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Background
Antibiotic resistance has become one of the greatest threats to public health all over 
the world. Pathogens with antibiotic resistance add difficulty to deal with infections 
and lead to increasing mortality. As stated by the United Nations in 2019 [1], at least 
700 thousands of deaths are caused by infections of resistant pathogens every year, 
and this number will soar to 10 million annually by 2050 if no action is taken. Among 
the ever-growing resistant pathogens, Mycobacterium tuberculosis (MTB) is of 
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particular concern because this species is a causative agent of tuberculosis, a highly-
ranked death cause worldwide nowadays [1]. Rifampicin (Rif ), an antibiotic of rifamy-
cin class, has been extensively used to treat tuberculosis. However, there has been an 
increasing occurrence of Rif resistance in MTB, raising emerging health concerns [2, 
3]. It was estimated that approximately 484,000 new cases of Rif-resistant tuberculo-
sis and 214,000 Rif-resistant tuberculosis related deaths occurred in 2018 [4].

Antibiotic resistance in bacteria can originate from multiple sources, such as 
acquiring antibiotic resistance genes (ARGs) carried by mobile genetic elements (e.g. 
plasmids and transposons) [5], overexpression of multidrug efflux [6] and de novo 
resistance mutations in bacterial genomes [7]. For Rif, resistance is primarily caused 
by single point mutations in RNA polymerase (RNAP), an enzyme that is essential for 
RNA synthesis [8, 9]. Rif typically binds to the β subunit of RNAP (RpoB) and blocks 
RNA synthesis, leading to the death of bacterial cells. Mutations in RpoB might cause 
changes of RpoB conformation and prevent Rif from binding to RpoB, resulting in 
loss of bactericidal activity of Rif. It should be noted that mutations occur randomly 
at any site of RpoB and do not always cause detrimental outcomes, instead, only those 
inducing resistance phenotypes (known as resistance mutations) are undesired and 
are more noteworthy. Currently, resistance mutations in bacteria are mostly identi-
fied through experimental approach, for example, to extract and sequence the DNA 
segments in the mutants, which are time- and labor-consuming. Since there are lots 
of probabilities for mutations in a given protein, it is of great significance to develop 
predictive, other than experimental, approaches for quick screening of the resistance 
mutations.

Machine learning (ML) is a branch of artificial intelligence (AI), which learns from 
massive amounts of data and reveals patterns and features in the data for predictions 
and decision making based on new data. Nowadays, ML algorithms have found appli-
cations in a variety of fields, such as speech recognition, traffic prediction and recom-
mender systems [10–13]. In particular, ML algorithms have been increasingly used 
for solving classification problems in molecular biology and toxicology. For example, 
Murakami and Mizuguchi [14] developed a naïve Bayes (NB) classifier for predicting the 
protein–protein interaction sites and Zhang et al. [15, 16] constructed NB classifiers for 
predicting drug-induced liver injury and mitochondrial toxicity in human. Classification 
is an important issue to understand the question whether mutations occurring in bacte-
rial RpoB could lead to Rif resistance, therefore, ML algorithms would be a useful tool 
for predicting the outcomes of these mutations, yet there have been rare such attempts 
in the literature.

In this paper, we reported a novel ML-based method for predicting the Rif resistance 
mutations in bacterial RpoB. Mutations that have been validated experimentally to con-
fer (positive) or not to confer (negative) Rif resistance were collected from the literature 
and Genome-wide Mycobacterium tuberculosis Variation (GMTV) database. Five ML 
algorithms, i.e. decision tree (DT), k nearest neighbors (kNN), NB, probabilistic neu-
ral network (PNN) and support vector machine (SVM) were employed for modeling 
using the collected data with both internal and external validations. A majority consen-
sus (MC) classifier was finally obtained based on the classification results of five indi-
vidual ML algorithms, which showed improved predictive performance. The ML-based 
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classifier provides an alternative approach for quickly identifying Rif resistance muta-
tions in bacteria.

