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Background
Proteins forming amyloid structures have long been a subject of intensive research 
because of their association with the neurodegenerative diseases. Recently, there has 
been ever increasing interest in functional amyloids involved in normal physiologi-
cal processes, for example, in establishing bio-films and membrane-less organelles, 
and in transmitting molecular signals. In general, the amyloids are defined in terms 
of the physical structure of cross-β polymer [1–3]. The essential feature of known 
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amyloid proteins are short amino-acid motifs facilitating aggregation into a beta-
sheet-like structure [4, 5]. The templating mechanism of forming amyloid fibrils can 
be exploited for acting as a prion. The prions are defined in terms of the function of 
infectious propagation. Indeed, amyloid proteins can act as prions capable of infec-
tious propagation through imposing their own spatial structure on other proteins 
[3]. A well-known example is the [Het-s] prion from Podospora anserina [6, 7]. It is 
closely related to an ancient signaling pathway of which the amyloid-forming motif is 
a key element [3, 8, 9]: related motifs were identified in metazoa [10, 11], fungi [12] 
and bacteria [13]. At least some of these sequence motifs of roughly 20 amino acids 
form a beta arch fold [14] and often they contain polar amino acids: asparagine and 
glutamate [15]. Despite these common features, the already identified amyloid signal-
ing motifs (ASM) in bacteria and fungi exhibit high sequence diversity beyond notice-
able homology [12, 13]. Is it therefore possible to define universal rules to be obeyed 
by sequences of functionally-related yet non-homologous ASM? Such a model would 
allow to identify new amyloid signaling motifs in ever growing data sets of genomic 
sequences. Moreover, it could facilitate better understanding of mechanisms of con-
formation transmission and aggregation.

Evolutionary related sequence families are traditionally modeled with the profile Hid-
den Markov Models (pHMM) [16, 17]. As they assume sequence homology and rely 
their training process on the multiple sequence alignment (MSA), pHMMs are less 
suited for modeling diverse collections and meta-family of motifs. Moreover, their dis-
criminative power is limited, especially for short sequences, as amino acid distribution 
at each position in the alignment is modeled separately.

There exist also various methods dedicated to recognition of amyloidogenic regions 
of protein sequences [18–22]. They are mainly based on statistical properties of hun-
dreds of hexa-peptides confirmed experimentally to aggregate into amyloid-like fibrils 
[23]. Unfortunately, these methods often fail to detect functional prion-related amyloid 
motifs. Indeed, it seems that the amino acid composition of prions has to differ from 
that of typical amyloids in order to balance water soluble and aggregated state in physi-
ological conditions. This led to developing dedicated prion predictors [15, 24, 25]. One 
of such algorithms, pWALTZ [15] relies on the model of prion sequence as an amyloido-
genic core (or aggregation seed) within a disordered region. Yet, these methods still miss 
a considerable fraction of HET-s related ASMs. One apparent feature of the motifs that 
is missing from these models is the propensity to forming the beta-arch structure. This is 
specifically addressed by ArchCandy [26], a method for detecting beta-arches in protein 
sequences.

In this piece of research we propose a method aiming at exploiting benefits of beta-
arch detection and amyloidogenic composition in a single elegant model. We present 
a model based on the Probabilistic Context-Free Grammar (PCFG), which extends the 
profile Hidden Markov Model with capability to capture some dependencies between 
distant positions in the sequence [27–32]. PCFG is well suited to model nested depend-
encies resulting from interactions between strands involved in the beta-turn-beta struc-
tures (cf. [33]), as recently demonstrated for the HET-s motif [34]. In the same work, the 
PCFG model was shown to be capable of generalizing between two apparently heter-
ologous architectures of Calcium binding sites [34]. Importantly, the PCFG model does 
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not assume evolutionary relationship between the sequences, as it does not rely on the 
multiple sequence alignment.

In [34], the grammars were trained with the genetic algorithm in a setup that signifi-
cantly limited the number of rules and thus complexity of the model. Here, we propose 
to use statistical learning, the Inside–Outside (IO) algorithm [35] that allows for training 
much larger grammars. While the IO algorithm is considered more prone to converge to 
local minima [36], the benefit of extending the rule set many fold seems to be an over-
whelming advantage when describing more complex languages.

The main contributions of the paper are as follows. First, we show that in grammati-
cal modeling of protein sequences, statistical learning leads to comparable or better 
results than the previously used method of evolutionary learning, while being incom-
parably quicker. Second, we report on a benefit of smoothing learned profiles of amino-
acid emissions represented with the lexical rules. Third, we show that the PCFG model 
is capable of representing individual families of amyloid signaling motifs, and is practi-
cal in searching them in sequence databases. Fourth, we present our main result: the 
model that generalizes over various amyloid signaling motif families, obtained by train-
ing a common PCFG for a set of ten motif families from bacteria. This universal model 
is then validated by searching for already known fungal ASMs. In this application, the 
PCFG-based approach is compared to seven other methods. Fifth, we experimentally 
verify spectroscopic and microscopic characteristics of selected diverse motifs detected 
with the PCFG model.

Methods
Computational methods

Probabilistic Context-Free Grammar (PCFG) is a generative probabilistic model of 
sequential categorical data [27]. Under the model, sequences are derived from the start 
symbol using rewriting rules, associated with some probabilities, until all remaining sym-
bols are non-derivable (or terminal). Formally, PCFG is a quintuple G = ��,V , v0,R, θ� , 
where � (alphabet) is a set of terminal symbols, V is a set of non-terminal symbols (vari-
ables) disjoint from � , v0 ∈ V  is a start symbol, R is a set of production rules rewriting 
variables into strings of variables and/or terminals, and θ is a set of corresponding rule 
probabilities. An illustrative toy example of PCFG modeling a subfamily of beta-hairpin 
protein sequences can be found in [34]. A probabilistic grammar is proper if rule prob-
abilities sum up to 1 over rules rewriting the same variable. A complete derivation is a 
chain of rules beginning with v0 and finishing with a string of terminal symbols. Each 
derivation can be represented as a parse tree. The probability of derivation is the product 
of probabilities of rules involved. In turn, probability of a sentence x given G is the sum 
over all derivations that generate x. The grammar is called consistent if the probability 
mass distributed by the grammar over all sentences sums up to 1. Language is a set of all 
sentences that can be derived according to the grammar.

Each context-free grammar (whether probabilistic or not) that does not gener-
ate empty sentences can be translated to the Chomsky Normal Form (CNF) [37]. This 
canonical form implies that production rules are either in the form A → a (lexical 
rules) or B → CD (structural rules), where lowercase letters denote terminal symbols, 
while uppercase—non-terminal symbols. In addition, each CNF grammar that does not 
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generate single letter sentences can be translated to the form where the sets of variables 
that can be rewritten with the lexical and the structural rules are disjoint. We call such 
a grammar form bipartite CNF, and denote the two groups of variables as lexical and 
structural non-terminals, respectively [38].

Context-free grammars are suitable to represent branching and nesting in syntactic 
description of sequences, but CNF makes the latter unnecessarily lengthy. It is therefore 
convenient to extend the CNF with contact rules, which rewrite variables into triples 
made of lexical, structural, and lexical non-terminals. This grammar form called Chom-
sky Form with Contacts (CFC) is especially suitable to represent pairs of amino acids 
in contact [34]. Since spatial proximity of residues often generates mutual constraints, 
using a contact rules that generates both residues at once is an effective way to model 
their dependency.

A parse tree generated with CFG for a protein sequence can be compared to the con-
tact map if corresponding spatial structure is available [38]. However, the PCFG sums 
the probabilities over all parse trees derivable for the given sequence. Indeed, the most 
likely parse tree often does not approximate well the most likely shape of all such parse 
trees [39]. Fortunately, in the case of grammars in the CFC form, it is possible to calcu-
late the probability map of parsing a pair of residues through the contact rules (referred 
later as probability map of pairing). It can be reasonably expected that residues in con-
tact are often generated with the contact rules. Instead of searching for the most likely 
shape of parse trees, as used in the RNA structure prediction [40], we propose the prob-
ability map of pairing for the best matching sequence fragment as a coarse and partial 
prediction of spatial distance map for the fragment.

