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Abstract 

Background:  Predicting the drug response of a patient is important for precision 
oncology. In recent studies, multi-omics data have been used to improve the predic-
tion accuracy of drug response. Although multi-omics data are good resources for 
drug response prediction, the large dimension of data tends to hinder performance 
improvement. In this study, we aimed to develop a new method, which can effectively 
reduce the large dimension of data, based on the supervised deep learning model for 
predicting drug response.

Results:  We proposed a novel method called Supervised Feature Extraction Learning 
using Triplet loss (Super.FELT) for drug response prediction. Super.FELT consists of three 
stages, namely, feature selection, feature encoding using a supervised method, and 
binary classification of drug response (sensitive or resistant). We used multi-omics data 
including mutation, copy number aberration, and gene expression, and these were 
obtained from cell lines [Genomics of Drug Sensitivity in Cancer (GDSC), Cancer Cell 
Line Encyclopedia (CCLE), and Cancer Therapeutics Response Portal (CTRP)], patient-
derived tumor xenografts (PDX), and The Cancer Genome Atlas (TCGA). GDSC was used 
for training and cross-validation tests, and CCLE, CTRP, PDX, and TCGA were used for 
external validation. We performed ablation studies for the three stages and verified that 
the use of multi-omics data guarantees better performance of drug response predic-
tion. Our results verified that Super.FELT outperformed the other methods at external 
validation on PDX and TCGA and was good at cross-validation on GDSC and external 
validation on CCLE and CTRP. In addition, through our experiments, we confirmed that 
using multi-omics data is useful for external non-cell line data.

Conclusion:  By separating the three stages, Super.FELT achieved better performance 
than the other methods. Through our results, we found that it is important to train 
encoders and a classifier independently, especially for external test on PDX and TCGA. 
Moreover, although gene expression is the most powerful data on cell line data, multi-
omics promises better performance for external validation on non-cell line data than 
gene expression data. Source codes of Super.FELT are available at https://​github.​com/​
DMCB-​GIST/​Super.​FELT.
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Background
Prediction of drug response for each patient is highly important in precision oncol-
ogy. However, it is quite challenging as the drug response for each patient could vary 
owing to genetic differences [1]. Although a cohort of patients may use the same anti-
cancer drug, the therapeutic effect may not be the same because of multiple genetic 
factors [1, 2]. Thus, multi-omics data are required for precision oncology [3], and the 
success of precision medicine relies on effectively utilizing the combination of multi-
omics data.

Recently, large-scale omics data have been made publicly accessible, including Genom-
ics of Drug Sensitivity in Cancer (GDSC) [4], Cancer Cell Line Encyclopedia (CCLE) 
[5], Cancer Therapeutics Response Portal (CTRP) [6], Patient-Derived tumor Xenografts 
(PDX) encyclopedia [7], and The Cancer Genome Atlas (TCGA) [8]. These datasets pro-
vide multi-omics data that consists of gene expression, somatic mutation and copy num-
ber aberration (CNA), and response to multiple drugs.

The translatability of prediction models to actual patients is challenging in drug 
response studies [9, 10]. To achieve high performance in patients, the models for pre-
dicting drug response should be trained on in vivo data. However, the number of in vivo 
patient records with drug response, such as in TCGA [8], is smaller than that in in vitro 
datasets, such as GDSC [4]. Owing to insufficient in vivo information, a computational 
model for drug response prediction would require the translatability from in  vitro to 
in vivo data. In other words, a model trained on in vitro data should have high predic-
tion performance when tested on in vivo data.

Recently, many computational methods, such as support vector machines (SVM) [11], 
autoencoder (AE) [12–16], Bayesian multitask multiple kernel learning [17, 18], random 
forest [14, 19–21], and neural network models [22] have been proposed for predicting 
drug response. Especially, algorithms for dimensionality reduction, such as AE, stacked 
AE [16], and variational autoencoder (VAE) [23], have been frequently used. Many stud-
ies have focused on dimensionality reduction because performance of methods could 
largely depend on how well the required features are extracted from high-dimensional 
and complex multi-omics data [24]. Ding et al. [13], AutoBorutaRF [14], DeepDR [15], 
DeepDSC [16], and MOLI [25] are models for drug response prediction using multi-
omics data.