Results
Negative and positive mutations in RpoB of MTB

Mutations occur both spontaneously and under stresses during DNA replication and 
repair processes. Herein, mutations that confer bacterial resistance against antibiotics 
are referred to as positive mutations, while those do not induce any changes in bacterial 
resistance phenotype are assigned as negative mutations. Resistance to Rif in bacteria 
is thought to be solely attributed to single point mutations of rpoB gene that encodes 
RpoB, the target of the Rif molecules [17]. Rif resistance mutations primarily occur 
within Rif resistance-determining regions (RRDRs, Additional file 1: Table S1) of RpoB 
that are involved in the formation of the Rif-binding pocket (Fig. 1a) [18]. In the litera-
ture, the positive mutations were usually determined by sequencing the rpoB gene of the 
isolated strains and comparing it with the wild type sequence. In the present research, 
a total of 186 RpoB mutations (Table 1) were obtained from the literature [18–22] and 
GMTV database. Specifically, 123 positive mutations were collected at 63 amino acid 
positions, among which H445 had the maximum number (10) of mutations, followed 
by I491, S431, D435 and S450 (Fig. 1b). A majority (78 of 123) of the positive mutations 
were within the RRDRs, especially in RRDR-I (Fig. 1c), suggesting this region was the 
hotspot where resistance mutations occurred the most frequently. As for the negative 
mutations, 63 amino acid changes were gathered from 61 sites, which were more decen-
tralized in the protein sequence of RpoB (Fig. 1c). In particular, only 4 negative muta-
tions were found within RRDRs (3 in RRDR-I and 1 in RRDR-II) (Fig. 1c), which were 
much fewer than the positive mutations. This supported the fact that mutations occur-
ring in RRDRs were more likely to become resistant.

Evaluation of the mutated structures

Twelve features (Additional file 1: Table S2) were obtained by PremPS Server for each 
mutated RpoB using 5UHC as a template. Besides, the distance between each amino 
acid and the active site of 5UHC was calculated, which, together with the secondary 
structure (denoted as SS) of the amino acid, were also employed as the attributes of the 
mutations. Pearson’s correlation coefficient of each pair of the computational features 
was shown in Fig. 2a. Among these features, ΔΔG is usually used for predicting the sta-
bility of the protein caused by mutations [23]. It is obtained by quantifying the change of 
unfolding Gibbs free energy (ΔG) of a protein after a single point mutation. According to 
the results, a majority (166) of the 186 mutated RpoB had greater ΔGs than the wild type 
RpoB (i.e., ΔΔG > 0), suggesting destabilizing effects of these point mutations (Addi-
tional file  1: Table  S3). Moreover, the phenotypes (positive or negative) of the muta-
tions were found significantly correlated (p < 0.05) to ΔΔG. As shown in Fig. 2b, ΔΔG 
values of the negative mutations fell into the range from − 0.53 to 2.24 kcal mol−1, with 
a median of 0.50 kcal mol−1, whereas ΔΔG values of the positive mutations distributed 
in a larger range (− 0.87 to 2.2 kcal mol−1) and with a greater median (0.92 kcal mol−1). 
Statistical analysis with an unpaired t test (Mann Whitney test) suggested that the dif-
ference of the ΔΔG values between negative and positive mutations were statistically 
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significant (p < 0.05) (Fig. 2b). This result implied that a mutant with a higher ΔΔG value 
had a greater inclination to become resistant. The same cases were found with ΔCS (the 
changes of conservation after mutation) and SASA_pro (the solvent accessible surface 
area of the mutated residue in the protein), which were both significantly correlated with 
the mutation phenotype and presented greater values in positive mutations (Fig. 2c, d). 
For P_FWY (the fraction of aromatic residues F, W or Y buried in the protein core) and 
N_Charg (the number of changed amino acids R, K, D or E in the protein), however, 
they were correlated with the mutation phenotype in an opposite pattern to ΔΔG, ΔCS 
and SASA_pro, i.e. the negative mutations tended to have greater P_FWY and N_Charg 
values (Fig. 2e, f ). With respect to the distance, it was found that the negative mutations 

Fig. 1  a A side view of the structure of the rifampin (Rif ) binding pocket formed by the Rif 
resistance-determining regions (RRDRs) of RpoB from MTB (PDB ID: 5UHC). b Number of positive mutations 
obtained at different sites of RpoB. c Distribution of the negative (N) and positive (P) mutations in the 
protein sequence of RpoB from MTB. The color gradients represent the different number of mutations at the 
indicated sites. The regions in the green frames are the RRDR-N, RRDR-I, RRDR-II and RRDR-III, respectively
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had greater distances than the positive ones (Fig. 2g), which suggested that the positive 
mutations were more likely to occur at amino acids that are closer to the active site.

