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Background
Recent years have seen the rapid spread of scRNA-seq technology [1] in various 
fields. When compared with traditional RNA-seq (also called bulk RNA-seq), scRNA-
seq technology requires fewer samples and allows us to obtain the transcriptome on 
a single-cell level for more subtle biological differences [2]. In scRNA-seq data, it is 
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challenging to remove technical noise, which is typically confounded with noise origi-
nating from the underlying biology of processes at the single-cell level. The techni-
cal noise caused by experimental factors, including sequencing time and the states of 
tissues, are called the batch effect [3]. Except for the batch effect, single-cell expres-
sion variability has been increasingly discussed [4]. According to previous studies, the 
cells of the same type and state will still show a cell-to-cell variability in gene expres-
sion, which is considered as cellular heterogeneity or single-cell expression variability 
[5]. Cellular heterogeneity is the external manifestation of stochastic gene expression 
[6]. Stochastic gene expression contains two parts: the intrinsic fluctuations, due to 
the randomness inherent to transcription, and the extrinsic fluctuations, including 
the cell-to-cell variability driven by stochastic molecular interactions and the noise 
induced by cell differentiation.

The exploration of stochastic gene expression could be dated back to microarray 
analysis. In 2009, Pei Hao et al. [7] defined genes that showed different sensitivities in 
expression in response to various biological conditions as sensitive genes. Pei group 
found that most of the sensitive genes were related to cellular responses to environmen-
tal perturbations, including immune responses and cell–cell signaling. However, in Pei’s 
study, the concept of sensitive genes was broad and incorporated expression fluctuations 
from multiple sources (biological sample variation, condition variation, and technical 
variation, etc.). For single-cell analysis, we are more interested in expression fluctuations 
within the same cell types and states, and we narrow down the concept of sensitive genes 
to genes that could represent cellular heterogeneity within the same cell types and states. 
In fact, studies have already identified cellular heterogeneity in scRNA-seq analysis. For 
instance, Daniel Osorio et al. [8] identified overlapping HVGs in 3 kinds of cell lines, and 
those genes were enriched in pathways related to the response to environmental stimuli. 
While previous studies have demonstrated some potential functions of sensitive genes, 
a complete method to identify sensitive genes and to evaluate their impact on cell type 
grouping has not been established.

Cell type grouping is crucial to scRNA-seq analysis, for only the correct classification 
of cells can explain the true biological differences. The unsupervised clustering based 
on transcriptome similarity has emerged as one of the most powerful applications 
in scRNA-seq cell type grouping. The application of feature selection and dimension 
reduction [9] will reduce noise and speed up the calculation process. Feature selection 
involves the identification of the most informative genes. Some software, like Seurat 
[10], scan [11], scLVM [12] and scVEG [13], perform dimension reduction and unsu-
pervised clustering by detecting HVGs according to the CV-rank of each gene in all cells 
[14]. However, most clustering methods will partition the data regardless of their biolog-
ical meanings, and they often mistake random noise for true structure [15]. Ideally, we 
hope that cells of the same cell type are homogeneous during cell annotation in scRNA-
seq data analysis. However, in most cases, cells of the same type would have cellular het-
erogeneity, and such random noises would adversely impact the result of unsupervised 
clustering.

Thus, in this paper, we proposed a method to identify sensitive genes that represent 
cellular heterogeneity and explored the impact of these genes on cell type grouping. In 
this method, we used both the CV-rank and the Shannon index, and only genes qualified 
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for both criteria were defined as the sensitive genes. Furthermore, we also explored the 
functions of sensitive genes in 11 scRNA-seq data sets covering different human tissues.

Methods
Data collection and quality control

To verify the reliability of our method to identify sensitive genes and to explore the func-
tion of these genes, we downloaded 10 scRNA-seq data sets, generated by the most 
widely used 10 × Genomics platform [16], in the Gene Expression Omnibus (GEO) 
database. In addition, we collected one annotated data set, the Zhang T cells data set 
sequenced by Smart-seq2 [17], to evaluate our methods’ robustness for cross-platform 
data sets. In total, we collected 11 scRNA-seq data sets from various human tissues, 
including peripheral blood mononuclear cells (PBMC) [16, 18], tumor-infiltrating T cells 
[19], renal tubular cells [20], spermatogonial stem cells [21], lung tissues [22], spleen tis-
sues [22], esophagus mucosa [22], liver tissue [23], and cortical organoids [24].

