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Background
Missing data is a ubiquitous problem across non-experimental, field-based studies such 
as genomic, epidemiological, and social science studies. Conventionally, complete case 
analysis (CCA) and imputation are two approaches to address the missingness. CCA 
uses samples with complete data for model building, which limits its application to 
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scenarios with large samples of complete data. Further, CCA provides biased estimates 
in cases when data is not missing completely at random (MCAR) [1].

Imputation approach can handle samples without complete data by replacing missing 
data with either single values (Single imputation) or multiple values (Multiple imputa-
tion). Single imputation technique adds single plausible value to each missing value and 
creates a single imputed dataset. Single imputation approach treats imputed values as an 
actual value rather than an estimate with standard error value during the downstream 
analysis, which creates a potential bias in the results [2]. Mean imputation is one of the 
most straightforward imputation techniques. It replaces the missing values of a predictor 
with the mean value of the observed data of the predictor. The main disadvantages are 
that it underestimates the variance of the predictor and ignores the relationship between 
the predictors [3, 4]. Regression imputation is another technique in which the predictor 
with missing value is regressed on the predictors with non-missing values. Finally, the 
missing values of the predictor are estimated from the regression model [5]. However, 
the technique relies on the linear relationship [6], which may affect the model quality.

Multiple imputation approach provides more unbiased estimates as compared to sin-
gle imputation approach as it considers the uncertainty in estimates. Multiple imputa-
tion approach assigns multiple plausible values to every missing value, which creates 
multiple imputed datasets. Each dataset undergoes analysis and results are pooled using 
Rubin’s rules [7]. The MICE package in R is one of the popular packages for performing 
multiple imputations [8]. It provides many multiple imputation approaches like predic-
tive mean matching, Bayesian regression, and linear regression. However, the multiple 
imputation approach still cannot provide unbiased estimates for all scenarios [9].

In non-linear relationships among the predictors, various machine learning-based 
techniques are used to perform imputation. K-Nearest Neighbors (K-NN) is one of the 
machine learning technique used for imputation. For any predictor with missing values, 
K-NN tries to identify the k nearest neighbors for each missing value using the predictors 
with non-missing data. The missing value is imputed using the values of the k nearest 
neighbors [10]. K-means clustering segregates the complete dataset (including missing 
values) into k clusters. Then, K-NN algorithm is applied in each cluster to impute the 
missing values in the cluster [11]. However, in many cases, K-NN and K-means based 
approaches could perform poorly as compared to other approaches [12, 13]. MissForest 
technique uses random forest for imputing the missing data to overcome the limitations 
of regression-based imputation methods [14].

In many real-world scenarios, data collection is not simultaneous. Instead, it happens 
over time. CCA and imputation-based approaches have to wait for the completion of 
the data collection process. In scenarios of high throughput data, data storage can be an 
issue [15]. This paper successfully proposes an alternative, i.e., dynamic model updat-
ing (DMU) approach of analyzing the dataset with missing values. DMU analyses mul-
tiple smaller datasets obtained from the original dataset rather than the original dataset 
and allowing estimate updating with every single analysis. The paper is organized as fol-
lows. ‘Methodology’ section describes the DMU algorithm; the model performance is 
evaluated and demonstrated using simulation and real dataset studies in the “Simulation 
Studies” and “Real Data Study” sections, respectively. Finally, the ‘Conclusion and Dis-
cussion’ section concludes the paper and discusses the limitations of the study.
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Results
The performance of DMU is evaluated and compared with CCA and PMM approach for 
both the simulated datasets and real data studies.

Simulation studies

We use simulation studies to evaluate model performance. In the simulation studies, 
data is generated from the following regression model:

where ε ~ N(0, 0.25) is noise in the model and x1,…,xp are predictors. The values for 
predictors x1 and x2 is drawn from beta (~ Beta(7, 2)) and uniform (~ U(0, 2)) distribu-
tion respectively, while the values for predictors x3,…,xp is drawn from normal distri-
bution(~ N(0, 1)). Coefficient values for x1, x2 and x3 are 0.2, 0.3 and 0.4 respectively. 
The remaining predictors have zero coefficient values. The correlation matrix is designed 
to add multicollinearity to the model. The predictors {x1,…,x5} are randomly assigned 
correlation values between [− 0.5, 0.5] with replacement and zero correlation value is 
assigned to all other cases as shown below.