Interactions between mutated RpoB and Rif molecule

The combination of Rif molecule with the mutated RpoB (both positive and negative) 
was simulated by molecular docking. According to the results, the docked Rif molecules 
in the negative and positive mutants presented similar poses with only slight differences 
in the orientation of the 1-methylpiperazine tail. The docked poses also resembled the 
Rif pose in the wild type RpoB (5UHC). As shown in Additional file 1: Fig. S1, the mac-
rocyclic moieties of Rif in wildtype RpoB, L443F and H445D (representatives of negative 
and positive mutations, respectively) presented a good overlap, while the 1-methylpip-
erazine tails of Rif in the three proteins had different orientations. Then, the interactions 
between RpoB and Rif molecules were analyzed and compared. In the wild type RpoB, 
most of the residues interacting with the Rif molecule were within RRDRs (Fig. 3a). Spe-
cifically, ARG448, GLN429, GLN432, PHE433 and SER450 were involved in hydrogen 
bonds with Rif, while ILE491, LEU430, LEU452 and PRO483 played important roles 

Table 1  Negative and positive mutations in RpoB of M. tuberculosis (MTB)

Type Amino acid change

Positive (123) L42F L47R E82G I90L V170F V170G 
Q172H Q172K Q172L Q172P Q172R 
D265G P280S V359A T361I L378R 
T399A T400I F424L G426D T427P 
S428R L430P L430Q L430R S431A 
S431F S431P S431R S431T S431Y 
Q432K Q432L Q432P Q432R M434I 
D435A D435F D435G D435N D435V 
D435Y N437D S441F S441L S441Q 
S441Y G442V T444R H445C H445D 
H445F H445G H445L H445N H445P 
H445Q H445R H445Y R448C R448H 
R448L R448S S450F S450L S450P 
S450Q S450W S450Y A451E A451V 
L452H L452P L452R G453A G453C 
G453D G453S G453V G456S T482P 
P483L P483R I488V G489C I491F 
I491L I491M I491N I491S I491T 
I491V S493F S493Y V496L V496M 
F503S D545E D545N P551S D571A 
D574E R607H N658D R662H A670D 
H674R H674Y T676P C681W M707T 
H723D H723Y L731P L735Q H745Y 
E761D R827C H835P H835R I925V 
E978D G981D

Negative (63) N24D G28R P30S D53N E66K A69P 
V77M L80V P89L V109I D109E V113I 
M121I E132D M153T V179A S195R 
P233Q D270E L314V L316V A334D 
H343Q T350I P358L D362H G374S 
S388L M390T M440V L443F P454L 
N493S R511L D515Y T526S A544V 
D545A E563D A590G D634G E639G 
E639Q R661Q H674Q P682T V695L 
I789V E795V E825G P834L D851G 
A857T G890D L893R K944E A998V 
D1012G V1117L S1124A L1128Q 
V1129A A1143T
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Fig. 2  a Correlation matrix for the features of the mutated RpoB. The correlation of each pair of the features 
was quantified by a Pearson’s correlation coefficient, which ranges from  − 1 to 1. The asterisk indicates a 
significant difference (p < 0.05). b–g Distributions of ΔΔG (b), ΔCS (c), SASA_pro (d), P_FWY (e), N_Charg 
(f) and distance values (g) for the two mutation phenotypes (N stands for negative and P for positive). 
Significant differences (p < 0.05) are indicated by asterisks (*). The straight lines in b–g indicate the medians

Fig. 3  Interactions between the rifampin molecule and wild type (a), negative (b) and positive mutated 
RpoB (c). The wild type RpoB-Rif complex were obtained from the Protein Database (5UHC), while L443F and 
H445D were chosen as representatives of negative and positive mutations, respectively. d Distributions of the 
binding energies of Rif with RpoB mutants. N stands for negative and P for positive
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in hydrophobic interactions with Rif. Apart from the residues within RRDRs, HIS674 
was found to form hydrogen bond with Rif in the wild type RpoB. In the cases of nega-
tive (L443F) and positive mutations (H445D) (Fig. 3b, c), most of the interactions found 
in wildtype RpoB were also observed, but the hydrogen bond between HIS674 and Rif 
disappeared in the positive mutant H445D. The interactions between RpoB and Rif 
molecules were quantitatively characterized by the binding energies (Additional file 1: 
Table  S3) obtained by docking. As shown in Fig.  3d, the binding energies for nega-
tive RpoB mutants were highly centralized and close to that of the wild type RpoB (− 
8.88 kcal mol−1) while for the positive mutants distributed in a wider range (from − 9.33 
to − 6.44 kcal mol−1). This suggested that the positive mutants tended to present greater 
changes in the binding energies with Rif than the negative mutants.

