that further dysregulation of these 
pathways may be associated with metastasis, indicating an interesting hypothesis which 
requires further wet lab analysis.

Gene versus gene list mode

Using single gene and gene vs gene mode, we found a context-specific relationship 
between BRCA1 and the NRF2 target NQO1 (Additional file  1: Figure S3B) and that 
pathways related to cancer progression are differentially correlated between them in 
bone cancer (Fig. 3c). However, it was still unclear whether BRCA1 is correlated with 
expression of the NRF2 pathway in general or whether there are specific genes within 
this pathway beyond NQO1 that are differentially associated with BRCA1 expression. 
To address this question, we used gene vs gene list mode to compare BRCA1 to the 
NRF2 transcriptional targets MSigDB gene set (“NFE2L2.V2”; “NFE2L2” is the official 
gene symbol for NRF2) in bone cancer (Fig. 4). An interactive histogram was generated 
showing that BRCA1 correlates positively with parts of the NRF2 pathway, but negatively 
with others (Fig. 4a). Permutation testing was also conducted to generate an empirical 
p value distribution, demonstrating that the degree of correlation between BRCA1 and 
the NRF2 pathway in bone cancer is greater than would be predicted by random chance 
(Fig. 4b).
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Interestingly, when we performed this analysis in the context of normal female repro-
ductive tissues (e.g., ovaries, cervix), the correlation level was much more significant, 
with many strongly co- and anti-correlated genes (Additional file  1: Figure S5). Given 
that BRCA1 mutations are associated with ovarian and breast cancer [57], the relation-
ship observed with the NRF2 pathway may suggest a role for those genes in normal tis-
sue function and, possibly, cancer progression.

Topology mode

Having identified that some NRF2 pathway genes correlate differentially with BRCA1 in 
bone cancer samples (Fig.  4a), it was still unclear what subgroups of genes were rep-
resented by this difference. To address this question, we implemented topology mode 
using the NRF2 targets MSigDB gene set (“NFE2L2.V2”) in bone cancer samples (Fig. 5). 
An interactive TSNE plot was generated showing the 2D embedding of this gene list with 
hierarchical clustering (Fig. 5a). By searching the interactive data table (not shown), we 
found that NQO1 belonged to cluster #7, a cluster which included multiple other genes 
which share similar co-expression correlations in bone cancer. Additionally, an interac-
tive heatmap was generated which displays the top 1500 co-expressions that account for 

Fig. 3  Analysis of BRCA1-NQO1 relationship with Correlation AnalyzeR Gene vs Gene mode. a Box plot 
showing difference between cancer and normal BRCA1 expression across tissues. Significance determined via 
the Wilcox rank sum test; *p < .05, **p < .01, ***p < .001, ****p < .0001. b Scatter plot showing the relationship 
between genome-wide co-expression correlations for BRCA1 and NQO1 in bone cancer tissues. Displayed 
R value determined by Pearson correlation. c Heatmap showing differential corGSEA results for BRCA1 and 
NQO1 in bone cancer tissues. Color bar displays the normalized enrichment score as determined by GSEA. 
Two cancer-related pathways are highlighted
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variance within the NRF2 targets gene set, revealing the genes which share similar and 
diverging co-expressions (Fig. 5b). Finally, the NRF2 pathway genes were analyzed with 
pathway enrichment to determine what other gene sets are enriched in that gene list 
(Fig. 5c). As expected, oxidative stress response genes were uncovered along with genes 
related to glucuronidation (Fig. 5c).

Discussion
By implementing the analysis modes provided by the Correlation AnalyzeR database 
application, we uncovered novel insights about BRCA1′s role in bone cancer, particularly 
with respect to the NRF2 pathway. Furthermore, our analysis led to the identification of 
NRF2 pathway members which might be involved in mediating bone cancer progression 
in response to changes in BRCA1 activity. It remains for future wet lab research efforts 
to validate the mechanisms suggested by this exploratory analysis. All-in-all, the analysis 
provided here illustrates the power of Correlation AnalyzeR to leverage genome-wide 
co-expression correlations across diverging tissue contexts and provide novel biological 
insights.

In comparing Correlation AnalyzeR with similar tools (Additional file 3: Table S2), we 
find that it is a significant improvement over current methods. Not only does Correlation 

Fig. 4  Analysis of BRCA1-NRF2 pathway interplay in bone cancer using Gene versus Gene List mode. a, b 
Results of comparing BRCA1 and NRF2 gene targets (“NFE2L2.V2” MSigDB gene set). a Interactive histogram 
showing the location of the NRF2-pathway genes (blue bars overlaid on histogram on left) within the 
correlation value distribution of BRCA1 with linked data table (right panel). P value determined from Pearson 
correlation. “Anti-correlation” and “Co-correlation” annotations not generated by Correlation AnalyzeR. 
b Density plot generated by permutation testing. The summit represents the empirically determined 
significance of BRCA1′s correlation with the NRF2 pathway (labeled “secondary genes” in plot) (see methods)
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AnalyzeR offer a novel approach to gene function prediction (corGSEA), but it also 
provides multiple analysis modes not found in other tools, interactive plots that pro-
vide results in a user-friendly format, tissue and disease-specific analysis types, and an R 
package implementation for greater control over the analysis. However, it is also impor-
tant to consider the quality considerations and practical limitations of this approach.