A multivariate normal distribution generates data for 20, 25, 30 and 100 predictors 
(p) in the simulated dataset, D. Two scenarios are created to test the performance of dif-
ferent methods. In the first scenario, the training dataset contains some complete rows 
(SCR). Training data comprises of 3150 samples with each predictor having 80% of its 
values MCAR and 50 samples of complete data across all predictors. Test data consisted 
of 1000 samples of complete data across all predictors. In the second setting, the training 
dataset has no complete row (NCR). Training data comprised of 3150 samples with each 
predictor having 80% of its values MCAR. Test data consisted of 1000 samples of com-
plete data across all predictors.

DMU method is used to build the model and its performance is estimated. Prior distri-
butions are defined as follows:

Markov Chain Monte Carlo (MCMC) is used to generate the posterior distribution 
of parameters in the model using MCMC package in R [16]. Total 6000 iterations are 

(1)y = β0 + β1x1 + · · · + βpxp + ǫ
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performed and the first 1000 are used as burn-in iterations. A constraint is used to seg-
ment Dataset D such that di with sample size to predictor set ratio greater than or equal 
to two is used for model building. Because optimal k is not known, hence the genetic 
algorithm is used for selecting k. The performance of the DMU method is compared 
with simple linear regression (SLR), k-Nearest Neighbors based imputation (kNN), 
simple linear regression combined with imputation (SLRM) and random forest based 
imputation (RF) using simulated data. In the case of SLRM, the predictive mean match-
ing (PMM) based imputation method provided by the MICE package of R [8] is used 
to impute missing data in the dataset. VIM package and missForest packages of R are 
used for kNN imputation and RF imputation, respectively [14, 17]. The performance of 
different methods is evaluated using mean square error (MSE) between the estimated 
outcome and the actual outcome in the test data. The reported performance is normal-
ized with mean imputation MSE performance. The GA package in R [18] is used for the 
genetic algorithm.

Simulation datasets (S = 30) are created with the abovementioned settings and the 
overall performance of each method is measured. Table 1 and Additional file 1: Table S1 
shows the performance results of the five methods. The study shows that the DMU has a 
lower or comparable MSE as compared to the MSE of SLR and SLRM. In SCR settings, 
SLRM gave the worst performance, and kNN gave the best performance, while DMU 
performance is either similar or better than the SLR and RF method. In NCR settings, RF 
gave the best performance, but DMU performance is better or similar to SLRM. Overall, 
these results suggest that the DMU can develop better or at par models as compared to 
SLR and SLRM based models for datasets with values missing completely at random. 
The results are validated in higher feature space (p = 100), where DMU MSE for SCR is 
0.16 (1.27 MSE(DMU)/MSE(mean imputation)) but SLRM MSE for SCR is 0.23. KNN 
and RF imputation performed better with MSE of 0.13. In case of NCR, DMU MSE per-
formance of 0.13 is comparable with RF imputation MSE performance of 0.13 and better 
than SLRM MSE performance of 0.47.

Table  2 provides the computation time for different methods on a system with 
processor Intel® Core(TM) i7-8750H CPU@2.20  GHz with 16  GB RAM on a Win-
dows 10 64-bit operating system. We use the SCR scenario and three different feature 
spaces (p), i.e., 20, 25 and 30, to estimate time. It is found that DMU with optimized 

Table 1  MSE performance of different methods in simulated datasets after adjusting for mean 
imputation performance

SLR Simple Linear Regression, KNN k Nearest Neighbors based Imputation, SLRM Simple Linear Regression combined with 
imputation, RF Random Forest-based Imputation, DMU Dynamic Model Updating, SCR Some Complete Rows in training 
data, NCR No Complete Rows in training data, CI Confidence Interval

Settings p Average (MSE (Method)/MSE (Mean Imputation) (S = 30)

SLR (95% CI) KNN (95% CI) SLRM (95% CI) RF (95% CI) DMU (95% CI)

SCR 20 1.03 (0.9–1.17) 1 (0.88–1.12) 2.03 (1.81–2.26) 1.17 (1.06–1.28) 0.99 (0.88–1.1)

25 1.2 (1.05–1.35) 0.97 (0.86–1.08) 2.01 (1.8–2.22) 1.12 (1.02–1.22) 1.08 (0.97–1.2)

30 1.44 (1.24–1.63) 0.98 (0.86–1.09) 1.95 (1.77–2.13) 1.1 (1.01–1.18) 0.98  (0.90–1.06)

NCR 20 – – 1.89 (1.69–2.1) 1.1 (1.01–1.2) 1.29 (1.19–1.38)

25 – – 2.07 (1.85–2.29) 1.12 (1.03–1.22) 1.59 (1.47–1.71)

30 – – 1.83 (1.62–2.04) 1.05 (0.96–1.13) 1.73 (1.6–1.87)



Page 5 of 15Jain and Xu ﻿BMC Bioinformatics          (2021) 22:221 	

hyperparameters and SLRM takes a similar computation time which is less than ran-
dom forest and kNN based imputation but more than SLR.