Ding et al. [13] uses AE for selecting features, and an elastic net and SVM for classifier. 
In AutoBorutaRF [14], random forest is used for classifier after feature selection with 
AE and Boruta algorithm [26]. In DeepDR [15], AE is first pre-trained with TCGA data 
without drug response data, and the weights from AE are used for the initialization of 
a prediction model. Finally, the model is trained on the labeled GDSC data. DeepDSC 
[16] uses a stacked deep AE for reducing the large dimension of multi-omics data. MOLI 
[25] encodes multi-omics data with a deep neural network; however, its difference from 
other models is the integrated loss function, where encoders and a classifier are trained 
together for sharing each loss. The notable loss function of MOLI is triplet loss function 
[27]; the loss function would be appropriate for distinguishing resistant samples from 
sensitive samples. In MOLI, encoders using the triplet loss and a classifier were trained 
jointly. Nonetheless, we suspected that the performance of drug response prediction can 
be improved if the loss functions are trained in a different way.
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In this study, we focused on how accurately an encoder can extract important features 
for classifying samples as drug response resistant   or sensitive. We proposed a novel 
method, Supervised Feature Extraction Learning using Triplet loss (Super.FELT). In 
Super.FELT, there are three stages, namely, feature selection, feature encoding, and clas-
sification. In the feature selection stage, Super.FELT uses variance threshold based on 
the elbow method to extract significant features of omics-data. In the feature encoding 
stage, each dataset is assigned to different encoders, and each encoder is trained using 
a supervised method, wherein an objective function is triplet loss function. Because 
the encoder is based on the supervised method, feature selection for reducing the 
large dimension of omics data would improve the efficiency of the encoder. Therefore, 
Super.FELT could extract important features from each omics data better than previ-
ous models. To assess the translatability of our proposed model, we trained Super.FELT 
using GDSC dataset and tested on CCLE, CTRP, PDX, and TCGA datasets. Our results 
showed that Super.FELT is superior to the other drug response prediction methods on 
external datasets.

Methods
Datasets

In this study, we used in vitro (GDSC, CCLE, CTRP, and PDX Encyclopedia) and in vivo 
(TCGA) datasets, including multi-omics data (gene expression, CNA, and mutation) 
and drug responses (Table 1). For GDSC, we used 243 non-duplicated drugs among 265 
drugs obtained from Iorio et al. [28], which contains the binary drug response informa-
tion (resistant or sensitive) for cell lines. For each drug, the numbers of cell lines are 
different; the average number of cell lines and resistant and sensitive samples are 776, 
685, and 91, respectively (Additional file  1: Table  S1). Raw gene expression data were 
obtained from https://​www.​ebi.​ac.​uk/​array​expre​ss/​exper​iments/​E-​MTAB-​3610/​files/​
raw/. CNA and mutation data were downloaded from ftp://ftp.sanger.ac.uk/pub/pro-
ject/cance rrxgene/releases/release-7.0/Gene_level_CN.xlsx and ftp://ftp.sanger.ac.uk/
pub/project/cancerrxgene/releases/release-7.0/WES_variants.xlsx, respectively. The 
drug response data based on ln(IC50) values were obtained from Table S5 (C) of Iorio 
et al. [28] (https://​www.​cance​rrxge​ne.​org/​gdsc1​000/​GDSC1​000_​WebRe​sourc​es///​Data/​
suppD​ata/​Table​S5C.​xlsx).

For CCLE and CTRP datasets, we obtained datasets from PharmacoGx (R pack-
age) [29], and CNA data were downloaded from https://data.broadinstitute.org/

Table 1  Datasets used in our experiment

“#” represents the number of drugs.

“Avg” represents the average number.

“R” and “S” indicate resistant and sensitive samples, respectively

Type Dataset Usage # of drugs Avg of cell lines Avg of R/S

in vitro GDSC  Training and cross validation 243 776 685/91

in vitro CCLE External validation 10 224 200/24

in vitro CTRP External validation 62 404 340/64

in vitro PDX External validation 6 31 27/4

in vivo TCGA​ External validation 13 27 14/13

https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3610/files/raw/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3610/files/raw/
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources///Data/suppData/TableS5C.xlsx
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources///Data/suppData/TableS5C.xlsx
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ccle_legacy_data/dna_copy_number/CCLE_copynumber_2013-12-03.seg.txt. Because 
CCLE and CTRP were used as external validation, we selected non-overlapping cell lines 
with GDSC for existing drugs in GDSC based on Table S4 (E), (F), (I), and (J) of Iorio 
et al. [28]. The total numbers of drugs, average numbers of samples, and resistant and 
sensitive samples were 10, 224, 200, and 24 for CCLE and 62, 404, 340, and 64 for CTRP, 
respectively (Tables 2 and 3).