Probabilities of PCFG rules can be inferred from a positive training set of sequences 
using the Inside–Outside (IO) algorithm [35], which implements the Expectation-Maxi-
mization scheme [41]. The algorithm can quickly handle thousands of rules but is prone 
to converge to local minima [42]. When applied to large generic set of rules constituting 
a covering grammar, the process of optimizing rule probabilities of which most eventu-
ally become zero, is akin to learning grammar. The most popular alternatives to IO are 
based on Genetic Algorithms (GA) using either a fixed set of rules [31, 43], as in the case 
of IO, or learnable set of rules [36, 44–46].

Efficiency of learning PCFG can be improved when syntactic trees [28, 29, 47–49] or 
partial syntactic constraints are available [50, 51]. Recently, we proposed using pairwise 
contacts between amino acids to constrain the GA-based learning of PCFG in CFC form 
for protein motifs. We showed that even a few relevant contacts led to learning better 
performing grammars [34].

The outline of the processing pipeline, as proposed and tested in this study, is pro-
vided in Additional file 2: Figure S1. Newly added features are described in the “Results” 
section.

Materials

Computational experiments were carried out using several sets of protein sequences 
(Additional file 1: Datasets). The collections included existing samples, which were used 
to benchmark the improved method against the previous approach, and novel samples 
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of diverse amyloid signaling motifs, which were used to test capability of the current 
method to generalize.

CaMn A benchmark set of 24 sequences of a Calcium and Manganese binding site 
from the legume lectins [52] was collected according to PROSITE pattern PS00307 [53] 
true positive and false negative hits, extended to 27 residues to cover the entire binding 
site, as in [34, 38]. The motif folds into a stem-like (beta-loop-beta) structure with over 
40 internal contacts, many of them forming nested dependencies keeping together beta-
strands at the ends of the motif [54]. The sequences were made non-redundant at iden-
tity of 70% (nr70) using CD-HIT [55].

HET-s A benchmark set of 160 sequences (nr70) of the HET-s-related motifs r1 and r2 
involved in the prion-like signal transduction in fungi was derived from [56]. The largest 
subset of motifs with length of 21 amino acids was used, as in [34, 38]. The beta-hairpin-
like fold of the motif partially relies on interactions between hydrophobic amino acids. 
HET-s motifs r1 and r2 are known to adopt the beta-hairpin-like fold when templated 
by the related motif r0 located in the N-terminus of a cooperating NLR protein [57]. 
While the r0 motifs share a considerable sequence similarity with the interacting r1 and 
r2 motifs (average identity of around 30%), they contain significantly less aspartic acid, 
glutamic acid and lysine, and more histidine and serine [56]. A set of 98 HET-s r0 motifs 
was manually extracted from genes of NLR proteins adjacent to genes encoding proteins 
containing the r1 and r2 motifs [56]. To test sensitivity of the models trained for the 
r1 and r2 motifs, we used a subset of 77 non-redundant 21-residue long r0 motifs, as 
in [34]. HET-s is the only analyzed motif with experimentally solved structure. A high-
resolution NMR structure of HET-s amyloid fibrils made of the r1 and r2 motifs from 
Podospora anserina sequence Q03689 is available in the Protein Data Bank (pdb: 2kj3) 
[58].

BASS Novel families of bacterial amyloid signaling motifs, termed BASS 1 to 10, were 
identified in neighboring C-termini of Bell domain homologs and N-termini of NLR 
proteins in bacteria [13]. Each family was defined according to a set of related profile 
HMMs. For the current piece of research, for each motif family we extracted fragments 
of Bell-side sequences matched by the motif profile HMMs. Then, we aligned them using 
Clustal Omega [59] with the –auto parameter and submitted to Gremlin [60] to obtain 
contact constraints. Residue-residue contacts were found for all but three families with 
the least effective number of sequences (BASS 7, 8, 10). Considering only the most reli-
able contact pairs, we hand-crafted contact constraints including from 1 to 5 non-over-
lapping (hence context-free compatible) pairs of residues in contact. We then mapped 
the contacts onto unaligned sequences. For training, we used the Bell-side motifs sam-
ples (nr70) including from 329 (BASS2) to only 7 (BASS10) sequences with length vary-
ing from 20 to 40 amino acids. For testing, we used the 143 N-termini of NLR proteins 
(nr70) with known instances of motifs BASS1-10, according to Supplementary Table 2 in 
[13].

Other BASS In our previous research [13], a number of pairs of similar amyloid-
like patterns were identified in C- and N-termini of neighboring Bell and NLR pro-
teins while being missed with profile HMMs (see Supplementary Table 2 in [13]). We 
extracted 100 amino-acid long Bell C-termini and 150 amino-acid long NLR N-ter-
mini containing these other BASS motifs, and made them non-redundant (nr70). This 
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yielded a set of 18 Bell-side C-termini and 26 NLR-side N-termini, which was used for 
further testing. In addition to bacterial motifs, the BASSother set included 3 related 
sequences from the Archaea species.

Fungal test motifs Test sets were made of fungal amyloid signaling motifs [12] 
extracted from a recent set of NLR proteins [61]. The sets included sequence frag-
ments matching Pfam profiles of motifs sigma (Pfam NACHT_sigma, 20 sequences), 
HET-S (Pfam HET-S, 12 sequences) and PP (Pfam Ses_B, 22 sequences), which were 
made non-redundant at identity of 70%.

PDBfull and PDBfrag The first negative sample was designed to rather roughly 
approximate the entire space of protein sequences. It was based on the negative 
set from [31], which consisted of 829 single chain sequences of 300–500 residues 
retrieved from the Protein Data Bank [62] at the identity threshold of 30% (accessed 
on 12th December 2006). In addition, we used the negative sample obtained by cut-
ting the basic negative set into overlapping subsequences of the maximum length of 
positive sequences and made non-redundant at identity of 70%, as in [34].

NLReff The second negative set was based on a sample of 7901 NLR proteins with 
N-terminal known to contain non-prion-forming effector domains [61] except for the 
PNP_UDP_1 domain. The actual negative set consisted of 2411 fragments matching 
the Pfam profiles of the domains and non-redundant at identity of 70%. Length of the 
fragments ranged from 41 to 366 amino acids (median: 175). The set was designed 
to approximate the background encountered when searching positive test motifs in 
their typical setting in the N-termini of NLRs. The restriction to include only bounda-
ries of domain profiles was based on the fact that putative functional amyloid motifs 
are sometimes present between the effector and nucleotide-binding domain. PNP_
UDP_1 domains were excluded from the set because a fragment of their sequences 
was predicted to be amyloidogenic according to PASTA2 and AmyloGram, and 
involved in the beta arch according to ArchCandy. Indeed, available structures show 
that the fragment consists of two beta strands connected with a loop (e.g. positions 
60–100 in pdb:1zos) [63].

DisProt The third negative set was adopted from evaluation of the ArchCandy tool 
[26] and consisted of 48 sequences (nr70) of soluble disordered protein regions with-
out link to amyloidoses. The set originated from the DisProt database [64]. Lengths of 
the fragments ranged from 37 to 149 amino acids (median: 101.5). The set was used to 
check specificity of the tested models against non-amyloidogenic disordered proteins.

Peptides selected for experimental verification Out of sequence fragments identified 
as ASMs with grammars and other computational methods, we selected four peptides 
for experimental verification if they form structures consistent with expected fea-
tures (presence of the beta arch and amyloid-like aggregation). First, to tweak and test 
the experimental setup, we used two bona fide effector-side ASM peptides: BASS3 
RHIM-like motif from Frankia sp. ORT49035.1 (positions 103 to 123) [13, 65] and 
Nectria haematococca sigma motif from AAS80314.1 (349 to 385) [12, 66]. Then, we 
analyzed Methanothrix soehngenii AEB69175.1 (5 to 29) [67]. This archeal NLR-side 
motif resembling BASS3 was originally identified through local pairwise alignment of 
proteins coded by neighboring genes while being missed with the profile HMM-based 
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search [13]. Finally, we experimentally verified a sequence fragment resembling the 
sigma motif in Coleophoma crateriformis NLR protein RDW70414.1 (382 to 421) [68].