Real data studies

Furthermore, the study compares the proposed regression method with SLR and 
SLRM using two real-world datasets. Dataset I is Community Health Status Indi-
cators dataset which contains USA county-level data on various demographics and 
health parameters to help in making informed decisions in combating obesity, heart 
disease and cancer [19]. The dataset contains data on 578 features for 3141 US coun-
ties. Dataset II is Study of Women’s Health Across the Nation, 2006–2008 dataset 
which contains multi-site data for middle-aged women in the USA on various physi-
cal, biological, psychological and social parameters [20]. The dataset contains data on 
887 features for 2245 respondents.

These datasets are processed and cleaned to remove textual or categorical variables. 
One of the shortlisted variables is used as the outcome variable and remaining varia-
bles are used as predictors. Different scenarios are created using these two datasets, as 
shown in Table 3. The maximum correlation allowed between the predictors in each sce-
nario is ± 0.52. Different predictors have a different percentage of missing values; thus, 
the maximum percentage of missing values is defined for each scenario. For example, 
in Scenario 1, predictors up to 10% of missing values is selected for model building. It is 
possible to have datasets in real-world settings where no single row has data for all the 
predictors. Hence, the study tried to recreate the settings by testing the performance of 
the methods in two different settings. In the first setting, some complete rows (SCR) are 
added into training dataset. In the second setting, no complete row (NCR) is added in 
the training dataset. In both settings, the test dataset only comprised of compete rows. 
Since SLR could be performed only on rows with complete data, so this method is not 
applied to scenarios with no complete rows in the training dataset. All three methods are 
compared based on their prediction performance in the test datasets.

Table 4 and Additional file 2: Table S2 provides the performance of different meth-
ods on two real datasets. The results are like those obtained in the simulated datasets. 
The proposed DMU approach provides better or at par MSE performance as com-
pared to other methods. The performance is consistent across different proportions 
of missing data, but increased sample size in training data improves the performance 
of all the approaches. NCR seems to increase the MSE of the methods.

Table 2  Comparison of computation time for different methods in SCR scenario

SLR Simple Linear Regression, KNN k Nearest Neighbors based Imputation, SLRM Simple Linear Regression combined with 
imputation, RF Random Forest-based Imputation, DMU Dynamic Model Updating, SCR Some Complete Rows in training 
data

p Scenario Computation time (s)

SLR KNN SLRM RF DMU

20 SCR 0.008 36.719 3.527 52.926 0.866

25 SCR 0.044 50.989 5.637 76.500 1.376

30 SCR 1.080 72.720 8.161 89.743 10.794
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Real data studies: genomic data

The study also compares the proposed regression method with SLR, SLRM, kNN and 
RF using a real-world genomic dataset. A Genomics of Drug Sensitivity in Cancer 
(GDSC) dataset containing copy number variations (CNV) in 24,503 genes and inhib-
itory concentrations (IC50) of cancer drugs for 946 cell line samples is used [21]. We 
selected Devimistat (CPI-613) drug IC50 as the clinical outcome and CNV as input 
feature space. The drug is known to reduce the aggressiveness of pancreatic cancer by 
inhibiting the tricarboxylic acid cycle and Is currently in Phase III clinical trial [22].

The dataset is processed and cleaned to remove input features with duplicated val-
ues, high correlation and no missing value. The reduced dataset contains 42 input 
features with 911 samples. The dataset is randomly split into 80% training data and 
20% test data. Around 30% of the input feature values from each input features is ran-
domly removed from the training data. The performance of the different method is 
compared for both SCR and NCR scenarios over five trials. In the case of SCR, 50 

Table 3  Summary of the real datasets

Scenario Dataset Correlation Maximum 
missing 
(%)

Complete 
row

Predictors Outcome 
variable

Sample size (n)