There were several steps in scRNA-seq data analysis, including quality control (QC), 
normalization, feature selection, dimension reduction, and clustering. First, we per-
formed QC for each data set. In general, low-quality cells with < 500 genes and > 20% of 
mitochondrial counts were filtered. Besides, we lowered the QC standards for Zheng 
PBMC68K and Liao Kidney data sets, and only low-quality cells with less than 200 genes 
were filtered. We changed our QC strategy accordingly because these two data sets had 
their median genes per cell less than 1000 and were limited by their sequencing tech-
nique at that time. Nevertheless, their sequencing quality could still be guaranteed. The 
information of all data sets was shown in Table 1.

Table 1  Basic information of single-cell data sets in this study after QC

Dataset N.cells M.
gene

Description Protocol N.
samples

Annotation References

PbmcBench 
PBMC1

8512 1910 PBMC 10X CHROMIUM 
V3

2 Annotated [18]

PbmcBench 
PBMC2

8669 2222 PBMC 10X CHROMIUM 
V3

2 Unannotated [18]

Zheng 
PBMC68K

68,509 525 PBMC 10X CHROMIUM 8 Unannotated [16]

Zhang T cells 9055 2953 Tumor-infiltrat-
ing T cells

Smart-Seq2 14 Annotated [19]

Liao Kidney 22,052 784 Renal tubular 
cells

10X CHROMIUM 
V2

3 Unannotated [20]

Guo Testis 6466 2575 Spermatogonial 
stem cells

10X CHROMIUM 
V2

6 Unannotated [21]

Hemant Lung 61,431 1335 Frozen lung soft 
tissues

10X CHROMIUM 
V2

24 Unannotated [22]

Hemant Spleen 89,082 1030 Frozen spleen 
soft tissues

10X CHROMIUM 
V2

19 Unannotated [22]

Hemant 
Esophagus

103,495 2144 Frozen esopha-
gus mucosa

10X CHROMIUM 
V2

23 Unannotated [22]

Sonya Liver 8078 1147 Fresh human 
liver tissue

10X CHROMIUM 
V2

5 Unannotated [23]

Cleber Brain 14,940 1628 Cortical orga-
noids

10X CHROMIUM 
V2

4 Unannotated [24]
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Data preprocessing and the first‑time unsupervised clustering

After QC, we used Seurat package (Version 3.1.5) in R (Version 3.6.3) to perform the 
same analysis pipeline for all scRNA-seq data sets. By default, we employed a global-
scaling normalization method “LogNormalize” that normalized the feature expression 
measurements for each cell by the total expression, multiplied this by a scale factor 
(10,000), and log-transformed the result. Second, to avoid the interference from doublet 
cells, we identified and removed these doublet cells by using DoubletFinder [25] package 
(Version 2.0.3) in R. Third, we calculated CV-rank for each gene in all cells and used the 
top 2000 genes with the highest CV-rank for the downstream analyses, including prin-
cipal component analysis (PCA) and unsupervised clustering (the Louvain algorithm) 
[26]. Then, we performed PCA to identify the true dimension of data sets, and we chose 
as many principal components as possible for the downstream analyses. As for the unsu-
pervised clustering, we chose 0.6 as the default resolution parameter, and this clustering 
result was defined as the first-time unsupervised clustering result (Fig. 1a–c).

Sensitive gene identifications

We identified sensitive genes based on the first-time unsupervised clustering result with 
N clusters. First, we calculated CV for all genes within each cluster and generated a CV-
based rank list for each cluster. Second, we retained genes that ranked the top 2000 in 
more than half of the clusters (≥ N/2) (Fig. 1b). Third, we calculated the average expres-
sion values for these genes within each cluster and used these values (each gene has N 
expression values for N clusters) as the input for the Shannon index calculation (Fig. 1c). 
The Shannon index formula was given below:

N  represents the cluster number generated from the first-time unsupervised clustering; 
xi is the average expression of a gene for the i th cluster. p(xi) is the average expression of 
the gene in the i th cluster divided by the summation of average expressions of this gene 
in all clusters. H(x) is the Shannon index that evaluates the contribution of this gene to 
cluster-to-cluster differences.

So far, we had generated a Shannon index list for these genes, and we designated 
median value to be the cut-off point for sensitive-gene selection according to the overall 
Shannon index distribution. Finally, we designated genes with high CV among half of 
the clusters and with high entropy (higher than the median entropy) to be the sensitive 
genes.

Sensitive gene removal

During feature selection, we removed sensitive genes from the expression matrix and 
re-selected the top 2000 HVGs with high CV-rank in all cells and redid the unsupervised 
clustering (Fig. 1d).