Experimental methods

Peptide synthesis All commercially available reagents and solvents were purchased from 
Lipo-pharm.pl, Sigma-Aldrich and Merck and used without further purification. Pep-
tides were obtained with an automated solid-phase peptide synthesizer (Liberty Blue, 
CEM) using rink amide AM resin (loading: 0.59  mmol/g). Fmoc deprotection was 
achieved using 20% piperidine in DMF for 1  min at 90 ◦ C. A double-coupling proce-
dure was performed with 0.5 M solution of DIC and 0.25 M solution of OXYMA (1:1) 
in DMF for 4 min at 90 ◦ C. Cleavage of the peptides from the resin was accomplished 
with the mixture of TFA/TIS/H2 O (95:2.5:2.5) after 3 h of shaking. The crude peptide 
was precipitated with ice-cold Et2 O and centrifuged (8000 rpm, 15 min, 2 ◦C). Peptides 
were purified using preparative HPLC (Knauer Prep) with a C18 column (Thermo Scien-
tific, Hypersil Gold 12 µ , 250 mm × 20 mm) with water/acetonitrile (0.05% TFA) eluent 
system.

Analytical high-performance liquid chromatography (HPLC) was performed using 
Kinetex 5 µ EVO C18 100A 150 × 4.6  mm column. Program (eluent A: 0.05% TFA in 
H 2 O, eluent B: 0.05% TFA in acetonitrile, flow 0.5 mL/min): A: t = 0 min, 90% A; t = 
25 min, 10% A. The peptide purity used for experimental research was ≥95%. Peptides 
were studied with WATERS LCT Premier XE System consisting of high resolution mass 
spectrometer (MS) with a time of flight (TOF). Analytical data are provided in Addi-
tional file 3: Table S1.

Amyloid-like aggregation To determine aggregation properties of studied peptides 
Attenuated Total Reflection-Fourier Transform Infrared (ATR-FTIR) experiments 
were carried out. Vibrational spectroscopy is widely used for protein and polypeptides 
secondary structure analysis [69, 70] and for monitoring the aggregation processes in 
amyloids studies [71–73]. The Amide I band (1700–1600 cm−1 ) corresponding to C=O 
stretching vibrations and the Amide II band (1600–1500  cm−1 ) arising mainly from 
in-plane N–H bending of the peptide bonds are the most useful for secondary struc-
ture estimation. For α-helical proteins the maxima of Amide I and Amide II bands are 
observed at around 1655  cm−1 and 1545  cm−1 , respectively. Random structures pos-
sess the Amide I located at 1645 cm−1 . Native β-sheet rich proteins show amide bands 
maxima near 1635 and 1530 cm−1 . When the aggregation occurs, the Amide I band is 
narrowing and shifting to lower wavenumbers. Rigid and highly ordered amyloid fibrils 
exhibit the Amide I band below 1625 cm−1 [71]. The high water absorption in the Amide 
I region is main drawback of IR spectroscopy. Subtracting the water absorption spectra 
may cause significant distortion to the spectral line shape [74]. That is why deuterium 
oxide is used as an alternative solvent. Due to the frequency of the OH bending mode 
of D 2 O molecules is lowered (from 1635 cm−1 for H 2 O) to 1210 cm−1 . Substitution of 
water by heavy water causes a relatively small down shift of Amide I band [69].

Spectroscopy For spectroscopic measurements peptides were dissolved in D 2 O (deu-
terium oxide, 99,8% D, Carl Roth, GmbH, Germany) to a final concentration of 2 mg/
mL. Peptide solutions were incubated at 37 ◦ C (98.6 ◦ F) for 24  h. ATR-FTIR spectra 
were collected using a Nicolet 6700 FT-IR Spectrometer (Thermo Scientific, USA) with 
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Golden Gate Mk II ATR Accessory with Heated Diamond Top-plate (PIKE Technolo-
gies). The spectrometer was continuously purged with dry air. All spectra were obtained 
in the range of 4000–400 cm−1 . Directly before sampling, the background spectrum of 
diamond/air was recorded as a reference (512 scans, 4 cm−1 ). Spectroscopic measure-
ments were performed at air-dried peptide films. Initially, 10 µ l of peptide solution was 
dropped directly on the diamond surface and was allowed to dry out. For each spectrum, 
512 interferograms were coadded, with resolution of 4 cm−1 . All spectra were registered 
at temperature of 37 ◦C.

All spectra were analyzed using the OriginPro (version 2019, OriginLab Corpora-
tion, USA). The analysis included the spectra baseline correction, smoothing using the 
Savitzky-Golay polynomial filter [75] (polynomial order 2, a window size of 31 points), 
normalization to 1 for the Amide I’ band, and deconvolution into subcomponents using 
the Lorentz function based on the second derivative spectra. ATR-FTIR spectra were 
initially preprocessed using OMNICTM software (version 8, Thermo Fisher Scientific, 
USA) using the atmospheric and ATR corrections.

Congo red staining The CR method has been widely used to study aggregates in the 
histopathological samples. While the specificity of this dye is limited due to its ability to 
bind to proteins with different secondary structures, it is commonly used to study aggre-
gates in vitro [76, 77].

Peptide solutions ( Cpep = 50 µM ) were incubated for two months at 37 ◦ C and then 
used for the CR experiments. A drop of peptide aliquot (10 µ L) was allowed to dry on 
a glass microscope slide. The staining was performed according to the published pro-
cedure [78]. Birefringence was determined with an ECLIPSE 50i microscope (Nikon, 
Japan).

Results
In a previous paper [34], we showed that fungal prion-forming HET-s motifs r1 and 
r2 can be accurately represented with automatically inferred probabilistic context-free 
grammars comprising just of three lexical and four structural symbols (l3s4). In the 
cross-validation scheme, the model achieved the average precision (AP) of 0.60 for the 
negative to positive sample cardinality ratio over 200:1 [34]. Moreover, we found that 
consensus predictions from grammars comprising of seven structural symbols were 
practically useful for identifying related HET-s r0 motifs in NLR proteins with AP of 
0.82 [34]. However, the PCFGs were outperformed in this task by less expressive profiles 
of Hidden Markov Models (pHMM). The presumed disadvantage of our PCFG approach 
was in likely over-simplicity of grammars due to the tiny number of non-terminal sym-
bols. This limit was necessary to make the number of rules manageable in our GA-based 
scheme for inferring rule probabilities. Indeed, the number of possible rules increases 
exponentially with the number of available symbols and our implementation of evo-
lutionary approach could not effectively handle search spaces of more than 500–1000 
rules [34].

Improved modeling of individual families of protein motifs

Even though the evolutionary scheme could be adjusted [79, 80], in the current pro-
ject we resorted to the classical statistical learning method, the Inside–Outside (IO) 
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algorithm [35]. The main advantage is relatively quick convergence of the procedure, 
even for hundred thousands of rules, thus allowing for considerably more non-termi-
nals symbols (for example 40) in the covering grammar made of all possible rules.

Smoothing The large size of such a grammar increases the risk of over-generaliza-
tion, i.e. over-fitting rule probabilities to training data. A viable solution consists on 
smoothing the probabilities in the course of post-processing, so the grammar can 
parse sequences with amino acids unseen in the given context during training. While 
generally not trivial, the smoothing is relatively straightforward when applied to lexi-
cal rules modeling amino-acid emissions from lexical variables. Indeed, one can apply 
one of the classical mutation models such as PAM [81] or BLOSUM [82]. While the 
latter is typically considered more accurate, the former has the advantage of intrinsic 
simplicity and elegance of the underlying Markov model, which is why it was cho-
sen for this project. In our implementation, distributions of amino acids modeled by 
lexical rules can be smoothed according to the requested number of point accepted 
mutations.

Cross-validation The updated IO-trained PCFG method was tested on two bench-
mark sets from our previous research, the HET-s motifs r1/r2, and a Calcium and 
Manganese binding site motif (CaMn). Replicating the procedure from [34], we used 
a variant of the 8–fold Cross–Validation scheme in which 6 parts were used for train-
ing, 1 part was used for validation and parameter selection, and 1 part was used for 
final testing (the scheme resulted in 56 runs for each sample).