Total Train Test

1 I  ± 0.52 10 Yes 27 Percent-
age of 
unhealthy 
days

2596 1432 1164

2  ± 0.52 20 Yes 30 Percent-
age of 
unhealthy 
days

2596 1571 1025

3  ± 0.52 30 Yes 32 Percent-
age of 
unhealthy 
days

2596 1793 803

4  ± 0.52 10 No 27 Percent-
age of 
unhealthy 
days

2596 267 2329

5  ± 0.52 20 No 30 Percent-
age of 
unhealthy 
days

2596 546 2050

6  ± 0.52 30 No 32 Percent-
age of 
unhealthy 
days

2596 990 1606

7 II  ± 0.52 10 Yes 5 Body Mass 
Index

1947 1000 947

8  ± 0.52 20 Yes 20 Body Mass 
Index

1947 1162 785

9  ± 0.52 30 Yes 21 Body Mass 
Index

1947 1242 705

10  ± 0.52 10 No 5 Body Mass 
Index

1947 52 1895

11  ± 0.52 20 No 20 Body Mass 
Index

1947 376 1571

12  ± 0.52 30 No 21 Body Mass 
Index

1947 536 1411
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samples are randomly added to training data. It is found that DMU outperformed all 
other methods (Table 5).

Discussion
Handling missing data during model building is a challenge that this study addresses 
using a new perspective. DMU allows building the model from samples with partial 
information rather than removing samples with partial information or imputing infor-
mation. DMU performance is better than complete case analysis and predictive mean 
matching based imputation when applied in linear regression.

The proposed method has certain limitations. First, the comprehensiveness of the 
DMU testing is limited. The model is not tested on different datasets like datasets con-
taining categorical outcome, time to event outcome, categorical predictors. Similarly, it 
did not consider high correlation variables, interaction terms and different continuous 
distributions like exponential and logarithmic. Thus, our approach could be considered 
for datasets with continuous marginal features and outcome with low correlation among 
the features. Future studies have scope to determine the robustness of the DMU in dif-
ferent data settings.

Table 4  Performance of different methods on the real datasets

SLR Simple Linear Regression, KNN k Nearest Neighbors based Imputation, SLRM Simple Linear Regression combined with 
imputation, RF Random Forest-based Imputation, DMU Dynamic Model Updating

Scenario Dataset MSE (Method)/MSE (Mean Imputation)

SLR kNN SLRM RF DMU

1 I 0.36 1.05 0.37 2.41 0.16

2 I 0.34 1.08 0.43 1.56 0.15

3 I 0.43 0.95 0.74 1.11 0.07

4 I – – 1.69 1.42 0.71

5 I – – 0.91 1.27 0.19

6 I – – 1.18 1.51 0.05

7 II 0.84 0.96 0.84 1.00 0.84

8 II 0.33 0.99 0.38 0.62 0.32

9 II 0.25 0.88 0.31 0.57 0.24

10 II – – 0.44 0.85 0.35

11 II – – 0.87 0.58 0.33

12 II – – 0.69 0.50 0.36

Table 5  Performance of different methods on the real genomic dataset

SLR Simple Linear Regression, KNN k Nearest Neighbors based Imputation, SLRM Simple Linear Regression combined with 
imputation, RF Random Forest-based Imputation, DMU Dynamic Model Updating, SCR Some Complete Rows in training 
data, NCR No Complete Rows in training data, CI Confidence Interval

Technique Average (MSE (Method)/MSE (Mean Imputation) (S = 5)

NCR (95% CI) SCR (95% CI)

SLR (95% CI) – 7.24 (1.03–13.46)

KNN (95% CI) – 1.00 (0.99–1.01)

SLRM  (95% CI) 0.98 (0.97–1.00) 0.98 (0.97–1.00)

RF (95% CI) 1.03 (0.99–1.06) 1.01 (0.99–1.02)

DMU (95% CI) 0.92 (0.86–0.98) 0.97 (0.92–1.02)
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Another limitation of the study is the computational intensiveness, especially in 
cases where the number of subgroups is not pre-defined. In such cases, computational 
resources need to be spent identifying the best value of k by creating multiple models. 
The study uses a genetic algorithm to address the problem. Various other optimization 
algorithms like swarm optimization and simulated annealing can be explored in address-
ing the problem.

Conclusion
An innovative approach is proposed for building statistical models with missing data. 
DMU approach divides the dataset with missing values into smaller subsets of complete 
data followed by preparing and updating the Bayesian model from each of the smaller 
subsets. The approach provides a different perspective of building models with miss-
ing data using available data as compared to the existing perspective in the literature of 
either removing missing data or imputing missing data. The approach is more flexible as 
compared to existing approaches as it can update the old models with new data without 
a need to retain the old data. Secondly, DMU does not depend on the association among 
the predictors for imputing data. Hence, MU can update the models even when the new 
dataset contains an incomplete list of predictors.