For PDX and TCGA datasets, which are also used for external validation, we per-
formed tests for drugs having at least one resistant and sensitive samples and at least four 
samples in total among existing drugs in GDSC. As a result, 6 and 13 drugs were tested 
for PDX and TCGA, respectively, where the average numbers of samples and resistant 
and sensitive samples are 31, 27, and 4 for PDX and 27, 13, and 14 for TCGA (Table 4). 
PDX dataset is available in Supplementary File of Gao et al. [7] (https://​static-​conte​nt.​
sprin​ger.​com/​esm/​art%​3A10.​1038%​2Fnm.​3954/​Media​Objec​ts/​41591_​2015_​BFnm3​
954_​MOESM​10_​ESM.​xlsx), where “CR” and “PR” are “Sensitive”, and “SD” and “PD” are 
“Resistant”. Omics data of TCGA were downloaded from Firehose Broad GDAC (http://​
gdac.​broad​insti​tute.​org/​runs/​stdda​ta__​2016_​01_​28/). For drug response of TCGA data, 
we used Table S2 of Ding et al. [30], where “Complete Response” and “Partial Response” 
are “Sensitive”, and “Clinical Progressive Disease” and “Stable Disease” are “Resistant”.

We preprocessed each omics dataset using source codes of Sharifi-Noghabi et  al. 
[25]. The details about data preprocessing steps are described in the Supplementary 
File of Sharifi-Noghabi et al. [25]. The preprocessing steps have been briefly explained 
as follows. For measuring gene expression, microarray Affymetrix Human Genome 
U219 (GDSC), HG-U133 Plus 2.0 (CCLE and CTRP), and RNA-seq on Illumina Hiseq 
(TCGA and PDX) were used. The expression values of GDSC were extracted from 
raw CEL files, and robust multi-array average (RMA) normalization was performed. 
For TCGA gene expression data, expression values, which were normalized by the 
RNA-Seq by expectation maximization (RSEM) method [31], were converted to tran-
scripts per million (TPM) values and transformed to log2values. For PDX samples, 
fragments per kilobase of exon model per million reads mapped (FPKM) values of 
the downloaded gene expression data were converted to TPM [32]. Pairwise homog-
enization process [33] was used to remove batch effects of gene expression of CCLE, 
CTRP, PDX, and TCGA data based on GDSC. In copy number profiles, because copy 

Table 2  Profiles of CCLE dataset

Drug Sensitive Resistant Total

17-AAG​ 20 142 162

Crizotinib 27 294 321

Erlotinib 58 276 334

Nilotinib 17 131 148

Nutlin-3a 6 156 162

PD-0325901 50 115 165

PD-0332991 18 131 149

PHA-665752 23 297 320

PLX4720 10 150 160

Sorafenib 15 309 324

https://static-content.springer.com/esm/art%3A10.1038%2Fnm.3954/MediaObjects/41591_2015_BFnm3954_MOESM10_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fnm.3954/MediaObjects/41591_2015_BFnm3954_MOESM10_ESM.xlsx
https://static-content.springer.com/esm/art%3A10.1038%2Fnm.3954/MediaObjects/41591_2015_BFnm3954_MOESM10_ESM.xlsx
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/
http://gdac.broadinstitute.org/runs/stddata__2016_01_28/
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Table 3  Profiles of CTRP dataset

Drug Sensitive Resistant Total

Afatinib 77 302 379

Axitinib 142 285 427

AZD7762 56 384 440

AZD8055 80 365 445

BI-2536 41 548 589

Bleomycin 68 316 384

BMS-345541 51 340 391

BMS-754807 48 362 410

Bortezomib 57 514 571

Bosutinib 65 357 422

CAL-101 61 345 406

Cytarabine 65 368 433

Dabrafenib 23 177 200

Dasatinib 200 377 577

Docetaxel 56 136 192

Doxorubicin 125 297 422

Etoposide 94 318 412

EX-527 17 355 372

GDC0941 120 315 435

Gefitinib 66 349 415

Gemcitabine 28 345 373

GW843682X 33 504 537

Imatinib 71 494 565

JNJ-26854165 100 283 383

KU-55933 64 361 425

Lapatinib 68 476 544

Masitinib 64 328 392

Methotrexate 16 402 418

MG-132 10 204 214

Mitomycin C 145 260 405

MK-2206 100 306 406

NVP-BEZ235 58 252 310

NVP-TAE684 182 379 561

Obatoclax Mesylate 73 346 419

OSI-027 79 331 410

OSI-930 23 304 327

PAC-1 32 347 379

Paclitaxel 147 415 562

Parthenolide 126 408 534

Pazopanib 29 377 406

PHA-793887 94 309 403

PI-103 24 375 399

PIK-93 69 328 397

Piperlongumine 41 350 391

Ruxolitinib 73 324 397

SN-38 73 259 332

SNX-2112 53 358 411

Sunitinib 60 507 567

Tamoxifen 14 372 386
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numbers were measured by Affymetrix SNP6.0 arrays in TCGA, HapMap [34] and 
log2-transformed were used for normalization. In addition, the circular binary seg-
mentation algorithm [35] was used to calculate segments, and all genes with deletions 
or amplification were assigned as one, and those without deletion or amplification 
were assigned as zero. Because PDX and GDSC provided gene-level estimated total 
copy numbers, copy number was converted into log2-transform. Copy number data 
of CCLE and CTRP were processed using the same pipeline of TCGA except for 
removing germline CNA. For mutation, silent mutations were filtered out, and only 
those affecting the protein structure were used. As CCLE and CTRP provide only 