Learning efficiency of IO and GA We first compared efficiency of evolutionary and 
statistical learning of grammars for the simpler CaMn set. Similarly to [34], we stuck 
to the l3s4 grammars in the CFC form and compared training with and without 

ba

dc

Fig. 1  Performance comparison of grammar learning schemes. Mean average precision with regard to mean 
training duration achieved for the CaMn (a, b) and HET-s (c, d) motifs in the cross-validation experiment. 
Performance on training and validation sets without smoothing (a, c) and on validation set with smoothing 
(b, d) is shown. Data for evolutionary learning without (with) contact constraints are plotted in shades of 
orange (green). Data for statistical learning without (with) contact constraints are plotted in shades of blue 
(magenta). Note logarithmic scale for duration of training
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contact constraints. Setups of evolutionary (GA) and statistical (IO) learning schemes 
were essentially identical except that the convergence criterion was calculated over 
100 epochs for the former and just 10 iterations for the latter, simply because the 
Inside–Outside procedure converged much quicker: while on average 3000–4000 
steps were needed using GA, only 10 or 40 iterations was enough for IO (Fig.  1a). 
Contact constraints seemed to shorten the training for IO but not for GA. When 
tested on the validation set against PDBfrag, best grammars achieved the maximum 
AP around 0.95 for evolutionary and 0.85 for statistical learning. This likely resulted 
from more pronounced over-fitting with IO, where the gap in performance between 
the training and validation sets was around 0.10–0.15, in comparison to 0.05 for GA 
(in terms of AP). Closer inspection of the induced best grammars revealed that the 
Inside–Outside was more prone to suppressing rule probabilities: around half of 
them was set below 1e−5 , and a couple of percent were set to zero. In contrast, the 
evolutionary scheme suppressed less than 1% of rule probabilities below 1e−5 and 
did not turn off any rule completely. (Of note is that in practice the structural rules 
with probability below 1e−5 have at best negligible impact on the sequence probabil-
ity log scores and can be pruned off in order to improve the speed of parsing.) This 
finding led us to trying the PAM-based smoothing on the lexical rules probabilities. 
This turned out to be highly efficient: the average precision of apparently over-fit IO-
trained grammars was pushed to over 0.97, almost closing the performance gap of 
around 0.30 (for the longest training). The best results of smoothing were obtained 
with PAM values in the range of [5, 20] (Fig. 1b shows results for PAM10). For gram-
mars trained with GA long enough to experience over-fitting, the smoothing pushed 
the average precision up to above 0.98.

Analogous tests were performed on the larger and more diverse HET-s set. While 
GA again needed on average 3000-4000 steps to converge, IO needed 200–300 itera-
tions with the convergence criterion calculated over 100 iterations (Fig. 1c). The statisti-
cal learning led to the maximum average performance of 0.79, in comparison to 0.63 
achieved with the evolutionary scheme. The contact constraints still sped up the con-
vergence of IO, but at the same time they limited the top performance on the training 
and validation sets by around 0.15. This was in contrast to GA-trained grammars which 
benefited from the contact constraints by around 0.10. The over-fitting gap was moder-
ate: around 0.10 for IO and 0.06 for GA. Consequently, the effect of smoothing was very 
limited (0.01–0.02, Fig. 1d shows results for the PAM10 smoothing).

Apparently, in our framework, small-number PAM matrices (with no BLOSUM coun-
terparts) stroke the balance between avoiding the harsh penalization of substitutions 
typical of closely related sequences, and preserving specificity of emissions from lexical 
variables. In further experiments, the PAM10 matrix was used for smoothing.

Grammar size Saturation of performance on the HET-s training set, together with 
the lack of significant over-fitting, suggested that grammar size was inadequately small 
with regard to the diversity of the sample. This prompted us to investigate using larger 
numbers of non-terminals with the IO algorithm. We opted for relatively long evolu-
tion counting on the smoothing to fight back the negative effects of over-fitting. Spe-
cifically, we trained rule probabilities of grammars in the CFC form [34, 38] made from 
5, 7 and 10 lexical and 10 to 33 structural non-terminals. Consequently, the smallest 
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covering grammar l5s5 counted 1225 rules, while the largest l10s30 had 138 200 rules. 
The stop condition was set to 1.0005 over 100 iterations. At the end of training, gram-
mars retained on average only 198–650 rules (117–482 with probabilities over 1e−5 ) 
including 41–151 lexical rules (27–60 with probabilities over 1e−5 ), see Fig. 2a. Of note, 
the trained grammars with more structural variables had less lexical variables, which 
appeared to be decreasing asymptotically to 20 (or one lexical rule per one amino acid). 
Only grammars with least variables did not achieve virtually perfect fit to the training 
sample (mean AP over 0.999). Without smoothing, the performance over the validation 
set dropped for grammars with a medium number of non-terminals, presumably due to 
the over-fitting (Fig.  2b). Interestingly, the validation performance improved again for 
grammars with large number of non-terminals. The most plausible explanation is that 
due to more laborious convergence, the training stopped before significant over-fitting 
took place. The smoothing of lexical rules probabilities using the PAM 10 model led to 
the mean AP over the validation set around 0.99 for all grammars with 10 (15) or more 
structural variables trained without (with) contacts (Fig. 2b).

Practical performance It can be reasonably expected that by using grammars learned 
for the HET-s r1 and r2 motifs, the r0 motifs can be automatically extracted both from 
random full length sequences (approximated by PDBfull) and from NLR proteins 
(approximated by NLReff). Moreover, grammars have to distinguish amyloid signal-
ing motifs from non-amyloidogenic disordered proteins DisProt. For the assessment, 
we used the measures of recall (sensitivity) of the positive sequences at false positive 
rates (FPR) of 0.01 and 0.001 (the latter for NLReff only), and the average precision (AP) 
against the DisProt. To avoid overestimating performance, the minimal observable FPR 
due to the negative set cardinality was assumed in averaging over the folds (PDBfull: 
1.2e−3 , NLReff: 3.7e−4 ). The tests were conducted for l7s15 grammars and their neigh-
boring configurations (l5s15, l7s10, l7s15, l7s20 and l10s15).

In the scenario with the r0 motifs searched among non-prionic NLReff, the mean recall 
was in range 0.66–0.73 at FPR of 1e−3 , and in range 0.79–0.84 at FPR of 1e−2 . Best per-
formance was achieved with l5s15 grammars trained without the contact constraints. 
In the search against PDBfull, the mean recall at FPR of 1e−2 was in range 0.70–0.76. 
The mean AP against DisProt was between 0.96 and 0.98. Considerable improvement 
was achieved when scores from grammars obtained in several runs under the same con-
ditions were averaged before classifying hits. The effect was most pronounced when 

ba

Fig. 2  Number of variables effects on performance and grammar size. Mean number of lexical and structural 
rules with non-zero probability (a) and mean average precision (b) in the cross-validation experiment are 
shown with regard to the maximum number of variables (l: lexical, s: structural). Data for learning without 
(with) contact constraints are plotted in shades of blue (magenta)
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moving from a single grammar to a pair, but increase was still notable at least up to 6 
grammars combined (the largest number tested was 8). In this case the mean recall was 
in range 0.82-0.84 at FPR of 1e−3 and 0.85–0.91 at FPR of 1e−2 for NLReff. Similarly, the 
mean recall at FPR of 1e−2 increased to 0.81–0.85 against the PDBfull. The already high 
performance against non-amyloid disordered proteins was kept.

Application to bacterial amyloid signaling motifs

Performance of the method was further tested on newly identified bacterial amyloid 
signaling motifs (BASS) [13]. A major difference with regard to the previous tests is 
the variable length of sequences in the BASS families. The variation could result either 
from indels, intra-family diversity, or motif truncation in the course of extraction. While 
sequences in each family were in general alignable, which was exploited in the contact 
constraints prediction, it is worth noting that the PCFG input was unaligned. In the 
experiment, we used the set-up established for HET-s and the l7s15 covering grammar.