Methodology
In this section, first CCA and Predictive Mean Matching (PMM) based imputation are 
described, followed with the dynamic model updating (DMU) method.

Complete case analysis (CCA)

Complete Case Analysis is a common approach used in handling the missing data. This 
approach omits all the samples with missing data. CCA builds a statistical model from 
the remaining samples with complete data (or, complete cases). The approach perfor-
mance is affected when many samples are omitted [23], or data is not missing completely 
at random [1].

Predictive mean matching (PMM) based imputation

Predictive Mean Matching is a common approach for imputing missing data in MCAR 
cases. It is a robust approach which assigns an observed value to the missing case. In this 
approach, the predictor with missing values (Xmiss) is regressed on the predictor/s with 
complete values (Xobs):

where β = βo, β1,… are estimates of regression coefficients and used to get estimated val-
ues of Xmiss. Once the estimated values of Xmiss are obtained, these values are replaced 
with the closest observed value of Xmiss in the dataset. Multiple imputed datasets are 
created by randomly sampling one of the k closest value, instead of the closest value, 
for each of estimated value of Xmiss in the dataset. k is usually in the range of 1–10. This 
approach is implemented in MICE package in R, where the default value of k is 5 [8]. 
One of the limitations of this approach is that it always imputed data from the observed 

(5)Xmiss = β0 + β1Xobs + . . .
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values. Thus, in cases where the missing values are in the tail of a distribution, PMM may 
have biased imputation [24].

Dynamic model updating (DMU) approach

PMM based imputation is a popular and robust approach for handling MCAR and MAR 
types of missing data, but it has certain limitations. The DMU approach (Algorithm 1) 
proposes a different perspective of handling the missing data. While any imputation 
approach focuses on replacing the missing value with a predicted value to complete the 
information, DMU approach focuses on building the model on incomplete information 
rather than on imputed information. The basic framework is to divide the dataset into 
smaller datasets containing a smaller number of predictors but complete information, 
and sequentially build the model for each dataset followed by updating the estimates of 
the predictors after each model, as shown in Fig. 1. It is explained in more details below.

Algorithm: Dynamic Model Updating

I Slice the original dataset D with p features to create set d of k datasets, such that:
dkhasnomissingvalues,
dk ⊂ D,
⋂

(dl , dm) = ∅|dl , dm ∈ d and l �= m

II Sequentially perform Bayesian Regression on each dataset k to get posterior estimate, 
{ β̂j |j = {1, . . . , p} . The posterior estimate of β̂j after k-1th dataset is used as the prior esti-
mate for kth dataset

Fig. 1  Graphical representation of the Model Updating concept
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Dataset fragmentation

A dataset, D with p predictor space and n total number of samples containing complete 
outcome data and incomplete predictor data is fragmented into k smaller datasets.

where aij (s.t. i Є [1, n] and j Є [1, p]) represents the element in dataset D. M represents 
the element with the missing value. Each of the k smaller datasets of D has no missing 
value but may have reduced predictor space and sample size.

where k is the number of subsets in which dataset D is divided and d is the set contain-
ing k smaller datasets. The d set is created such that any of its two elements are mutually 
exclusive to each other. Any dataset, dl will have maximum p predictors and n samples. 
arc is an element in the dataset dl.

Hierarchical clustering

Different approaches can segment dataset D into smaller datasets. Literature provides 
different clustering approaches which can be broadly classified into four types, namely 
centroid-based, density-based, distribution-based or model-based and connectivity-
based [25]. Centroid-based clustering focuses on partitioning samples into clusters with 
the nearest mean or median [26]. They provide local optima rather than global optima 
[27]. K-mean clustering is an example of the centroid-based clustering [27]. Density-
based clustering focuses on partitioning the samples into clusters with a higher density 
than the remainder of the samples [28]. Hence many samples may not be assigned any 
cluster. DBSCAN is an example of the density-based clustering [28].

Distribution-based clustering focuses on partitioning the samples into clusters 
with similar statistical distribution [29]. They suffer from convergence to local 
optima and overfitting [30]. Gaussian mixture models is an example of distribution-
based clustering [29]. Connectivity-based clustering or hierarchical clustering parti-
tions the samples based on the distance of a sample with other samples. The similar 
samples have lower distance among them as compared to dissimilar samples. It does 
not provide a single set of clusters rather a hierarchy of clusters based on the thresh-
old distance value used to partition the data [31]. It is a computationally intensive 
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approach [32]. The current study uses hierarchical clustering to partition dataset D. 
Hierarchical clustering does not have the issue of local optimum, avoids rejection of 
sparse samples and does not require the prior knowledge of statistical distribution 
model for samples.