Table 3  (continued)

Drug Sensitive Resistant Total

Temozolomide 12 395 407

Temsirolimus 45 194 239

TG101348 65 325 390

TGX221 63 513 576

TPCA-1 36 365 401

Trametinib 26 171 197

Tubastatin A 43 170 213

TW 37 24 371 395

Vorinostat 61 360 421

VX-680 15 46 61

YK 4-279 34 398 432

YM155 65 304 369

ZSTK474 23 377 400

Table 4  Profiles of PDX & TCGA dataset

Dataset Drug Sensitive Resistant Total

PDX 5-Fluorouracil 1 22 23

PDX Cetuximab 5 55 60

PDX Erlotinib 3 18 21

PDX Gemcitabine 7 18 25

PDX Paclitaxel 5 38 43

PDX Trametinib 3 16 19

TCGA​ 5-Fluorouracil 16 9 25

TCGA​ Cetuximab 6 3 9

TCGA​ Cisplatin 58 6 64

TCGA​ Docetaxel 6 9 15

TCGA​ Doxorubicin 4 13 17

TCGA​ Erlotinib 2 2 4

TCGA​ Etoposide 2 2 4

TCGA​ Gemcitabine 24 37 61

TCGA​ Mitomycin C 1 3 4

TCGA​ Paclitaxel 24 9 33

TCGA​ Sorafenib 1 13 14

TCGA​ Tamoxifen 9 3 12

TCGA​ Temozolomide 11 77 88
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1651 genes for mutation data, we assigned no mutations for genes that are not con-
tained in these datasets but contained in GDSC.

Because PharmacoGx package [29] only provides continuous IC50 values for CCLE 
and CTRP datasets, we additionally processed them into binary labels (sensitive and 
resistant). We used a binarization scheme employed in LOBICO [36], which was also 
used by Iorio et al. [28] for assigning binary labels in GDSC. First, we converted IC50 
values into ln(IC50). LOBICO [36] sampled 1000 data per one cell line based on a 
normal distribution with their given confidence intervals. However, we fixed the con-
fidence interval as 0.5 and sampled 100 data per one cell line because we did not have 
the confidence interval values for CCLE and CTRP datasets. Second, we performed 
kernel density estimation on the distribution of 100 × n data, where n is the total 
number of cell lines of a target drug, using a normal distribution with bandwidth 0.5 
as kernel. Finally, using the method of LOBICO [36] for obtaining the population of 
resistant cell lines, we obtained the threshold for binary values of continuous IC50 
values. Additional file  1: Tables S2, S3, S4, and S5 present ln(IC50) thresholds for 
deciding binary labels and binary labels assigned for each drug in CCLE and CTRP, 
respectively.

Super.FELT

Figure  1 shows the workflow of Super.FELT. It consists of i) feature selection using 
a variance threshold based on the elbow method, ii) a supervised encoder using tri-
plet loss function (SET) for extracting important information from large-dimen-
sional omics data, and iii) a classification based on a neural network for predicting 
drug response. Feature selection is important for improving the performance of SET, 
as large dimension is likely to cause overfitting. Each of the reduced omics dataset 
is independently encoded by SET, and the three encoded omics datasets are then 

Fig. 1  Workflow of Super.FELT. a Reduction of the large dimension of omics data with feature selection using 
a variance threshold based on the elbow method. b Supervised encoder using triplet loss function (SET) 
encodes each reduced omics data independently. c After encoding, all encoded omics data are integrated as 
the input data of the classifier. d A neural network classifier, for which the loss function is binary cross entropy 
(BCE) function, is trained for predicting drug response
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concatenated as a single matrix. The integrated matrix is the input data of neural net-
work for classification. The classifier should be simple to avoid overfitting because 
SET already transformed the omics data into a data representation optimized for drug 
response.

Feature selection and encoding

Gene expression, mutation, and CNA data are denoted as Xe,Xm, and Xc , respectively. 
These data are in the form of N ×M matrix, in which N is the number of samples and 
M is the number of features (M is different depending on data). We used triplet loss func-
tion, which helps the embedding vector to have similar values for samples with the same 
label. As the encoders were trained using the supervised mode, it should reduce the risk of 
overfitting. To decrease the risk, Super.FELT firstly reduced the dimension of omics data 
through feature selection using a variance threshold based on the elbow method. This was 
based on the assumption that genes with low variance might contain less important infor-
mation. This approach had been used in several studies to handle omics data [37–39]. Sec-
ond, we used dropout, weight decay, and early stopping. These techniques were frequently 
used to avoid overfitting. SET, the encoding function, has a single fully connected layer with 
a Rectified Linear Unit (ReLU) activation function to reduce the risk of overfitting.