Quality considerations for co‑expression correlations

Dataset filtering

Several inherent challenges are posed when using RNA-Sequencing data for co-expres-
sion inference. Primarily, it is necessary to remove any relationship between read count 
variance and technical factors, such as library size. Therefore, our data processing 
approach included filtering out samples with terms such as “single cell”, “scRNA”, and 
“in-drop” in their descriptions, and samples with < 5 million reads. This filtering step was 
designed to mitigate the technical bias due to single-cell RNA-Sequencing and low-read-
depth sequencing samples [16]. In manually checking 200 randomly selected samples 
from the filtered dataset, we were unable to find any instances of single-cell datasets, 
indicating the probable success of our approach.

Normalization and data transformation

Gene co-expression correlations are calculated from normalized datasets in which bio-
logically relevant covariant relationships are preserved. Therefore, variance due to tech-
nical factors (e.g., library size) needs to be mitigated. We accomplished this by utilizing 

Fig. 5  Analysis of the NRF2 pathway (“NFE2L2.V2” MSigDB gene set) in bone cancer using Topology mode. 
a Interactive TSNE plot representing each member of the NRF2 pathway with their de novo subgroups 
as determined by hierarchical clustering. The location of NQO1 within TSNE space is highlighted and is 
a component of cluster 7. b Interactive heatmap of the top 1500 correlations by variance between the 
members of the NRF2 pathway with NQO1′s position highlighted. Color bar represents Pearson correlation 
values. c Gene set over-representation analysis of the NRF2 pathway. P adjusted values calculated via 
Benjamini–Hochberg correction of over-representation p values
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the median normalization approach implemented in DESeq2 [18]. Furthermore, a well-
established phenomenon in RNA-Sequencing datasets is the mean–variance relation-
ship, which describes the observed correlation between average gene expression and 
gene variance [18]. Because co-expression correlation aims to identify biologically rel-
evant covariance relationships that are not due to technical factors, it is important to 
remove the mean–variance trend. Therefore, we transformed the matrix using the var-
iance-stabilizing transform [18], as is recommended by the authors of the prominent 
gene co-expression correlation network analysis package “WGCNA” [58].

Choice of Pearson correlation

Several correlation approaches were considered, including Spearman and Pearson. A 
large body of discussion is available regarding the strengths and weaknesses of each for 
various applications [59, 60]. In general, Pearson correlation is designed to observe lin-
ear relationships, whereas Spearman correlation is designed to observe any monotonic 
relationships [60]. Because of this, Pearson is a useful tool for finding genes which are 
covariant, providing a biologically interpretable understanding of their relationship. 
Relationships which are monotonic and non-linear, while potentially meaningful, are 
often difficult to interpret because of the wide range of patterns which can constitute 
monotonic correlation. Additionally, Pearson correlation is already implemented as a 
standard approach in gene co-expression studies [61–65], making results widely compa-
rable. In particular, Pearson correlation is the basis for similar tools such as COXPRESdb 
[24], ARCHS4 [14], and GeneFriends [11].

Using an empirical approach that incorporates prior knowledge about gene–gene rela-
tionships, we tested the performance of both Pearson and Spearman correlation meth-
ods (Additional file  1: Figure S6). Because the purpose of Correlation AnalyzeR is to 
predict functional relationships, we tested whether Pearson or Spearman methods were 
better capable of predicting relationships between genes that belong to the same gene 
set within the MSigDB “Hallmark” collection [20]. We found that the correlation met-
rics typically agreed, but that there was a significantly greater correlation estimation by 
Pearson compared to Spearman (Additional file 1: Figure S6), indicating the better sen-
sitivity of Pearson correlation for these biologically meaningful relationships. Addition-
ally, when examining the gene pairs which showed the greatest specificity for Pearson or 
Spearman correlation, it was found that there was a noticeable tendency for the Spear-
man method to under-estimate tissue-specific relationships and to over-estimate non-
linear relationships which defy simple interpretation. This pattern was exemplified by 
the top Pearson-specific gene pair (Additional file 1: Figure S7A), MYL3-TCAP (selected 
from the “HALLMARK_MYOGENESIS” gene set). Considering the specificity of this 
gene pair for muscle tissue, it was unsurprising to see that the strongest expression of 
both genes occurred in samples with “muscle” and “cardiac” tissue labels (Additional 
file 1: Figure S7A). However, while the Pearson correlation for this pair was 0.776, the 
Spearman correlation was only 0.189, exemplifying the sensitivity of the Pearson method 
to tissue-specific gene relationships. Conversely, the top Spearman-specific gene pair 
(Additional file 1: Figure S7B) was TFF2-IL12B from the “HALLMARK_KRAS_SIGN-
ALING_DN” gene set, a set of genes which are downregulated by KRAS signaling. While 
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the Spearman correlation was calculated to be 0.323, visual inspection of the plot indi-
cates that there is not a discernable relationship (Additional file 1: Figure S7B). The Pear-
son coefficient for that same gene pair was 0.085, indicating that the Pearson method 
was more specific in this case. Taken together, these findings indicate the suitability of 
Pearson correlation in this context.