Classifiers using different machine learning algorithms

The mutation database (186 data) was split randomly with a stratified sampling method 
into a training set (80%) and a test set (20%). Five ML classifiers were developed with DT, 
kNN, NB, PNN and SVM algorithms using the calculated features as the attributes of the 
mutations, and ten-fold cross validation was performed for the internal validation of the 
classifiers. The confusion matrixes of the classifiers for both training and test sets were 
provided in Additional file 1: Table S4, and the classification details of each mutation by 
the classifiers (including the class assignment and the class probabilities) were provided 
in Additional file 1: Table S5. The evaluation parameters of the classifiers were shown in 
Table 2, and the comparison of them were depicted in Fig. 4.

For the training set, kNN and SVM classifiers had the greatest accuracy with a same 
score of 0.76, followed by PNN (0.75), NB (0.74) and DT (0.70), while for the test set, the 
rank of the accuracy for the five classifiers was PNN (0.82) > NB (0.79) = DT (0.79) > SVM 
(0.76) > kNN (0.74). The precisions of the five classifiers, which represent the propor-
tion of the correctly predicted positives, ranked as NB (0.88) > PNN (0.85) > SVM 
(0.84) > kNN (0.82) > DT (0.78) for the training set, and NB (0.95) > PNN (0.91) > SVM 
(0.90) = DT (0.90) > kNN (0.80) for the test set, respectively. The recall (also known as 
sensitivity), which represents the true positive rate, ranked in a similar order for the 
training and test sets, with a highest score for kNN and a lowest score for NB, whereas 
the specificity that represents the true negative rate ranked in an opposite order to the 
recall in both training and test sets.

Table 2  The performance of the classifiers on the training and test dataset

DT decision tree, kNN k nearest neighbors, NB naïve Bayes, PNN probabilistic neural network, SVM support vector machine, 
MC majority consensus, AUC​ area under the curve

Training set Test set

DT kNN NB PNN SVM MC DT kNN NB PNN SVM MC

Recall 0.77 0.82 0.71 0.76 0.79 0.79 0.76 0.80 0.72 0.80 0.72 0.80

Precision 0.78 0.82 0.88 0.85 0.84 0.88 0.90 0.80 0.95 0.91 0.90 0.95

Specificity 0.58 0.64 0.80 0.74 0.70 0.78 0.85 0.62 0.92 0.85 0.85 0.92

F-measure 0.77 0.82 0.79 0.80 0.81 0.83 0.83 0.80 0.82 0.85 0.80 0.87

Accuracy 0.70 0.76 0.74 0.75 0.76 0.78 0.79 0.74 0.79 0.82 0.76 0.84

AUC​ 0.68 0.75 0.83 0.78 0.80 0.81 0.81 0.84 0.74 0.89 0.79 0.83
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It should be noted that, the predictive models developed herein are intended to 
identify the potential resistance mutations (i.e., positive mutations), thus it is impor-
tant that the positive mutations are predicted correctly. Therefore, the recall is an 
important estimator of the than the classifiers. However, a greater specificity (true 
negative rate) of the classifiers may have more clinical relevance, because the irra-
tional use of ineffective drugs to a resistant strain should be avoided in case of a poor 
outcome and further evolution and transmission of a resistant pathogen. In view of 
this, a high specificity is highly desirable for such a classifier. In the present study, 
kNN had the greatest recall (0.82) but a poor specificity score (0.64) for the training 
set, while PNN on the test set presented both a high recall (0.80) and a high specific-
ity (0.85). F-measure, which conveys the balance between recall and precision, was 
also calculated. As listed in Table 2, kNN and PNN had the highest F-measure scores 
for training (0.82) and test set (0.85), respectively. Furthermore, the receiver oper-
ating characteristic (ROC) curves of the classifiers (Fig. 4), which demonstrated the 
connection between recall and specificity, were obtained by plotting the recall ver-
sus “1-specificity” across all possible thresholds for the test. A ROC curve that is 
closer to the left-hand and top borders of the ROC space points to a high accuracy 
of the classifier, and the area under the ROC curve (AUC) was used to represent the 