In our study, feature selection using variance threshold for a certain omics data Xo is 
denoted by F(Xo).

where Xo is a N ×M matrix and X ′
o is a N ×M′ matrix, M > M′ . Thus, the reduced 

omics data, through feature selection using variance threshold, is denoted as X ′
o.

Next, each omics dataset was assigned to an encoding function. Here, we defined the 
encoding function for the omics data as EO(X ′

o).

where r(X) is the ReLU function, Wo is a M′ × M̃o weight matrix, and X̃o is a N × M̃o 
matrix. Encoding functions for gene expression, mutation, and CNA data are denoted as 
EE(X

′
e) , EM(X ′

m) , and EC(X ′
c) , respectively. As each omics dataset had a different influ-

ence, the encoded data had different size. Among the omics data used in this study, 
gene expression was the most powerful to predict cancer drug response [17]. Although 
CNA and mutation are less influential than gene expression, they also contain important 
information and have been frequently used in many studies [13, 15, 25]. To utilize the 
property, we set the number of nodes of the encoders differently based on the impor-
tance of each omics dataset. Therefore, X̃e = EE(X

′
e) , X̃m = EM(X ′

m) , and X̃c = EC(X
′
c) 

were N × M̃e , N × M̃m , and N × M̃c matrices, respectively, and M̃e > M̃c > M̃m . Note 
that X̃e , X̃m , and X̃c have continuous values after applying the encoding function. The 

(1)X ′
o = F(Xo),

(2)r(X) =

{

Xij , Xij ≥ 0
0, Xij < 0

(3)EO(X
′
o) = r(X ′

oWo)

(4)X̃o = EO(X
′
o),
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final multi-omics data were generated by concatenating all omics matrices. The concat-
enating function is denoted as C(X̃e, X̃m, X̃c).

where ⊕ means the concatenation operator and X̂ is the N × M̂ matrix, 
M̂ = (M̃e + M̃m + M̃c).

For encoding omics data, SET uses triplet loss function [27] as a cost function. Triplet 
loss function makes the data with same label come closer than those with different labels. 
It requires three input objects, namely the anchor (baseline), positive, and negative. If we 
define an embedding function and Euclidean distance function as f(x) and d(x, y), respec-
tively, the goal of triplet loss function is to ensure that the distance between anchor, posi-
tive, and negative is as follows.

where a is an anchor vector, p is a positive vector, and n is a negative vector. Therefore, 
the loss function is defined as:

where α is a margin between the positive and negative pair. The total loss of the embed-
ding function would be:

where A is an anchor matrix, P is a positive matrix, and N is a negative matrix; Ai,Pi and 
Ni are i-th vector for each matrix, respectively, LT ,i is the loss for i-th pair sample, and K 
is the number of pairs.

Here, we had binary labels: resistant and sensitive. Therefore, when we select a sample 
with resistant label as the anchor, samples with resistant label become positive samples and 
those with sensitive label become negative samples and vice versa. For utilizing triplet loss 
function, we should define a pairing function, p(EO(X ′

o), y) , which makes all pairs for the 
two cases.

(5)C(X̃e, X̃m, X̃c) = X̃e ⊕ X̃m ⊕ X̃c

(6)X̂ = C(X̃e, X̃m, X̃c),

(7)d(f (a), f (p)) ≪ d(f (a), f (n)),

(8)LT (a, p, n)) = max(d(f (a), f (p))− d(f (a), f (n))+ α, 0),

(9)LT (A,P,N ) =

K
∑

i=1

LT ,i(Ai,Pi,Ni),

(10)[XA,XP,XN] =













xS xS xR
xR xR xS
...

...
...

xS xS xR
xS xS xR













= p(EO(X
′
o), y)
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where yN×1 is a label vector for X̃o,XA is an anchor matrix, XP is a positive matrix, XN 
is a negative matrix, xS and xR are arbitrary row vectors of X̃o with sensitive label and 
resistant label, respectively, and PEo,i is an i-th pair sample for Xo . Therefore, the total 
loss of EO is expressed as:

Classification

The encoded data were already well organized to predict drug response owing to SET. 
As complex models pretend to  cause overfitting, the classifier should not be a complex 
model. Therefore, in our model, the classifier had a single layer with a sigmoid activation 
function, and dropout, weight decay, and early stopping were used. A classifier can be 
described as follows.

where s(x) is a sigmoid function, X̂ is a N × M̂ matrix, w is a M̂ × 1 weight vector, and 
ŷN×1 is a predicted label vector. The cost function is binary cross-entropy classification 
loss denoted by:

where yN×1 is the label vector.