H(x) = −

N∑

i=1

p(xi)logp(xi)

p(xi) =
xi∑N
i=1 xi
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Clustering results evaluation

We utilized two evaluation metrics, the entropy of cluster accuracy (ECA) [27] and the 
entropy of cluster purity (ECP) [27], to compare clustering results between the first-time 
unsupervised clustering and clustering after the removal of sensitive genes.

Fig. 1  Workflow for sensitive gene identification. a After the single-cell sequencing, we obtained expression 
profiles of various cell types, with different colors representing different cell types. We used Seurat to 
calculate the CV-rank for all genes in all cells, and the top 2000 genes were defined as HVGs (red); b Based 
on the results of the first-time unsupervised clustering, we detected high CV-rank genes in each cluster; c 
Shannon entropy based on the average expressions of these genes (with high CV-rank in more than half of 
clusters) among cells in each cluster. The genes with high entropy (higher than the median entropy) were 
regarded as the sensitive genes; d We re-selected the top 2000 HVGs with sensitive genes removed from the 
expression matrix
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Enrichment analysis

We performed KEGG [28–30] enrichment analysis for sensitive genes in each data set by 
using ClusterProfiler [31] package (Version 3.14.3) in R. We gathered statistical results 
and explored the similarity of sensitive gene distribution in different data sets.

Results
Sensitive gene identification and verification

To evaluate the reliability of our method to identify sensitive genes, we analyzed 2 
PBMC data sets downloaded from the 10 × Genomics platform, including total 17,181 
cells from 4 Human PBMC samples. In the downstream analysis, we combined Pbm-
cBench PBMC1 and PbmcBench PBMC2 data set into the PbmcBench PBMC data set, 
resulting in a total of 4 samples.

After the sensitive-gene analysis, we identified 211, 274, 274, and 314 sensitive genes 
from 4 PBMC samples, respectively. There was a high degree overlap of sensitive genes in 
these 4 samples, with 96 sensitive genes in common (Fig. 2a). The functional enrichment 
analysis on these 96 genes showed that the sensitive genes were obviously enriched in 
pathways related to cellular stress response, such as apoptosis (p.value.adjust = 1.8E−6), 
epstein-barr virus infection (p.value.adjust = 9.32E−5), antigen processing and pres-
entation (p.value.adjust = 1.2E−3) and fluid shear stress and atherosclerosis (p.value.
adjust = 5.1E−3) (Fig. 2b, filtering threshold: p.value.adjust < 0.01).

To better understand the attributes of sensitive genes, we also calculated the Shan-
non index for two other types of genes, the HK genes and cell marker genes, in the first 
sample of the PBMC1 data set. For HK genes, we selected 11 HK genes with high expres-
sions (RPKM > 50 in Eli’s paper) identified by Eli Eisenberg [32]; for cell marker genes, 
we selected the 10 most differentially expressed genes for each cluster in this sample (in 
total 91 genes, after the removal of duplicated genes) through differentially expressed 
gene analysis by FindAllMarkers function in Seurat. We compared these three types 
of genes by considering their entropy and CV-rank in all clusters. We found that: cell 
marker genes represented the true biological variance, with high CV-rank (the top 2000) 
in only few clusters and with low entropy; HK genes had constitutive expressions, and 
thus had low CV-rank in all clusters and with high entropy; Sensitive genes had fluctu-
ated expressions in various types of cells and thus had high CV-rank in more than half of 
the clusters and with high entropy as shown in Fig. 2c, d. Then, the Kruskal–Wallis test 
was used to test for significance in their differences in terms of the number of high CV-
rank clusters and entropy. We found that sensitive genes had high CV-rank in more clus-
ters compared to cell marker genes (p < 2.22E−16) and HK genes (p = 9.1E−09) (Fig. 2e). 
As for entropy, there was a significant difference between sensitive genes and cell marker 
genes, in which cell marker genes had a much lower entropy (p < 9.9E−6). However, 
there was no significant difference between sensitive genes and HK genes (p = 0.11) 
(Fig. 2f ). Thus, we evaluated the possibility that HK genes would be misidentified as sen-
sitive genes. From Additional file 1: Figure S1, we could see that only the Liao Kidney 
data set’s samples had a relatively high rate (0.33) of misidentification for these two types 
of genes, which was likely caused by the fact that this data set only had 3 samples.
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Fig. 2  Reliability evaluation of sensitive gene identification in PbmcBench PBMC data set. a There were 
211, 274, 274 and 314 sensitive genes in each sample of the PbmcBench PBMC data set, with 96 sensitive 
genes in common; b The KEGG enrichment result of these 96 common sensitive genes showed that these 
sensitive genes were obviously enriched in pathways related to cellular stress response; c In the first sample 
of PbmcBench PBMC1, we compared three types of genes (cell marker genes, HK genes, and sensitive genes) 
by their entropy and CV-rank in total cells (dotted line represent the threshold of HVGs); d We compared 
these three types of genes by their entropy and number of clusters with high CV-rank (top 2000); e, f We used 
the Kruskal–Wallis test to compare these three types of genes from the aspects of entropy and number of 
clusters with high CV-rank (top 2000)
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Predict the function of sensitive genes