Cross-validation We first applied the 6-fold standard cross-validation scheme to 
compare performance of grammars trained with and without contact constraints. 
In the validation phase, positive sets (consisting of sequence fragments of variable 
length) and the negative set PDBfrag (made of 40-amino acid chunks) were scanned 
with the grammars using the 20-to-40-amino-acid window. Since the average pre-
cision is sensitive to the cardinality ratio of positive and negative sets, we used the 
Youden’s Index [83], as a complementary measure, comparable between various BASS 
families. The results are shown in columns AP and YI in Table 1.

The cross-validation experiment showed that grammars learned the motif pattern 
in all cases. The mean Youden’s index ranged from 0.87 to 0.99, which corresponded 
to the mean average precision from 0.42 (BASS9) to 0.96 (BASS1). While using the 
contact constraints was favourable in terms of average precision whenever available, 
the effect was substantial only for BASS4 (increase from 0.77 to 0.93) and BASS9 

Table 1  Average performance of grammars for individual ASMs

AP and YI are given for both training without contacts/with contacts. The test set performance is shown only for the 
mode with the best validation AP. Notations: trn, val, tst are training, validation and testing positive sets, AP is the average 
precision and YI is Youden’s Index

motif trn val: PDBfrag tst: PDBfull tst: NLReff tst: DisProt

Family Size AP YI Recall@ Recall@ Recall@ AP

FPR0.01 FPR0.01 FPR0.001

BASS1 210 0.93/0.95 0.98/0.98 0.99 0.99 0.97 1.00

BASS2 329 0.92/0.94 0.96/0.97 0.98 0.99 0.97 1.00

BASS3 145 0.92/0.93 0.98/0.97 0.97 0.98 0.92 0.99

BASS4 127 0.77/0.93 0.96/0.97 1.00 1.00 0.96 1.00

BASS5 50 0.83/0.86 0.99/0.99 0.85 0.90 0.81 0.97

BASS6 111 0.89/0.89 0.97/0.98 0.91 0.97 0.89 0.97

BASS7 17 0.85/– 0.95/– 0.97 0.92 0.97 0.98

BASS8 14 0.79/– 0.93/– 1.00 1.00 0.96 1.00

BASS9 38 0.42/0.63 0.87/0.91 0.79 0.90 0.79 0.96

BASS10 7 0.57/– 0.99/– 1.00 1.00 1.00 1.00
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(increase from 0.42 to 0.63). The best performing constraints comprised of 1 to 3 
pairs of residues in contacts.

Practical performance Next, we evaluated performance in the practical settings 
already defined for the HET-s set. The results are shown the last four columns in 
Table 1. At FPR of 0.01, the grammars found at least 90% of NLR-side motifs among 
non-prionic NLR effector domains, and at least 79% among sample PDB sequences. 
At FPR of 0.001 against NLReff, the grammars found at least almost 89% of NLR-
side motifs for all families except BASS5 and BASS9 (around 80%). Also, grammars 
allowed for distinguishing ASMs from non-amyloidogenic disordered regions (Dis-
Prot) with the average precision ranging from 0.96 to 1.00. Overall, single grammars 
for individual BASS families typically performed better then combined grammars 
(using the score averaging scheme) for the HET-s motif.

Generalization of bacterial amyloid signaling motifs

Having checked that the PCFG framework can effectively model each motif family, we 
aimed at assessing whether the method can be used to obtain a general model of the 
amyloid signaling motifs.

Bacterial motifs The combined set of all ten BASS families was used to train universal 
BASS grammars in the 6-fold cross-validation scheme (the folds were made by merg-
ing the corresponding folds for each motif family). The number of symbols used in the 
grammars was 7 or 10 for lexical variables and 15, 20 or 30 for structural variables, as 
it can be reasonably expected that a grammar covering several families requires more 
complex structures.

The performance of resulting grammars in cross-validation ranged from AP of 0.79 
for l7s15 trained without contact constraints to 0.86 for l7s30 trained with contact con-
straints. The best performance was achieved at the log score threshold of 2.4 to 2.9 yield-
ing the Youden’s index of 0.87 to 0.92. In the cross-validation experiment, adding more 
lexical and structural symbols and using the contact constraints improved AP of gram-
mars. The same held for practical performance evaluation on BASS-containing versus 

ba

Fig. 3  Performance of the generalized BASS grammars on bacterial and fungal test motifs from NLR proteins. 
a Recall at the false positive rates of 1e−2 (pale green) and 1e−3 (dark green) for BASS1-10 motifs with regard 
to the maximum number of variables in grammars (l: lexical, s: structural) and presence/absence of the 
contact constraints ( ±cnt ). Vertical bars indicate recall ranges achieved using single grammars in six runs. 
Short horizontal bars indicate recall obtained using the score averaging scheme. b Recall at the false positive 
rates of 1e−3 obtained using the score averaging scheme for each BASS class separately and for the three 
fungal amyloid signaling motifs
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non-prionic N-termini of NLRs, except that the benefit of training with the constraints 
was weaker (Fig. 3a). The best grammars accepted up to around 85% (94%) of the posi-
tive test sample at the false positive rate of 1e−3 ( 1e−2 ) against NLReff. The mean aver-
age precision against the non-amyloidogenic disordered proteins was in the range of 
0.988–0.995. We did not notice significant trends with regard to the stop condition.

Fungal motifs Encouraged with the results for the test BASS set, we were curious if 
the grammars were general enough for searching for novel motifs. Thus, we tested the 
all-BASS grammars on fungal NLR N-termini with HET-s, sigma and PP/ses_B motif 
instances against the non-prionic NLR N-termini. The experiment showed considerable 
performance. The sigma motif was most easily distinguished (average recall of 67–87% 
at FPR of 1e−3 ), followed by the HET-s motif (recall 25–63%), and the PP motif (recall 
11–46%). Very good performance with the sigma motifs was likely due to the relatively 
high length and amino acid composition similar to some bacterial motifs (e.g. BASS2, 
3 and 7). On the other hand, quite fair sensitivity to the quite distinctive HET-s, as well 
as relatively poor sensitivity to the RHIM-like PP (seemingly related to BASS3), cannot 
be easily explained. Unlike the previous BASS tests, training with constraints tended to 
lower performance for the fungal ASMs, as did adding more symbols and longer train-
ing. (With the exception of the sigma motif, for which performance was universally 
high.) This is not unexpected, since extrapolating outside the training domain has to 
carefully avoid over-fitting to be successful.

Score averaging We also noticed high variation of performance of grammars trained 
with the same parameters on different folds. While recall (at FPR of 1e−3 ) on the NLR-
side BASSes in most cases varied only by 10–15% (Fig. 3a), it differed from zero to 75% 
on the HET-s motif and from zero to 46% on the PP motif test set. While this could be 
partially due to smaller test sets, it also clearly suggested sub-optimal character of indi-
vidual grammatical models. Thus, we resorted to the strategy of averaging scores from 
several grammatical models when scanning sequences. Following previous experiments 
with grammars for individual motifs, we used average scores of six grammars (one from 
each training fold). The procedure yielded very good results, with the recall at FPR of 
1e−3 increasing up to 86–92% for all fungal amyloid signaling motifs for the l7s30 setup 
trained without contact constraints (Fig. 3b). Performance of grammars trained with the 
contact constraints was still rather poor for PP and somehow mixed for HET-s, in con-
trast to universally good performance of grammars trained without the constraints.

The averaging approach also improved the performance on NLR-side BASSes, up to 
recall of around 90% (99%) at FPR of 1e−3 ( 1e−2 ), as indicated with short horizontal 
bars on Fig. 3a. In fact, predictors made with the averaging scheme most often outper-
formed the best single grammars. The breakdown of the results by BASS class indicates 
that the generalized BASS grammars recognized test samples from the most numerous 
BASS1-4 and BASS6 classes fairly well (recall of at least 0.90 at FPR of 1e−3 for predic-
tors averaging over l7s30 grammars or larger). Performance over classes BASS7, 9 and 
10 was mixed, as grammars with 30 structural variables were doing much better than 
smaller ones. BASS5 and BASS8 classes were apparently not modeled properly (Fig. 3b).