Fig. 4  Comparison of the evaluation parameters of different classifiers for the training (a) and test sets (b) 
and receiver operating characteristic curves (ROCs) of the classifiers for the training (c) and test sets (d). DT: 
decision tree; kNN: k nearest neighbors; NB: naïve Bayes; PNN: probabilistic neural network; SVM: support 
vector machine. AUC: area under the curve
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measure of separability of the classifiers. According to the ROCs (Fig.  4) and AUC 
scores (Table 2), the five classifiers exhibited varying separability capacities, with NB 
(0.83) and PNN (0.89) showing the greatest AUC scores for the training and test sets, 
respectively.

Majority consensus classifier

The MC classifier was developed based on the classification results of the five individual 
ML algorithms, which assigned “positive” to a mutation that had been classified as “posi-
tive” by more than two of the ML algorithms. The prediction results for the MC classifier 
on the training and test data were shown in Table 2. In general, the MC classifier showed 
a better predictive performance than the five individual ML algorithms, with evaluation 
parameters being higher in most of the cases (Fig. 4a, b). For example, the accuracy of 
the MC classifier increased to 0.78 and 0.84 for the training and test sets, respectively. 
That is, 116 of 148 mutations in the training set and 32 of 38 mutations in the test set 
were correctly predicted (Additional file  1: Table  S4). The same case was found with 
F-measure, which had higher scores for MC classifier on both training (0.83) and test 
sets (0.87) than the five individual ML algorithms. It should be noted that there were a 
few cases that the evaluation metrics of the MC classifiers were equal to or even lower 
than the ML algorithms. For example, the recall of the kNN classifier on the training 
set (0.82) was greater than the MC classifier (0.79), but the specificity of kNN was only 
0.64, which was much lower than the MC classifier (0.78). Therefore, the MC classifier 
had a better balance of all the evaluation parameters than the individual algorithms. In 
particular, the MC classifier had high specificity scores, especially for the test set (0.92). 
As mentioned above, a higher specificity of such a classifier may have more clinical rel-
evance, thus the MC classifier may have a greater application potential.

Application of the classifiers

To verify the performance of the classifiers, we used them to predict the phenotypes of 
mutations in 20 random positions in RpoB, including 4 in RRDRs and 16 in non-RRDRs. 
A total of 380 mutants (20 × 19, 20 amino acid sites and 19 possibilities for each site) 
were built through PremPS server and were investigated for their interactions with 
Rif molecule by LeDock. The PremPS-based features, binding energies, distance and 
SS were gathered for these mutations as attributes for prediction (Additional file  1: 
Table S6). The detailed prediction results of these mutations were provided in Additional 
file 1: Table S7, and a heatmap displaying the MC classifications were shown in Fig. 5. 
According to the MC classifications, 198 of 380 mutations were predicted as positive and 
182 as negative. In particular, all of the mutations within the RRDRs were predicted as 
positive, while only 40% (122 of 304) of the mutations in non-RRDRs were classified as 
positive. The results were supportive again of the fact that mutations in RRDRs are more 
likely to confer Rif resistance. However, it should be noted that the predicted resistance 
mutations shown in Fig. 5 do not necessarily occur in real conditions, they only repre-
sent that the mutations have a high probability to confer resistance if they occur. Further 
experiment should be carried out for validation of these predictions.

Furthermore, the performance of the classifiers in predicting resistance mutations 
of MTB against another anti-tuberculosis drug isoniazid (INH) was verified using 89 
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mutation data of catalase-peroxidase (KatG) in MTB. KatG is responsible for converting 
INH to its active form in MTB, and mutations of KatG have been considered as a major 
cause of INH resistance. In the present study, we collected 89 mutation data of KatG 
from the literature [21, 24], including 40 positive and 49 negative mutations (Table S8). 
The classification results of the five ML algorithms and the MC classifiers were pro-
vided in Table S9, and the evaluation metrics of these classifiers were shown in Table 3. 
According to the results, the accuracies of the five ML algorithms ranged from 0.60 to 
0.76 and F-measures ranged from 0.66 to 0.77. The MC classifier showed higher scores 
of accuracy (0.75) and F-measure (0.76) than the five individual algorithms in most of 
the cases. In particular, the recall of the MC classifier reached up to 0.93, which sug-
gested that this classifier had a great capacity of correctly identifying the INH resistance 
mutations in KatG. However, the specificity of the MC classifier was only 0.61, showing 
a poor capacity of predicting the susceptible mutations in KatG. This was likely because 
the classifiers in the present study were trained based on Rif resistance data only and 
may need improvement before scaling to other drugs.