Results
To assess the performance of Super.FELT, we performed a series of experiments. In the 
experimental design, we introduced an overall experimental design of Super.FELT along 
with the other drug response prediction methods for comparison. We then assessed the 
performance of our model using four external datasets. The subsection ‘Cross-valida-
tion’ shows the results of 5× 5-fold cross validation for 243 drugs in GDSC. In the sub-
section ‘On CCLE and CTRP’, we evaluated how well Super.FELT works on external cell 

(11)PEo =













PEo,1
PEo,2
...

PEo,K−1

PEo,K













= p(X̃o, y),

(12)LT (EO(X
′
o)) =

K
∑

i=1

LT ,i(PEo,i),

(13)z = X̂w

(14)s(zj) =
1

1+ e−zj

(15)c(X̂) = s(X̂w)

(16)ŷN×1 = c(X̂),

(17)LBCE(c(X̂), y) = −[y log(c(X̂))+ (1− y) log(1− c(X̂))],
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line data. The subsection ‘On PDX and TCGA’ shows the translatability of Super.FELT 
from cell line data to non-cell line data.

Experimental design

We evaluated Super.FELT with cross and external validation. As GDSC dataset included 
many cell lines and 243 drugs, we used it for training and cross validation. In cross vali-
dation using GDSC dataset, we employed 5× 5-fold cross validation and generated vali-
dation data from 20% of training data, which meant that 20% was test data, 64% was 
training data, and 16% was validation data. In external validation, GDSC dataset was 
used for training, and CCLE, CTRP, PDX, and TCGA datasets were used for external 
test. For Super.FELT validation, we compared Super.FELT with the following   eight 
cases. 

1.	 We compared with MOLI [25] because encoders and the classifier were trained 
jointly without feature selection in MOLI. By comparing Super.FELT with MOLI, we 
could identify that independent training with feature selection was better than joint 
training without feature selection.

2.	 We compared with MOLI using feature selection because we cannot say that inde-
pendent training is better than joint training when comparing MOLI with Super.
FELT. From the test, we could investigate which training was better and evaluate 
the effect of feature selection. We named this case 2 as MOLI after Feature selection 
(MOLIF).

3.	 We compared with a model using feature selection with variation threshold and an 
autoencoder followed by the neural network classifier; this was the same as Super.
FELT, except that a latent space of the autoencoder was used for input of the classi-
fier instead of SET. We could compare the simple autoencoder with SET. We named 
this case 3 as AE.

4.	 We compared with the model using feature selection and the neural network classi-
fier; it was the same as Super.FELT without SET. Using this model, we examined how 
effective SET was. We named this case 4 as Artificial Neural Network after Feature 
selection (ANNF).

5.	 We compared with AutoBorutaRF [14], which is a random forest model after feature 
selection based on autoencoder and Boruta algorithm [26]. By testing AutoBorutaRF, 
we could know how effective the feature selection of Super.FELT and the classifier 
based on Artificial Neural Network are.

6.	 We compared with SVM after feature selection on gene expression data, which is 
similar to Huang et  al. [11]. The difference is that Huang et  al. [11] used a recur-
sive feature elimination method [40, 41] for feature selection. However, the recursive 
feature elimination takes long time to eliminate unimportant features for predicting 
an output when the numbers of cell lines and drugs are large. Thus, instead of it, 
we used the same feature selection approach based on variance as Super.FELT. We 
named this case 6 as SVM.

7.	 We compared with Super.FELT using only gene expression without mutation and 
CNA data. Using this test, we could compare multi-omics approach by using gene 
expression alone. We named this case 7 as Super.FELT E.
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8.	 We compared with Super.FELT using mutation and CNA data without gene expres-
sion. By testing this case 8, we could verify how influential mutation and CNA are on 
this task without gene expression. We named case 8 as Super.FELT M&C.

The GDSC dataset used in our experiment (Table 1) has an imbalanced label distribu-
tion, having a larger number of resistant samples. Thus, during training, we oversampled 
sensitivity samples based on the proportion of each label, except for case 5. In case 5, 
AutoBorutaRF [14] used an oversampling approach called EasyEnsemble [42], in which 
a predicted label was decided by the majority vote of random forest models trained on 
each balanced subset divided from a training dataset. In our comparison, the majority 
vote cannot be used because we evaluated models with AUC scores. Thus, we replaced 
the majority vote with the selection of the best model having the highest validation AUC 
score when testing AutoBorutaRF.