Comparison with existing datasets

To ensure the validity of the co-expression results generated by Correlation AnalyzeR, 
genome-wide correlations for several genes (BRCA1, AURKB, and HSP90AA1) were 
calculated across all tissue and disease types. The top 500 co-expressed genes for each 
were compared to a large database of protein interactors (BioGRID) [26]. The overlap 
of co-expressed genes and protein interactors was highly significant in each case (Addi-
tional file 1: Figure S8A, S8C, and S8E). Furthermore, the genome-wide distribution of 
co-expression correlations for each gene was also compared with existing co-expression 
databases COXPRESdb [24], ARCHS4 [14], and GeneFriends [11]. As expected, a high 
degree of similarity was observed (Additional file 1: Figure S8B, S8D, and S8F). These 
results indicate the congruency of Correlation AnalyzeR co-expression correlations with 
both protein interactome data and independent co-expression databases.

Limitations

While Correlation AnalyzeR provides multiple useful tools for inferring functional rela-
tionships from gene co-expression data, it is limited by several methodological and usa-
bility issues that will be addressed in future development.

One of the primary methodological limitations of this approach is the use of “flat” 
labels for tissue and disease types. While these labels provide a measure of conveni-
ence and allow the use of pre-calculated co-expression matrices, they cannot resolve 
the important biological relationships which are only revealed within subpopulations 
of samples. For example, “Breast Cancer” is a broad category which contains important 
subtypes, such as “triple-negative breast cancer”. A superior approach may be to imple-
ment a hierarchical tissue labeling scheme with automated annotation, such as MetaSRA 
[66]. This would allow for the characterization of co-expression relationships at multi-
ple levels, from whole organs to specific cellular states. While challenging to implement 
due to the computational limitations inherent in calculating and storing co-expression 
matrices, it is still a promising future direction of development.

Another limitation of this approach is the use of Pearson correlation alone for explor-
ing gene relationships. While linear correlations are beneficial from the standpoint of 
interpretation, there are additional valid approaches that show robust consistency and 
interpretability, such as biweight midcorrelation, Kendall, and Hoeffding’s D measure 
[58, 67]. While difficult to implement currently, a future direction of development for 
Correlation AnalyzeR will be to incorporate results from these correlation methods as 
well.

Another limitation of note is the “mean-correlation relationship”, a phenomena 
described in a recent preprint by Wang et al., which refers to the tendency of gene 
co-expression correlation values to grow with the mean expression of the two genes 
under consideration [68]. This phenomenon represents a significant challenge for all 
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co-expression studies and could introduce a systemic bias into the corGSEA method 
because it is reliant on ranking genes by correlation values. Further development of 
Correlation AnalyzeR will focus on testing and mitigating this trend by implementing 
normalization approaches, such as “Spatial Quantile Normalization” [68], which are 
designed to remove it.

Finally, one of the primary emerging applications for co-expression correlation anal-
ysis is single-cell RNA-Sequencing [69, 70]. Currently, Correlation AnalyzeR explicitly 
removes all single cell datasets from consideration due to concerns regarding the suit-
ability of Pearson correlation in sparse data [16]. A primary future direction for Cor-
relation AnalyzeR will be to incorporate methods for single-cell co-expression inference 
using emerging methods designed for that purpose [71, 72].

Conclusion
Few gene co-expression correlation databases exist. Those currently available utilize a 
limited range of computational approaches for gene function prediction and, with the 
exception of GIANT, do not consider the impact of tissue and disease on co-expression. 
Furthermore, none exist which consider the genome-wide distribution of correlation val-
ues or provide gene comparison and gene list topology analysis. By implementing these 
methods, Correlation AnalyzeR provides users the opportunity to perform exploratory 
analyses of poorly characterized genes and uncover novel gene relationships. Addition-
ally, current methods do not typically provide user-friendly summary tables or figures, 
necessitating the user possess some degree of bioinformatics skill. Correlation AnalyzeR 
provides high quality summary figures and tables within a flexible and user-friendly 
interface. These features were exemplified by our analysis of BRCA1-NRF2 interplay in 
the context of bone cancers. In summary, Correlation AnalyzeR is a user-friendly data-
base and web application which can reveal new gene functionalities and support the 
generation of novel biological hypotheses.
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