On the set of other BASS motifs, the averaging approach resulted in recall from 50 to 
75% (73–89%) at FPR of 1e−3 ( 1e−2 ) against NLReff. As with the fungal motifs, gram-
mars trained without the contact constraints performed better.
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Pairing potential In order to assess the structure of grammatical descriptors of fungal 
motifs, we scanned the C-terminal 80 amino-acid fragment of HET effector sequence 
(accession: Q03689) and the N-terminal 50 amino-acid fragment of its genomic neigh-
bor NLR sequence (accession: CAL30199) using the score averaging approach and the 
20-to-40 amino-acids window (Fig. 4a). In CAL30199, the best matches very well cov-
ered the r0 motif. In the case of Q03689, the best matches were centered on the loop 
between the r1 and r2 motifs. Grammars trained without the contact constraints par-
tially overlapped the motifs, while grammar trained with the contact constraints covered 
the r1 motif using the maximum window size of 40 (except l10s30). A plausible explana-
tion of discrepancy with the actual motif positions is high content of charged residues in 
mutually complement r1 and r2 motifs, which is atypical for the BASS motifs. Then, we 
compared the probability maps of parsing of the best matching sequence fragments with 
their corresponding spatial distance maps. For the NLR side CAL30199, we used the r2 

Fig. 4  Qualitative analysis of generalized BASS grammars match to experimentally solved HET-s structure. 
a Best matches in effector-side C-termini and NLR-side N-termini sequences. Actual position of r1, r2 and r0 
motifs are marked in pale yellow. b Comparison of the structure-derived (pdb:2kj3 [58]) distance map (lower 
left triangle, color scale from 4 Å or less (yellow) to 16 Å or more (blue) according to the C β distance) to 
grammar-derived pairing probability map (upper right triangle, logarithmic color scale from 0.01 or less (blue) 
to 1 (yellow))
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motif fold, as often assumed in literature [56] (Fig. 4b). The pairing maps generated with 
grammars trained without the contact constraints were dominated by an apparently arti-
factual antidiagonal signal resembling the pattern observed previously in mostly likely 
parse trees [34]. The signal was partially present also on pairing maps generated with 
grammars trained with the contact constraints. However, in this case, there was also a 
clear signal corresponding to actual structures of the HET-s fold: the “bulge” from A228 
to I231, the tip of the main loop from T233 to V239, and the second loop from Q240 to 
V244 (positions according to the r1 motif, see Figure 1 in [56] for reference).

Lexical rules Grammars are considered as human readable descriptors. We analyzed 
grouping of amino acids according to high probability (above 0.1) of being rewritten 
from given lexical non-terminal symbols. We focused on groupings preserved in at least 
half of grammars, for each grammar size and the contact constraints option. Almost uni-
versally preserved was single non-terminal dedicated overwhelmingly to glycine. Very 
often grammars consisted of non-terminal symbols dedicated to alanine (sometimes 
together with serine) and variables likely rewritten to valine and isoleucine (sometimes 
together with leucine). Next common association was a non-terminal with emissions 
dominated by glutamine, relatively frequent in the prions. On the other hand, no clear 
pattern was observed with aspargine and aspartic acid, even though they seem to be rel-
evant for the amyloid signaling motifs. Many grammars included also a non-terminal 
symbol likely rewritten to a mix of arginine, glutamic acid, lysine, proline, serine, threo-
nine and in some cases histidine, though partition varied. This subset may correspond 
to a group present in some classical 5-letter alphabets [84, 85] but without amino acids 
characteristic to the prions. The groupings defined by PCFGs were also partially similar 
to the best-performing reduced alphabet for amyloid hexa-peptides search from [21], 
which included groups for glycine alone, isoleucine-leucine-valine hydrophobics, and 
the lysine-proline-argine mix.

Structural rules For each sequence, the usage of every rule can be recorded, which is 
the amount of probability mass carried through the rule (as calculated for the Inside–
Outside procedure) relative to the overall probability of the sequence given the gram-
mar. If this quantity is summed up for each left-hand-side non-terminal, one obtains 
usage of each non-terminal symbol. Note that the usage of the start non-terminal is 
always at least one, and possibly higher if the start symbol is used again in some deri-
vations. We calculated the usage of structural non-terminals in the best matching 
sequence fragments that achieved positive log probability ratio for the positive test sam-
ples (NLR-side BASSes and fungal motifs) and DisProt), averaged over the cross-vali-
dation folds. For each test set, we identified non-terminal symbols with the usage of at 
least 1. Then, we compared the test sets in terms of the highly used symbols using the 
Jaccard distance metric. Since the structural non-terminals represent higher level struc-
tures in the grammar (as noun phrase in English), similarities in their usage may reflect 
similarities between motifs. Varying maximum number of non-terminals and the con-
tact constraints option resulted in different sharing of the highly used symbols. As could 
be expected, smaller grammars resulted in higher shares (50-80%) than large grammars 
(30–60%). Nevertheless, some clear patterns emerged. BASS1 mostly shared highly 
used structural non-terminals with BASS9-10 and fungal HET-s, and least with DisProt. 
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BASS2 mostly shared its highly used structural non-terminals with BASS6 and fungal 
sigma and PP, while least, again, with DisProt. Unsurprisingly, BASS3 matched most 
the PP motif, followed by other fungal motifs. For BASS4 the closest match was HET-s, 
while for BASS5 it was DisProt. Interestingly, the BASS4 motif is relatively often found 
repeated in the Bell side, as is the case of HET-s. BASS7 motif mostly shared highly used 
symbols with PP and HET-s, and BASS8—with PP, DisProt, sigma, BASS5 and BASS7.

Comparison to alternative approaches

To place our method within the state of the art, we tried identifying sequences with 
BASS-like motifs using several existing methods. First, we evaluated a diverse yet non-
exhaustive selection of ready-made tools devoted to predicting prions, amyloids and 
beta structures. Importantly, all included tools proved to be relatively easy to employ for 
scanning large sequence sets:

•	 AmyloGram [21] is a predictor of amyloidogenic hot spots, which is based on the 
n-gram analysis and the random forest classifier. The tool calculates probability 
of forming the hot spot over the 6-amino-acid sliding window and returns the 
maximum value for the input sequence. With the default probability threshold of 
0.5, AmyloGram identified amyloidogenic hot spots in 78% of sequences in the 
BASS test set and in all sequences with fungal ASMs, but also in all negative non-
prionic NLR N-termini. Increasing the probability threshold did not improve the 
outcome.

•	 PASTA2 [20] is a popular tool for detecting amyloid structural aggregation, which 
combines analysis of statistical residue pairing energies with prediction of second-
ary structures and disordered regions. With the peptide mode settings, PASTA2 
reported amyloid-like aggregation regions in 38% of sequences in the BASS test set 
and in 67% sequences with the fungal ASMs. However, it also found such regions in 
91% of the negative non-prionic NLR N-termini set.

	 Neither of the tested amyloid prediction methods is therefore suitable for searching 
the NLR-related amyloid signaling motifs, which is not surprising given it is known 
that short potentially amyloidogenic regions can be found in proteins never observed 
to form amyloids [86].

•	 ArchCandy [26] is a method for detecting beta-arches, which is based on quantita-
tive assessment of several sequence features. We used the standalone Java archive 
executable in version 2.0, kindly provided by the authors. With the recommended 
score threshold of 0.56, it marked as positive 50% of sequences in the BASS test set, 
as well as 83% sequences with the fungal ASM motifs. However, it also detected 
beta-arches in 61% of the negative non-prionic NLR N-termini set. This outcome 
could also be expected as beta-arches may be present in sequences that neither form 
amyloid nor act as prions.

	 It seemed conceivable that combining ArchCandy and PASTA2 might improve the 
accuracy of BASS search. For each sequence, we checked if any top 20 amyloidogenic 
region predicted with PASTA overlapped with any beta-arch predicted with Arch-
Candy, using the default detection thresholds of both tools. The recall was 24% for 
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the BASS test set and 41% for NLReff, clearly showing that the approach is not viable 
for searching BASS-like motifs.