Subgroup construction

The predictor space of dataset D is split into k subgroups using hierarchical clustering 
technique (Fig. 2). The clustering technique needs to classify the samples in D based on 
the similarity (or, dissimilarity) in the missingness pattern. The dataset D contains mix-
tures of missing values and non-missing values. The magnitude of non-missing values 
can influence the clustering computation since hierarchical clustering techniques rely 
upon the distance between the samples. The magnitude effect of non-missing values is 
eliminated by transforming the predictor space of dataset D into binary data where a 
value zero is assigned to a missing value and one is assigned to non-missing values as 
shown below:

where Dij represents the original dataset with n samples and p predictors, M represents 
the missing values and Bin.Dij represents the binary transformation of Dij matrix. Hier-
archical clustering of Bin.Dij is performed. The n rows are used as samples which are to 
be clustered with p-dimensional data.

The number of clusters selected from the hierarchical clustering represents the total 
number of subgroups, k in which dataset D is divided. k is the hyperparameter which 
determines the number of subgroups used in model building and is user-defined.

Model building

The model building step relies upon the Bayesian paradigm and the assumption that 
predictors are independent of each other. The Bayesian paradigm focuses on finding the 
distribution of the parameter estimate of a predictor [33]. The Bayesian paradigm takes 
the prior belief about the distribution of parameter estimate. This prior belief is updated 
to give the posterior distribution of parameter estimate of a predictor with likelihood 
estimate using the data. The posterior distribution of the parameter estimate of a predic-
tor from the previous model can be used as a prior belief for the next model. If the con-
secutive model contains the same predictor, the prior distribution will then be updated; 
else it will not. Bayesian regression is used to create a model for each of the dataset, dl. 
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Dynamically, the posterior probability of one model is used as the prior probability for 
the next model. Only, for the first model, the prior probability for each predictor need to 
be pre-specified.

Fig. 2  Graphical representation of Subgroup Construction. M Mi
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Hyperparameter selection

The hyperparameter k, i.e., the total number of subgroups, in the model is user-
defined. However, it may not always be possible to know the optimum k. In such a 
scenario, the DMU method could be run for all the possible values of k, i.e. from 1 
to n, which will generate n different models. The model with the best performance is 
selected as the final model. Researchers can define the performance metric used for 
selecting the model and, consequently, k. In the current study, the performance met-
ric used to evaluate different models is the root mean square error of the model on 
the test dataset or unknown dataset.

In large datasets, the hyperparameter selection can become computationally intensive. 
Accordingly, it is desirable to incorporate an optimization algorithm to increase speed 
and reduce computation intensiveness. Various types of optimization algorithms exist 
in the literature [34, 35]. The current study chooses Genetic Algorithm (GA), which is a 
metaheuristic algorithm that does not perform differentials. The algorithm is inspired by 
the natural evolution process which occurs in living organisms. In summary, GA starts 
with an initial population (or, samples) from the search space and determines their fit-
ness (or, performance). Some samples are selected based on their fitness value as the par-
ent population, which influence the offspring population (or new samples). The algorithm 
relies upon the crossover (recombining the parameter values of the selected pair of par-
ent population) for convergence and mutation (random change in the parameter value 
of the selected pair of parent population) for divergence in the offspring population. This 
process undergoes iteration until the desirable or best performance is achieved. One of 
its limitations is that it may get stuck in local optimum, but it can provide a good solu-
tion for a diversity of problems [36]. In the current study, GA population is the value of 
k and fitness function is the root mean square error obtained by the Bayesian regression 
for test dataset.

Abbreviations
CCA​: Complete case analysis; DMU: Dynamic model updating; GA: Genetic Algorithm; K-NN: K-Nearest Neighbors; MCAR​
: Missing completely at random; MCMC: Markov Chain Monte Carlo; MSE: Mean square error; NCR: No complete row; 
PMM: Predictive mean matching; SCR: Some complete rows; SLR: Simple linear regression; SLRM: Simple linear regression 
combined with imputation.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04138-z.

Additional file 1. Table S1: MSE performance of different regression methods in simulated datasets.

Additional file 2. Table S2: MSE performance of different regression methods in real datasets.

Acknowledgements
Not applicable.