Fig. 5  Classifications of the resistance types of RpoB by majority consensus classifier. N stands for negative 
and P for positive. Mutations in 20 random positions in RpoB of MTB were chosen for the prediction. X axis 
labels represent the location and the single-letter abbreviation of the amino acid residues, y axis labels are 
the abbreviation of the mutated residues. An asterisk (*) in the x axis indicates that the position is within the 
rifampin resistance determining regions (RRDRs)

Table 3  The performance of the classifiers in predicting mutations of KatG against isoniazid

DT decision tree, kNN k nearest neighbors, NB naïve Bayes, PNN probabilistic neural network, SVM support vector machine, 
MC majority consensus, AUC​ area under the curve

DT kNN NB PNN SVM MC

Precision 0.61 0.53 0.72 0.55 0.69 0.66

Recall 0.85 0.88 0.70 0.83 0.88 0.93

Specificity 0.55 0.37 0.78 0.45 0.67 0.61

Accuracy 0.69 0.60 0.72 0.62 0.76 0.75

F-measure 0.71 0.66 0.71 0.66 0.77 0.77
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Discussion
Antibiotic resistance is a major threat to public health and is of considerable concern. 
One of the mechanisms for antibiotic resistance is the mutations occurring in an enzyme 
target, causing structural modifications of the active sites that no longer allow the com-
bination of the antibiotics [25]. Resistance originating in this way has been observed for 
many antibiotics. For example, mutations of pbp, a gene encoding penicillin-binding 
proteins, conferred bacteria with β-lactams resistance [26], and mutations of rrnA and 
rrnB, genes that encode 16S rRNA, conferred tetracycline resistance [27]. In the case of 
Rif, resistance usually arises as a result of single point mutations in bacterial RNAP, an 
enzyme that accommodates Rif molecule at the β subunit. Identification of the resist-
ance mutations is essential for understanding the structural basis of the antibiotic resist-
ance, and provides useful information for prevention of the resistance emergence and 
new drug discovery. In previous studies, the identification of the resistance mutations 
was usually achieved through labor-intensive and costly experiment, for example to iso-
late the resistance mutants and sequence the relevant gene segments followed by align-
ing the sequences with those of the sensitive strains [28, 29]. The experimental approach 
is thus incapable of rapid identification, and moreover, the identification with experi-
mental approach usually lags behind the emergence of the resistance. Therefore, predic-
tion of the resistance mutations based on known information is highly desired.

In previous studies, there have been some attempts that focused on the prediction of 
drug resistance mutations in MTB. For example, Walker et al. [21] reported a predictive 
approach for characterizing the drug resistance and susceptibility of mutations in MTB 
using whole-genome sequencing data. The authors gathered 120 resistance determin-
ing mutations and 772 benign mutations from 2099 MTB genomes, and used them as 
criterions to characterize the phenotypes of an independent validation set of 1552 MTB 
isolates. This approach predicted 89.2% of the validation set with a high sensitivity of 
92.3% and a high specificity of 98.4%. For Rif resistance, the sensitivity and specificity 
were 96.8% and 99.2%, respectively. In addition, Miotto et  al. [22] developed a stand-
ardized approach for classifying the phenotype of mutations in MTB through grading 
the confidence of the association between mutations and resistance. This approach per-
formed well in identifying the Rif resistance mutations with a sensitivity of 89.6–90.3% 
and a specificity of 95.7–96.8% (95% confidence interval). Although these approaches 
had better predictive performance than the classifiers in the present work, their pre-
dictions relied heavily on the previously documented genes and mutations that had 
been validated experimentally to be resistance determining. So the sensitivity of these 
approaches might be limited if some of the resistance associated genes and mutations 
were absent from the training set (this is very likely to happen because our knowledge 
about the resistance genes and mutations is growing). On the contrary, the classifiers 
in the present study were developed based on the structure-associated features of the 
protein, like ΔΔG and the binding affinity, rather than simply on the genetic informa-
tion. Therefore, the classifiers developed in this paper had a more solid mechanistic basis 
and a greater application potential. Likewise, a computational approach for predicting 
resistance mutations in dihydrofolate reductase was reported by Frey et al. [30], where a 
protein design algorithm was employed for generating positive and negative mutations, 
and the prediction was based on the analysis of the affinity between the mutants and 



Page 12 of 16Ning et al. BMC Bioinformatics          (2021) 22:210 

the inhibitor. Comparing to this approach, the classifiers developed in the present paper 
takes into account not only the affinity but also a series of features of the mutants. More-
over, the predictive algorithms in the present work were trained using a collection of 
both negative and positive mutations, and is thus more reliable and explicable.