Cross validation

We performed 5× 5-fold cross validation for 243 drugs in GDSC dataset. Additional 
file 1: Table S1 shows the profile of each drug. For hyperparameter tuning, we empiri-
cally constructed eight hyperparameter sets for Super.FELT, MOLIF, AE, and ANNF 
(Additional file 1: Tables S6 and S7). In the cases of Super.FELT E and M&C, we used 
same hyperparameter sets of Super.FELT. In MOLI, Sharifi-Noghabi et al. [25] did not 
report cross validation results of GDSC. Therefore, we constructed eight hyperparam-
eter sets by randomly selecting candidate parameters, which were provided in the github 
of Sharifi-Noghabi et al. (Additional file 1: Tables S8 and S9). For AutoBorutaRF, we used 
all features provided by Xu et al. [14] and the same parameters as them. The validation 
set was used to select the hyperparameters set for test, based on the area under the aver-
age curve (AUC) values between true positives and false positives. Table  5 shows the 
average AUC values of 243 drugs for validation sets with eight hyperparameters and the 
test set, wherein the average test AUC values for Super.FELT, MOLIF, AE, ANNF, MOLI, 
AutoBorutaRF, SVM, Super.FELT E, and Super.FELT M&C were 0.729, 0.712, 0.719, 
0.706, 0.720, 0.698, 0.7, 0.727, and 0.593, respectively (Additional file 1: Table S10). Fig-
ure 2A shows the distributions of AUC scores on 243 drugs for each method, and the 
distribution of Super.FELT is located on the right most among all methods. Although 
it seems that the difference in the distributions is small, the AUC values of Super.FELT 
were higher than those of other methods for most of the 243 drugs, with most dots (rep-
resenting drugs) located under the diagonal (Fig. 2B).

External validation

On external validation, GDSC was divided into five folds, where four folds and the 
remaining one were used for training and validation, respectively, and external datasets 
were used for the test. This process was repeated 5× 5 times for every hyperparameter 
set, and we measured the average AUC values of external test when parameters with the 
highest average AUC values in the validation set were used. We used two different types 
of external datasets: cell line data (CCLE and CTRP) and non-cell line data (PDX and 
TCGA).
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On CCLE and CTRP

In MOLI [25], they did not test on CCLE and CTRP. Therefore, we found hyperparam-
eter sets using the same method as the subsection ‘Cross-validation’; however, hyperpa-
rameters can be different because they were randomly selected. For CCLE and CTRP, 
the average AUC scores for Super.FELT, MOLIF, AE, ANNF, MOLI, AutoBorutaRF, 

Table 5  The average AUC scores for 243 drugs in GDSC for the cross validation test

A bold value in the Test AUC indicates a method with the best performance

*bold values indicate the best validation AUC among eight hyperparameter sets

Super.FELT MOLIF AE ANNF MOLI Super.
FELT E

Super.FELT  
M&C

Auto 
BorutaRF

SVM

Validation 
AUC​

with set 1

0.727 0.711 0.712 0.694 0.715 0.723 0.602*

Validation 
AUC​

with set 2

0.727 0.697 0.715* 0.699 0.71 0.726 0.598

Validation 
AUC​

with set 3

0.728 0.698 0.69 0.697 0.704 0.726 0.597

Validation 
AUC​

with set 4

0.73* 0.7137 0.707 0.696 0.694 0.73 0.592 0.747 0.702

Validation 
AUC​

with set 5

0.72 0.707 0.672 0.698 0.705 0.727 0.583

Validation 
AUC​

with set 6

0.726 0.699 0.708 0.693 0.713 0.724 0.595

Validation 
AUC​

with set 7

0.727 0.703 0.712 0.694 0.721* 0.715 0.597

Validation 
AUC​

with set 8

0.727 0.7138* 0.684 0.703* 0.719 0.732* 0.593

Test AUC​ 0.729 0.711 0.719 0.706 0.72 0.728 0.593 0.698 0.7

Fig. 2  a The distributions of AUC values of cross validation on 243 drugs in GDSC for Super.FELT, MOLIF, AE, 
ANNF, MOLI, AutoBorutaRF, SVM, Super.FELT E, and Super.FELT M&C. b The scatter plot of cross validation AUC 
values, where x- and y-axis represent AUCs of Super.FELT and other methods, respectively
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SVM, Super.FELT E, and Super.FELT M&C were 0.697, 0.685, 0.677, 0.674, 0.685, 0.663, 
0.72, 0.693, and 0.607, respectively (Table 6 and Additional file 1: Tables S11, S12, S13, 
S14, S15, S16, S17, S18, and S19). Even though the average AUC of SVM is higher than 
others, Fig. 3A shows that Super.FELT obtained higher AUC scores than other methods 
for most drugs.