Authors’ contributions
All authors have read and approved the manuscript. Conceptualisation: RJ, WX. Formal Analysis: RJ. Investigation: RJ. 
Methodology: RJ, WX. Software: RJ. Supervision: RJ, WX. Validation: RJ, WX. Writing-original draft: RJ. Writing-review and 
editing: RJ, WX.

Funding
W.X. was funded by Natural Sciences and Engineering Research Council of Canada (NSERC Grant RGPIN-2017-06672) 
as principal investigator, R.J. and W.X. were funded by Prostate Cancer Canada (Translation Acceleration Grant 2018) as 
trainee and investigator. The funding sources were not involved in study design, in the collection, analysis and interpreta-
tion of data; in the writing of the report; and in the decision to submit the article for publication.

https://doi.org/10.1186/s12859-021-04138-z


Page 14 of 15Jain and Xu ﻿BMC Bioinformatics          (2021) 22:221 

Availability of data and materials
All the datasets and code are in the GitHub link: https://​github.​com/​rahij​aingi​thub/​DMU.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biostatistics Department, Princess Margaret Cancer Research Centre, Toronto, ON, Canada. 2 Dalla Lana School of Public 
Health, University of Toronto, Toronto, ON, Canada. 

Received: 30 September 2020   Accepted: 19 April 2021

References
	1.	 White IR, Carlin JB. Bias and efficiency of multiple imputation compared with complete-case analysis for missing 

covariate values. Stat Med. 2010;29:2920–31.
	2.	 Glas CAW. Missing data. In: Peterson P, Baker E, McGaw B, editors. International Encyclopedia of Education. 3rd ed. 

Amsterdam: Elsevier; 2010. p. 283–8.
	3.	 Kalton G, Kish L. Two efficient random imputation procedures. In: Proceedings of the survey research methods sec-

tion. 1981. p. 146–51.
	4.	 Grzymala-Busse J, Goodwin L, Grzymala-Busse W, Zheng X. Handling missing attribute values in preterm birth data 

sets. In: Proceedings of 10th international conference of rough sets and fuzzy sets and data mining and granular 
computing (RSFDGrC). 2005. p. 342–51.

	5.	 Little RJA, Rubin DB. The analysis of social science data with missing values. Sociol Methods Res. 1989;18:292–326.
	6.	 Maxwell BAE. Limitations on the use of the multiple linear regression model. Br J Math Stat Psychol. 1975;28:51–62.
	7.	 Rubin DB. Multiple imputation for nonresponse in surveys. New York: Wiley; 1987.
	8.	 van Buuren S, Groothuis-Oudshoorn K. mice: Multivariate imputation by chained equations in R. J Stat Softw. 

2011;45:1–67.
	9.	 Tilling K, Williamson EJ, Spratt M, Sterne JAC, Carpenter JR. Appropriate inclusion of interactions was needed to 

avoid bias in multiple imputation. J Clin Epidemiol. 2016;80:107–15.
	10.	 Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, et al. Missing value estimation methods for DNA 

microarrays. Bioinformatics. 2001;17:520–5.
	11.	 Li D, Deogun J, Spaulding W, Shuart B. Towards missing data imputation: a study of fuzzy K-means clustering 

method. In: Proceedings of 4th international conference of rough sets and current trends in computing (RSCTC). 
2004. p. 573–9.

	12.	 Sim J, Lee JS, Kwon O. Missing values and optimal selection of an imputation method and classification algorithm to 
improve the accuracy of ubiquitous computing applications. Math Probl Eng. 2015;2015:1–14.

	13.	 Bertsimas D, Pawlowski C, Zhuo YD. From predictive methods to missing data imputation: an optimization 
approach. J Mach Learn Res. 2018;18:1–39.

	14.	 Stekhoven DJ, Bühlmann P. Missforest-non-parametric missing value imputation for mixed-type data. Bioinformat-
ics. 2012;28:112–8.

	15.	 Ward RM, Schmieder R, Highnam G, Mittelman D. Big data challenges and opportunities in high-throughput 
sequencing. Syst Biomed. 2013;1:29–34.

	16.	 Martin AD, Quinn KM, Park JH. MCMCpack: Markov Chain Monte Carlo in R. J Stat Softw. 2011;42:1–21.
	17.	 Kowarik A, Templ M. Imputation with the R package VIM. J Stat Softw. 2016;74:1–16.
	18.	 Scrucca L. GA: a package for genetic algorithms in R. J Stat Softw. 2013;53:1–37.
	19.	 Centers for Disease Control and Prevention. Community Health Status Indicators (CHSI) to combat obesity, heart 

disease and cancer. Healthdata.gov. https://​healt​hdata.​gov/​datas​et/​commu​nity-​health-​status-​indic​ators-​chsi-​com-
bat-​obesi​ty-​heart-​disea​se-​and-​cancer.