Even though single-cell sequencing by the 10 × Genomics platform was high-through-
put, usually only 500–2000 highly expressed genes per cell could be detected [33]. In 
general, scRNA-seq data sets from various tissues were quite different, and thus it was 
difficult to obtain an overlap of sensitive genes from different tissues. Moreover, due to 
the difference in library preparation, it was also hard to compare sensitive genes across 
different data sets. Nevertheless, we could easily detect the overlap of sensitive genes in 
different samples in the same data set.

As shown in Fig. 3a, we calculated the proportion of overlapping sensitive genes (over-
lap of genes in greater than or equal to 50%, 75% and 100% of samples in a given data set) 
out of the total number of sensitive genes in all samples (by the union of sensitive genes 
in all samples in a given data set) for these data sets. From the result, we found that, in 
most data sets, over 30% of sensitive genes (for this data set) appeared in at least 50% of 
the samples. Thus, based on the above calculations, we claimed that our method to iden-
tify the sensitive genes was robust.

We also explored the functions of sensitive genes of these data sets by conducting 
the functional enrichment analysis. Although scRNA-seq data sets from various tissues 
were quite different, the functions of sensitive genes identified from these data sets were 

Fig. 3  Evaluation and function annotation of sensitive genes in various tissues. a The proportion of 
overlapping sensitive genes (the overlap in greater or equal to 50%, 75% and 100% of samples in a given data 
set) out of the total number of sensitive genes in all samples (by the union of sensitive genes in all samples in 
a given data set) for these data sets; b The most enriched KEGG signaling pathways (detected in more than 
half of the data sets) of sensitive genes, with color representing the percentage of samples in each data set 
with sensitive genes enriched in these signal pathways; c We classified these enriched signaling pathways 
into several main types, including infection, apoptosis, metabolism, ribosome, cellular stress response, 
immune response, inflammation, protein processing, cell adhesion and other signaling pathways. Most of 
the sensitive genes were enriched in signaling pathways related to stress response against environmental 
changes
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nearly consistent. As shown in Fig. 3b, most of the sensitive genes were enriched in path-
ways related to cellular stress response, including apoptosis, fluid shear stress response, 
infection, and inflammation response. We further classified these enriched signaling 
pathways into several main types, including infection, apoptosis, metabolism, ribosome, 
cellular stress response, immune response, inflammation, protein processing, cell adhe-
sion, and other signaling pathways (Fig. 3c). As expected, most of the sensitive genes, 
identified from various tissues, were enriched in signaling pathways related to cellular 
stress response against environmental changes.

Removal of sensitive genes optimized unsupervised clustering result

To test the influence of sensitive genes on clustering results, we compared the cluster-
ing results between the first-time clustering and clustering removing sensitive genes 
against the ground-truth (cell-label annotations) in two 10 × Genomics scRNA-seq sam-
ples of the PbmcBench PBMC1 data set. The PbmcBench PBMC1 data set was stained 
with a panel of Total-Seq™-B antibodies (BioLegend), which could serve as true cell-type 
annotations.

As shown in Fig. 4, there were the ground-truth labels (Fig. 4a), the first-time cluster-
ing result (resolution = 0.6) (Fig. 4c), and the clustering result removing sensitive genes 
(resolution = 0.6) after dimension reduction (Fig.  4d), respectively. We could see that 
removing sensitive genes enabled us to classify some indistinguishable cell types clearly, 
such as the monocyte and the macrophage (Fig. 4c, d). Since it was difficult to observe 
clustering performance directly, we incorporated two evaluation metrics, the ECA and 
the ECP metrics. While ECA measured the diversity of the ground-truth labels within 
each cluster assigned by the unsupervised clustering, ECP measured the diversity of 
clusters within each group from the ground-truth labels. We used both metrics to avoid 
under-clustering and over-clustering performance, and optimal clustering results would 
have low values in both ECP and ECA.