•	 PrionW [87] is a web server based on the pWaltz method for detecting prions, which 
assumes they consist of an amyloidogenic core inside a disordered region, rich in 
aspargine and glutamine [15]. With default parameters, the tool did not found any 
prion motif in the BASS and fungal ASM positive test sets. Lowering the pWaltz cut-
off to 0.50 resulted in finding 3 out of 54 fungal motifs but also 5 hits in the non-
prionic NLR N-termini negative set NLReff.

•	 PAPA [24] is a composition-based prion-propensity predictor developed for the 
asparagine- and glutamine-rich sequences and implemented as a Python script. The 
window size was set to 20 to cover all motifs and filtering for disordered regions was 
switched off as this improved accuracy. However, the overall result was poor as only 
one sigma motif instance could be identified at FPR of 1e−3 against NLReff, and 4 
BASS instances (including 3 in BASSother) at FPR of 1e−2.

	 Evidently, both of these prion finders are not sensitive to BASS-like motifs.
•	 PLAAC​ [25] is a web server for finding sequence with Prion-Like Amino-Acid Com-

position based on a two-state (prion-like and background) Hidden Markov model 
[88]. With default parameters except for the minimal contiguous prion-like domain 
length set to 20, and based on its COREscore, PLAAC identified prions in 3 out 143 
BASS, 1 out of 22 fungal PP and 8 out of 20 fungal sigma sequences without any 
false positive in neither the non-prionic NLR N-termini nor non-amyloidogenic 
disordered proteins negative sets. In addition, PLAAC returns several quantitative 
measures for analyzed sequences and by using the raw log-likelihood ratio between 
the two-state model and the background model calculated over most likely parses 
(HMMvit) the tool identified around 20% (34%) BASS positive test samples at FPR of 
1e−3 ( 1e−2 ) against NLReff. For other test sets, optimal results were achieved using 
the raw log-likelihood ratio between the two-state model and the background model 
calculated over all parses (HMMall). The sensitivity was 6% (18%) for the BASS test 
set, 18% (36%) for BASSother, 65% (85%) for sigma, 18% (59%) for PP, and 8% (25%) 
for HET-s, all at FPR of 1e−3 ( 1e−2 ) against NLReff. At the same threshold of the log 
likelihood ratio, the FPR against DisProt was 5% (15%).

	 Among the tested prion finders, PLAAC proved to be the only method capable of 
identifying a significant (yet still limited) number of NLR-related amyloid signaling 
motifs. Interestingly, this required switching off all the heuristics and relying on its 
core HMM that models the prion-specific amino-acid distribution. Not surprisingly, 
the highest sensitivity was achieved for the asparagine- and glutamine-rich sigma 
motif.

Profile hidden Markov models Having tested the ready-made tools, we tried to general-
ize the amyloid signaling motifs with the profile Hidden Markov Models. The approach 
required building the multiple sequence alignment for the combined training set com-
prising of all ten BASS families. It has to be noted that making a single multiple sequence 
alignment for a diverse collection of rather loosely related motifs requires caution. Here, 
we evaluated Clustal Omega [59] in the –auto mode, Muscle [89] in the default mode, 
and Mafft [90, 91] in accurate modes (linsi, einsi and ginsi). The modes were chosen 
arbitrarily based on information displayed by the command-line interface to a regular 
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user. We first aligned all non-redundant Bell-side motifs from the ten BASS classes using 
selected tools. The average percent identity between sequences from different BASS 
classes varied from only 9% for Clustal Omega, through 13% for Muscle in auto/default 
modes to 18–19% for Mafft in accurate modes. The latter values are comparable with the 
percent identity of the HET-s set (21%).

To facilitate direct comparison with the PCFG-based method, eventually, MSAs were 
generated with the aforementioned tools for each of the six training folds separately. 
Then, the corresponding profile HMMs were trained using HMMER3 [92] with default 
parameters. Parsing of the test sequences was performed in the –max mode switching 
all filters off for the sake of accuracy. We found that the sensitivity of the profile HMMs 
to NLR-side test BASSes was roughly on par with the PCFGs with the recall up to 79% 
(92%) at FPR of 1e−3 ( 1e−2 ) against NLReff. However, the recall of fungal ASMs (aver-
aged over the three classes) was lower, ranging from 17 to 44% (46–67%), in comparison 
to 38–58% (69–85%) for the PCFGs—all values at FPR of 1e−3 ( 1e−2 ). Expectedly, the 
accurate MSAs resulted in better performing profile HMMs than the rough MSAs.

In addition, the averaging approach was applied, in which the maximal scores from 
the profile HMMs trained on the six folds were averaged for each sequence (without 
checking if the best domain matches overlap). As with the single profiles, the aver-
aged pHMMs performed similarly to averaged PCFGs on the BASS positive test set, 
up to recall of 92% (97%) versus 90% (99%), and worse on the fungal positive test 
sets, up to recall of 57% (79%) versus 89% (97%)—all values at FPR of 1e−3 ( 1e−2 ) 
against the negative set of non-prionic NLR N-termini NLReff (Fig. 5). Moreover, up 
to 41–57% (57–73%) motifs from the BASSother positive set were detectable at FPR of 
1e−3 ( 1e−2 ). Accuracy against DisProt was perfect.

Profile HMMs based on the rough alignment by Muscle were consistently least 
accurate, while pHMMs based on the accurate Mafft alignments typically performed 
best. Interestingly, the profiles based on the Clustal Omega auto mode alignment 
were superior in case of BASSother and the fungal sigma motifs.

Fig. 5  Performance comparison of generalized BASS grammars and profile hidden Markov models on 
bacterial and fungal test motifs from NLR proteins. Performance in terms of recall at the false positive rates 
of 1e−3 obtained using the score averaging scheme. For fungal ASMs, the recall is averaged over the three 
classes of motifs (sigma, PP, HET-s). Data for PCFGs learned without (with) contact constraints are plotted in 
blue (magenta). Number of variables (l: lexical, s: structural) in grammars is indicated. Data for pHMMs learned 
with rough (accurate) MSAs are plotted in golden (chocolate). Method for generating MSA is indicated 
([egl]insi refer to Mafft modes). See main text for details
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Summary Despite that pWaltz was developed using the HET-s experimental struc-
ture [15], it was unable to detect more than a few NLR-related ASMs, even with some 
parameter tweaking. Also PAPA suffered from the lack of sensitivity to BASS-like 
motifs. ArchCandy, PASTA2 and AmyloGram may perform well in identifying regions 
of interest or discriminating beta-arches and amyloidogenic regions, respectively, but, 
by design, they are not specific enough for motif searches in large data sets. PLAAC, 
or more precisely its core HMM model of the prion composition, identified close to 
1/3 of all test motifs at FPR 1e−2 . This level of accuracy may be enough, for example, 
to detect presence of amyloid signaling motifs in taxonomic branches [93], but cer-
tainly not for exhaustive searches. Yet, the result is remarkable because of simplicity 
of the model. Finally, trained profile HMMs performed on par with PCFGs within the 
modeled meta-class of the ten BASS families. In fact, their accuracy exceeded our 
expectations given high diversity of the collection making alignment difficult. Extrap-
olating beyond the ten BASS families, sensitivity of the profile HMMs deteriorated to 
the level of the least accurate PCFGs for BASSother and below for the fungal prions 
(especially HET-s).

Experimental verification of selected peptides

Eventually, we tested if selected peptides identified as ASMs with grammars and other 
computational methods (Table  2) form spatial structures consistent with the known 
HET-s structure [58] and with the experimentally demonstrated amyloid-like aggrega-
tion [8, 13, 94–96]. For PCFG and pHMM methods, we report results obtained using the 
averaging approach.