	20.	 Sutton-Tyrrell K, Selzer F, Sowers M, Finkelstein J, Powell L, Gold E, et al. Study of Women’s Health Across the Nation 
(SWAN), 2006–2008: visit 10 dataset. Inter-university Consortium for Political and Social Research. https://​doi.​org/​10.​
3886/​ICPSR​32961.​v2

	21.	 Wellcome Sanger Institute. Genomics of Drug Sensitivity in Cancer. Cancerrxgene.org. 2013. https://​www.​cance​
rrxge​ne.​org/​downl​oads/​bulk_​downl​oad.

	22.	 Philip PA, Buyse ME, Alistar AT, Lima CM, Luther S, Pardee TS, et al. A phase III open-label trial to evaluate efficacy and 
safety of CPI-613 plus modified FOLFIRINOX (mFFX) versus FOLFIRINOX (FFX) in patients with metastatic adenocar-
cinoma of the pancreas. Futur Oncol. 2019;15:3189–96.

	23.	 Altman DG, Bland JM. Missing data. Br Med J. 2007;334:424.
	24.	 Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean matching and local residual draws. 

BMC Med Res Methodol. 2014;14:1–13.

https://github.com/rahijaingithub/DMU
https://healthdata.gov/dataset/community-health-status-indicators-chsi-combat-obesity-heart-disease-and-cancer
https://healthdata.gov/dataset/community-health-status-indicators-chsi-combat-obesity-heart-disease-and-cancer
https://doi.org/10.3886/ICPSR32961.v2
https://doi.org/10.3886/ICPSR32961.v2
https://www.cancerrxgene.org/downloads/bulk_download
https://www.cancerrxgene.org/downloads/bulk_download


Page 15 of 15Jain and Xu ﻿BMC Bioinformatics          (2021) 22:221 	

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	25.	 Jain AK, Topchy A, Law MHC, Buhmann JM. Landscape of clustering algorithms. In: Proceedings of the 17th interna-
tional conference on pattern recognition, 2004. IEEE; 2004. p. 260–3.

	26.	 Uppada SK. Centroid based clustering algorithms—A Clarion Study. Int J Comput Sci Inf Technol. 2014;5:7309–13.
	27.	 Steinley D. K-means clustering: a half-century synthesis. Br J Math Stat Psychol. 2006;59:1–34.
	28.	 Kriegel HP, Kröger P, Sander J, Zimek A. Density-based clustering. Wiley Interdiscip Rev Data Min Knowl Discov. 

2011;1:231–40.
	29.	 Zhong S, Ghosh J. A unified framework for model-based clustering. J Mach Learn Res. 2003;4:1001–37.
	30.	 Andrews JL. Addressing overfitting and underfitting in Gaussian model-based clustering. Comput Stat Data Anal. 

2018;127:160–71.
	31.	 Theodoridis S, Koutroumbas K. Pattern recognition. 4th ed. Academic Press; 2009.
	32.	 Du Z, Lin F. A novel parallelization approach for hierarchical clustering. Parallel Comput. 2005;31:523–7.
	33.	 Bolstad WM. Introduction to bayesian statistics. 1st ed. Wiley; 2011.
	34.	 Arora RK. Optimization: algorithms and applications. CRC Press; 2015.
	35.	 Yang X. Optimisation and metaheuristic algorithms in engineering. In: Yang XS, Gandomi AH, Talatahari S, Alavi AH, 

editors. Metaheursitics in water, geotechnical and transport engineering. Elsevier; 2013. p. 1–23.
	36.	 Whitley D. A genetic algorithm tutorial. Stat Comput. 1994;4:65–85.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	Dynamic model updating (DMU) approach for statistical learning model building with missing data
	Abstract 
	Background: 
	Method and results: 
	Conclusion: 

	Background
	Results
	Simulation studies
	Real data studies
	Real data studies: genomic data

	Discussion
	Conclusion
	Methodology
	Complete case analysis (CCA)
	Predictive mean matching (PMM) based imputation
	Dynamic model updating (DMU) approach
	Dataset fragmentation
	Hierarchical clustering
	Subgroup construction

	Model building
	Hyperparameter selection

	Acknowledgements
	References