Since Seurat could not determine the optimal cluster number, we chose a series of res-
olutions on the x-axis ranging from 0.6 to 2.1, in the steps of 0.3, and keep the commonly 
used resolution (0.6, 1 and 2) to control cluster numbers in the unsupervised cluster-
ing. Compared with the first-time unsupervised clustering, the result removing sensitive 
genes had the same number of clusters in these samples (resolution = 0.6, 0.9 and 1.8), 
which made the results comparable. As shown in Fig.  4b, in the first sample of Pbm-
cBench PBMC1 data set, both metrics showed denoting reductions under resolution 0.6, 
0.9, 1.5, 1.8, 2 and 2.1. Under the resolution 1 and 1.2, however, ECA increased whereas 
ECP decreased. We propose that this might be due to the different numbers of clusters 
generated under these two resolutions. Under the definition of the ECA measure, more 
clusters would lead to a lower ECA value. The unsupervised clustering result keeping 
sensitive genes had one more cluster under resolution 1 and 1.2, and this increase of 
cluster numbers might overweigh the influence of sensitive genes’ removal on the ECA 
value and therefore such a condition was not suitable for comparison of ECA and ECP 
measures. Interestingly, the unsupervised clustering result keeping sensitive genes had 
one more cluster under resolution 1.5, 2 and 2.1, and both metrics decrease, which mean 
ECP was hard to compare but ECA did decrease. Thus, we proposed that removing 
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sensitive genes, the result of unsupervised clustering was closer to true cell-type labels, 
if the clustering results were under the same resolution and of the same number of clus-
ters. Similar results were also observed in the second sample of PbmcBench PBMC1 
data set (Additional file 1: Figure S2a–d) and Zhang T cells data set (Additional file 1: 
Figure S2e–h).

Additionally, we verified our tool with a second clustering algorithm, the Leiden algo-
rithm. We chose a series of resolutions on the x-axis from 0.5–2.5, in the step of 0.1. 
In both two clustering algorithms, the ECP increased significantly with the increase of 
resolutions, whereas the curve of ECA was complicated. Interestingly, under resolution 
0.8, the clustering result with sensitive genes removed had lower ECA and ECP com-
pared with the total curve (resolution 0.5–2.5) of first-time unsupervised clustering 
result (Fig. 5a, b).

Fig. 4  Evaluation of the influence of sensitive genes on unsupervised clustering results. a The ground-truth 
labels with cell-type annotation of the first sample in PbmcBench PBMC1 data set; b ECA and ECP values in 
a series of resolution (0.6, 0.9, 1,1.2, 1.5, 1.8, 2) including and removing sensitive genes. Arrows aimed from 
the group keeping the sensitive genes to the group discarding the sensitive genes. The paired points in two 
groups with the same number of clusters were marked by red arrows, the paired points in two groups with 
different number of clusters were marked by black arrows; c The first-time unsupervised clustering result 
(resolution = 0.6); d The unsupervised clustering result (resolution = 0.6) removing sensitive genes
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Discussion
In summary, we provided a method to identify sensitive genes based on the first-time 
clustering result. Through the CV-rank within clusters and entropy calculations, we 
identified sensitive genes with high CV in more than half of the clusters and with high 
entropy. By applying our methods in various tissues from 10 different single-cell data 
sets, we found that: 1. there were a large number of overlapping sensitive genes for dif-
ferent samples in the same data set; 2. most of the sensitive genes, though detected from 
different tissues, were enriched in similar pathways related to cellular stress response. 
Finally, our study quantified the influence of sensitive genes on the clustering result by 
using ECA and ECP in three data sets. In general, the result of unsupervised clustering 
with the sensitive genes removed was closer to true cell-type labels when compared to 
the first-time clustering.

Our study still had several limitations. First, even though we had improved the clus-
tering results by removing sensitive genes, our result was not completely identical to 
the ground-truth labels. Besides, limited by the sequencing depth of the 10 × Genom-
ics scRNA-seq, it was hard to identify universal sensitive genes across different tissue 
samples. In the future, we hope that with the advancement of the single-cell sequencing 
technique, we would be able to identify cross-tissue sensitive genes and explore their 
functions.

Conclusion
The accuracy of the unsupervised clustering result is key to the success of scRNA-seq 
research. In this paper, we have provided a method to improve the clustering result by 
identifying and removing sensitive genes. We hope our method will provide new insights 
into the reduction of data noise in scRNA-seq data analysis and contribute to the devel-
opment of better scRNA-seq unsupervised clustering algorithms in the future.

Fig. 5  Verification of the influence of sensitive genes with a second clustering algorithm. a Using Louvain 
algorithm for unsupervised clustering to compare ECA and ECP values with a series of resolutions (0.5–2.5, 
in steps of 0.1) of the first sample in PbmcBench PBMC1 data set; b Using Leiden algorithm for unsupervised 
clustering to compare ECA and ECP values in a series of resolutions (0.5–2.5, in steps of 0.1)
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