First, to tweak and test the experimental setup, we used two bona fide effector-side 
ASM peptides: BASS3 RHIM-like motif from Frankia sp. ORT49035.1 and Nectria 
haematococca sigma motif from AAS80314.1. Both could be computationally identi-
fied using the PCFG and profile HMM methods (at FPR below 1e−3 ), as well as using 
AmyloGram [21]. The latter peptide was found prionic using PLAAC and only mar-
ginally missed the ArchCandy threshold. Then, we analyzed Methanothrix soehnge-
nii AEB69175.1, a NLR-side motif resembling BASS3, which was originally identified 
through the local pairwise alignment of proteins encoded by neighboring genes, while 
being missed in searches using profile HMMs of individual BASS1-10 families [13]. In 
the current study, the motif could be identified with pHMMs at FPR of 1e−3 and with 
some PCFGs at FPR of around 1e−2 ; it also scored quite low energy in PASTA2 (yet 
still above the 95% specificity threshold recommended for peptides). Finally, we experi-
mentally verified a sequence fragment resembling the sigma motif in Coleophoma cra-
teriformis NLR protein RDW70414.1 (382 to 421) [68]. The motif is marked as positive 
according to PCFGs, PLAAC (FPR below 1e−3 ) and ArchCandy, and as negative accord-
ing to PASTA2, AmyloGram and some pHMMs ((Table 2).

ATR-FTIR spectra of the four selected peptides (see Materials) in dried form and 
D 2 O solutions with corresponding second derivative spectra in amide bands range 
(1750–1500 cm−1 ) are presented in Fig.  6a. Spectral characteristic for peptides 
ORT49035_103_123, AAS80314_349_385 and AEB69175_5_29 are typical for the aggre-
gates. The Amide I’ band maxima are located below 1635 cm−1 , what is characteristic for 
the β-cross structures. While, in ATR-FTIR spectrum of peptide RDW70414_382_421 
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no spectral signatures of the aggregation process were found. More accurate information 
about studied peptides can be obtained from the second derivative and decomposition 
of the Amide I’ band into sub-bands (Fig. 6b). These processes clearly revealed the com-
plex structure of peptide ORT49035_103_123. The Amide I’ band can be separated into 
five components: 1702, 1672, 1652, 1631 and 1617 cm−1 , which can be assigned in order 
to β-sheet or turn, β-turn, α-helix or extended random or loops, β-sheet and aggregates 
[69, 97]. The origin of component 1652 cm−1 is not clear, because the loop and the heli-
cal absorption bands overlap in this region [98]. For the other peptides, less components 
in the Amide I’ range were observed, but their assignment is similar.

In the Congo Red staining experiment, the amyloid aggregates were detected for 
ORT49035_103_123, AAS80314_349_385 and AEB69175_5_29 peptides (Additional 
file 4: Figure S2). In the case of peptide RDW70414_382_421, the fixation of CR was not 
observed.

Taken together, the experimental results are compatible with presence of the 
beta-arch structure and amyloid-like aggregation of peptides ORT49035_103_123, 
AAS80314_349_385 and AEB69175_5_29. This supports the hypothesis that bacterial, 
archaeal and fungal NLR-related ASMs share similar structural features. On the other 
hand, no sign of the amyloid like aggregation was observed for RDW70414_382_421. 
However, since decomposition of the Amide I’ band for monomeric RDW70414_382_421 
reveals similar components to other three peptides, it is likely that it assumes the beta-
arch structure as well. Thus, this peptide apparently represents a false positive hit of 
some computational methods, presumably due to over-generalization.

Experimental conditions for ATR-FTIR spectroscopy and CR staining are reported in 
Additional file 5: Table S2 according to the MIRRAGGE standard [77].

Fig. 6  ATR-FTIR spectroscopy analysis of selected peptides. a Normalized ATR-FTIR spectra of air-dried 
peptides films with second derivative spectra in the amide bands region (1750–1500 cm−1 ). b Particular 
ATR-FTIR spectra with sub-bands obtained from the curve fitting procedure (Amide I’ and II’ regions). Color 
code: ORT49035_103_123—black line, AAS80314_349_385—blue line, AEB69175_5_29—green line, and 
peptide RDW70414_382_421—red line
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Discussion
In this piece of research, we addressed some of the previously identified challenges in 
inferring probabilistic context-free grammars for protein motifs [34]. Overall, presented 
results show a clear advantage of the Inside–Outside training procedure followed with 
the lexical probabilities smoothing over the previously used evolutionary scheme [31, 
34] in learning of the probabilistic context-free grammars for protein motifs. Current 
procedure allows for generating much larger grammars with sufficient numbers of non-
terminal symbols (e.g. 40). Importantly, the inference time with the IO training is rela-
tively short, ranging from a couple of minutes to a couple of hours, depending on the 
covering grammar size (on 12 cores of the Intel Xeon E5 (Haswell) machines). In accord-
ance with the literature [36], the obtained grammatical models are typically not globally 
optimal. In practice, we addressed this by combining (averaging) scores of several indi-
vidual grammars. The averaging scheme turned out to be very effective, usually outper-
forming best individual grammars in homology searches (Fig. 3a). Yet, it remains a goal 
for the future research to optimize learning, e.g. by enhancing the statistical learning 
with the contrastive estimation [99] whenever possible, and by combining with heuristic 
approaches [46, 100].

Recently, we introduced the use of the contact constraints based on known or pre-
dicted spatial proximity of residues to learning PCFGs [34]. Due to the context-freeness 
of grammars and simplicity of the contact rules in the Chomsky Form with Contacts, 
only a subset of residue-residue contacts can be used in the training. The contacts are 
properly chosen if there exist correlations between involved amino acid species that are 
relevant to modeled structures and functions. In such a case the contact constraints facil-
itate learning through confining the search space towards the most capable solutions. 
Obviously, the constraints reduce the amount of information that grammars can learn: 
correlations incompatible with the constraints cannot be captured in the grammar. So, if 
the constraints are not properly chosen, they may effectively lead to less capable models. 
This is not so much a problem when modeling samples of highly homologous sequences 
where the common signal shared by all sequences is very strong. However, in the case of 
generalizing over multiple motif families, a suboptimal choice of the constraints is likely 
to hamper the quality of the model more harshly. This could contribute to weaker per-
formance of the generalizing grammars trained with the contact constraints when tested 
on BASSother and some fungal motif samples (Fig. 3b). Nevertheless, using the contact 
constraints for training apparently improved compatibility of the residue pairings, gen-
erated with grammar using the contact rules, with the actual protein distance map for 
experimentally solved structure of a signaling amyloid, the HET-s motif (Fig. 4b).

One obvious limitation of the PCFG approach is context-freeness: the property that 
allows a grammar for considering in a single derivation only the non-overlapping nested 
and branching dependencies. Yet, the probabilistic parsing of a sequence consists on 
scoring over all possible derivations, therefore it is capable of covering several overlap-
ping sets of nested (anti-parallel) and branching dependencies. The PCFG model is, 
however, not suitable for capturing crossing (parallel) dependencies. This is a serious 
limitation in the context of modeling protein sequences. Unfortunately, more expres-
sive grammar formalisms are also more computationally expensive. For example, com-
putational time complexity for parsing of the mildly context-sensitive linear indexed 
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grammars [101, 102], which can capture some crossing structures, is O(n6) . An alterna-
tive consists on methods building models from the multiple sequence alignment, such as 
undirected graphical models or Potts models, which can capture information conveyed 
in the crossing inter-position correlations [103, 104]. There is ongoing research on using 
such models for aligning sequences in homology searches, while avoiding the combi-
natory explosion [105–109]. Interestingly, one Potts-based tool under development has 
been hitherto outperformed by a PCFG-based tool in RNA homology searches [109]. 
Even if further development leads to unleashing the full power of Potts-based models, 
the requirement of MSA for inferring their parameters makes them less suitable for 
modeling meta-families of motifs whose members do not share relevant homology, yet 
still share structural or functional principles.

Conclusions
The results obtained in this piece of research show that the proposed method can infer a 
model capable of generalizing over a diverse set of families of amyloid signaling motifs. 
While the profile HMMs remain the method of choice for modeling homologous sets of 
sequences, PCFGs seem more suitable for building meta-family descriptors with the goal 
of extrapolating beyond the seed sample. (Even if the generalization comes at some price 
as exposed by the experimentally verified false positive hit.) Indeed, with the score averag-
ing scheme, PCFGs trained without contact constraints outperformed profile HMMs when 
the BASS-trained models were applied to fungal motifs (sensitivity of 89% vs 57% at FPR of 
1e−3 ). In practice, one can expect even higher specificity of both machine learning meth-
ods, since in reporting the results we assumed the conservative upper estimate of the false 
positive rate when all positive samples scored above every negative sample.
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