Recently, Jamal et al. [31] reported a work that used AI and ML algorithms to predict 
resistant and susceptible mutations in MTB. However, the method for developing pre-
dictive models in Jamal et al. [31] was debatable. When preparing the database for mod-
eling, the authors labeled mutations with positive ΔΔG values as susceptible mutations, 
otherwise as resistant mutations. The problem was that ΔΔG was an indicator of the 
stability of a mutated protein, and it was improper to use this parameter alone for clas-
sifying the mutations, although this parameter might have some relationship with the 
mutation type. Moreover, in the following steps, the authors used this parameter again 
as an attribute of the mutations for training the classification models, which was also 
improper. Unlike this work, the data used for developing the predictive models in the 
present research were collected from the literature and the database, which had been 
validated experimentally. Moreover, we developed a MC algorithm based on the pre-
dictions of five individual ML algorithms, which improved the overall predictive perfor-
mance. However, the classifier developed in the present work still has some limitations, 
for example, the classifications need further validation with experiments. Nonetheless, 
the present work provides an inspiration and an alternative methodology for rapid iden-
tification of resistance mutations in bacteria, which may be helpful for early detection of 
resistance and new drug discovery.

Conclusion
A MC classifier was developed for predicting Rif resistance mutations in bacterial RNAP 
based on five ML algorithms (i.e. DT, kNN, NB, PNN and SVM). The features of the 
mutated RpoB and their combination with Rif molecule were studied by computational 
approaches and used for developing the predictive models. Estimates of the predictive 
models showed that the five individual algorithms had varying predictive performance 
with accuracy of 0.70–0.76 and 0.74–0.82 for the training and testing sets, respectively, 
while the MC classifier presented better predictions with a higher accuracy of 0.78 and 
0.84 for training and test data, respectively. The performance of the classifiers was then 
verified using a set of data of INH resistance mutations in KatG. The predictions showed 
high accuracy, F-measure and recall scores, but with poor precision and specificity. 
Since the classifiers developed in the present study were trained on Rif resistance data 
only, they might need improvement before scaling to other drugs.

Methods
Mutation dataset preparation

Mutations that confer bacteria with Rif resistance are assigned as positive, otherwise 
as negative. Mutations in RpoB of MTB were collected from the literature [18–22] and 
GMTV database (http://​mtb.​dobzh​ansky​center.​org). All of the mutations have been 
validated experimentally to result in either resistant (positive) or susceptible phenotype 
(negative). A total of 186 data were finally gathered, including 123 positive and 63 nega-
tive mutations (Additional file 1: Table S3).

http://mtb.dobzhanskycenter.org
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Construction of the RpoB mutants

The wild type RpoB in MTB was obtained from Protein Data Bank (ID: 5UHC, Chain 
C). Mutated RpoB with single point mutations were constructed through PremPS Server 
(https://​lilab.​jysw.​suda.​edu.​cn/​resea​rch/​PremPS/), using the wild type RpoB (5UHC) 
as a template. It should be noticed that the residue numbering in 5UHC was different 
from the reference sequence of MTB (Fig. 1c) and was adjusted to the reference number-
ing when constructing the mutants. For the construction of KatG mutants, the crystal 
structure of KatG from MTB with a PDB ID of 1SJ2 was used as the template. PremPS 
Server also gives a set of parameters that characterize the mutated proteins, such as the 
unfolding Gibbs free energy changes (ΔΔG), differences of hydrophobicity scale between 
mutated and wild type RpoB (ΔOMH), and the solvent-accessible surface area (SASA_
pro) [32]. Interpretations of these parameters are listed in Additional file 1: Table S2. In 
addition to the PremPS-based features, another two parameters were obtained as the 
attributes of the mutations, i.e. the secondary structure (SS) and Distance. SS is the type 
of the secondary structure (coil, sheet, helix and turn) where the mutation locates, while 
Distance denotes the distance between the centers of a residue and the binding site of 
the wild type protein.

Molecular docking

The interactions between Rif molecule and mutated RpoB were investigated by LeDock, 
a molecular docking program [33]. Prior to the docking, the mutated models were pre-
pared by LePro, which added missing hydrogen to the proteins and remove redundant 
structures. The binding pocket of the mutated protein was set manually as a cube box 
referring to the Rif location in wild type RpoB, with coordinates of x (151, 169), y (− 9, 
9) and z (9, 29). The number of the binding poses was set as 20, which means the process 
will generate 20 random docking poses. The poses with the highest scores were chosen 
to represent the optimal binding poses of Rif with the mutated models. In case of the 
docking of isoniazid and KatG, the binding pocket in KatG was set at x (16, 36), y (− 19, 
1) and z (17, 37).

Machine learning algorithms

Five supervised ML algorithms were employed for developing predictive models in the 
present research, i.e. NB, kNN, SVM, DT and PNN. NB is a supervised learning algo-
rithm based on Bayes’ theorem with a “naive” assumption that all attributes are inde-
pendent given the value of the class variable [34, 35]. kNN classifier is based on the 
Euclidean distance between the target sample and the training samples, where k denotes 
the number of the nearest neighbors that are used for classifying the target sample [36]. 
SVM is a statistical learning method that uses a hyperplane to optimally separate data 
into negative and positive categories [37]. DT predicts the category of a sample by using 
a tree-like flowchart, where the nodes represent the test on an attribute and the branches 
denote the outcome of the test [38]. PNN is a pattern classification algorithm, which in 
the present work was trained using Constructive Training of Probabilistic Neural Net-
works as the underlying algorithm [39]. All of the five ML algorithms are commonly 
used for solving classification problems. In the present research, the predictive models 

https://lilab.jysw.suda.edu.cn/research/PremPS/
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using the five ML algorithms were developed on KNIME platform with “Naïve Bayes 
Learner”, “SVM Learner”, “K Nearest Neighbor”, “Decision Tree Learner” and “PNN 
Learner (DDA)” nodes, respectively, while the class assignment together with the prob-
ability of each class were obtained through “Naïve Bayes Predictor”, “SVM Predictor”, 
“K Nearest Neighbor”, “Decision Tree Predictor” and “PNN Predictor” nodes, respec-
tively. The node “Partitioning” was used for randomly dividing the data into a training 
(80%, 148) and a test set (20%, 38) with a stratified sampling method (Additional file 1: 
Table S3). A ten-fold cross validation was performed for the training set by using a com-
bination of “X-partitioner” and “X-aggregator” nodes. Receiver Operating Characteristic 
(ROC) curve was generated using a “ROC curve” node. Precision (P), recall (R), specific-
ity (SP) accuracy (AC) and F-measure were calculated and gathered for evaluation of the 
five classifiers. The functions used for deriving these parameters were as follows.

where TP, FP, TN and FN denote true positive, false positive, true negative and false neg-
ative respectively.

Majority consensus

A MC approach was used to obtain a new classifier, which combined the classification 
results of the five individual ML algorithms. In this approach, a positive prediction was 
assigned to a mutation when more than 2 of the individual algorithms gave positive 
predictions, otherwise a negative prediction was assigned to this mutation. A diagram 
illustrating the workflow for developing the ML classifiers and the MC classifier was 
depicted in Additional file 1: Fig. S2. The five ML algorithms and the MC algorithm were 
integrated into a single workflow and were run at the same time to ensure the training 
and test sets were identical in all of the algorithms. The workflow was provided as an 
appendix file (Additional file 2) for others to reproduce the present work.

Abbreviations
AA: Amino acid; AI: Artificial intelligence; ARGs: Antibiotic resistance genes; AUC​: Area under the curve; DNA: Deoxyribo-
nucleic acid; DT: Decision tree; GMTV: Genome-wide Mycobacterium tuberculosis Variation; kNN: K nearest neighbors; 
MC: Majority consensus; ML: Machine learning; MTB: Mycobacterium tuberculosis; NB: Naïve Bayes; NCBI: National Center 
for Biotechnology Information; PNN: Probabilistic neural network; Rif: Rifampicin; RNA: Ribonucleic acid; RNAP: RNA 
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