On PDX and TCGA​

Although MOLI also performed external validation, datasets used in this study are differ-
ent from those used in MOLI because our datasets contain more drugs than those used 
by Sharifi-Noghabi et al. [25]. Even for the same drugs, the number of samples on train-
ing and test data would be different. For selecting hyperparameters in MOLI, we used 
the same hyperparameters available from Supplementary materials of Sharifi-Noghabi 
et al. [25] (Additional file 1: Tables S20, S21, S22, S23, S24, S25, and S26). However, for 
some drugs not tested in MOLI, if data were obtained from TCGA, we used the hyper-
parameters of “Cisplatin” because it has the highest AUC value in the TCGA dataset. 
For PDX dataset, although AUC of “Paclitaxel” was higher than that of “Gemcitabine” 
in Sharifi-Noghabi et al [25], the latter was the best case in our experiment. Therefore, 
if we tested drugs of PDX for external validation, hyperparameters of “Gemcitabine” 
were used. In addition, we tested in MOLI using new hyperparameter sets created by 
the same method as the subsection ‘On CCLE and CTRP’ because our data would be 
different from the data used by Sharifi-Noghabi et al. [25]. We called this case as MOLI*. 
Table 7 shows that the average AUC scores for Super.FELT, MOLIF, AE, ANNF, Super.
FELT E, Super.FELT M&C, MOLI, AutoBorutaRF, SVM, and MOLI* were 0.622, 0.537, 
0.454, 0.564, 0.501, 0.567, 0.533, 0.432, 501, and 0.511, respectively (Additional file  1: 
Tables S27, S28, S29, S30, S31, S32, S33, S34, S35, and S36). Note that Etoposide (TCGA) 
is hard to predict the drug response, showing that the average AUC score of all methods 
is 0.152. Figure 3B shows that the performance of Super.FELT is superior to that of other 
methods for most drugs. In addition, when we compared the AUC values in GDSC and 

Fig. 3  a The scatter plot of external validation AUC values on CTRP and CCLE. b The scatter plot of external 
AUC on PDX and TCGA. x- and y-axis represent AUCs of Super.FELT and other methods, respectively
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Table 6  Results of external validation on CCLE and CTRP

Drug Super. FELT MOLIF AE ANNF MOLI Super.FELT E Super.
FELT M&C

Auto 
BorutaRF

SVM

17-AAG(CCLE) 0.682 0.666 0.628 0.656 0.678 0.669 0.481 0.530 0.717

Afatinib(CTRP) 0.798 0.783 0.771 0.788 0.776 0.794 0.605 0.541 0.793

Axitinib(CTRP) 0.795 0.777 0.795 0.761 0.752 0.796 0.631 0.521 0.794

AZD7762(CTRP) 0.797 0.785 0.777 0.762 0.794 0.800 0.681 0.526 0.746

AZD8055(CTRP) 0.679 0.693 0.698 0.659 0.688 0.680 0.622 0.508 0.693

BI-2536(CTRP) 0.510 0.526 0.473 0.510 0.547 0.507 0.487 0.632 0.678

Bleomycin(CTRP) 0.631 0.602 0.569 0.614 0.605 0.632 0.594 0.500 0.574

BMS-345541(CTRP) 0.740 0.756 0.759 0.716 0.721 0.757 0.606 0.756 0.756

BMS-754807(CTRP) 0.671 0.665 0.691 0.649 0.662 0.677 0.510 0.666 0.690

Bortezomib(CTRP) 0.283 0.274 0.258 0.287 0.333 0.250 0.465 0.489 0.751

Bosutinib(CTRP) 0.794 0.778 0.773 0.760 0.730 0.791 0.624 0.688 0.727

CAL-101(CTRP) 0.772 0.748 0.748 0.724 0.734 0.764 0.642 0.751 0.748

Crizotinib(CCLE) 0.718 0.717 0.625 0.715 0.735 0.706 0.586 0.673 0.773

Cytarabine(CTRP) 0.831 0.810 0.830 0.781 0.809 0.834 0.713 0.739 0.845

Dabrafenib(CTRP) 0.840 0.824 0.832 0.810 0.821 0.838 0.755 0.886 0.785

Dasatinib(CTRP) 0.669 0.664 0.633 0.669 0.647 0.660 0.519 0.660 0.639

Docetaxel(CTRP) 0.469 0.412 0.354 0.450 0.476 0.458 0.497 0.412 0.538

Doxorubicin(CTRP) 0.669 0.634 0.606 0.555 0.654 0.655 0.631 0.532 0.563

Erlotinib(CCLE) 0.698 0.665 0.704 0.667 0.680 0.702 0.525 0.555 0.722

Etoposide(CTRP) 0.824 0.813 0.827 0.731 0.770 0.826 0.690 0.736 0.719

EX-527(CTRP) 0.739 0.706 0.721 0.700 0.774 0.724 0.570 0.764 0.747

GDC0941(CTRP) 0.704 0.702 0.727 0.693 0.723 0.699 0.618 0.651 0.648

Gefitinib(CTRP) 0.690 0.683 0.684 0.656 0.675 0.692 0.562 0.649 0.698

Gemcitabine(CTRP) 0.614 0.598 0.671 0.557 0.583 0.644 0.655 0.523 0.562

GW843682X(CTRP) 0.454 0.534 0.413 0.483 0.582 0.469 0.486 0.576 0.660

Imatinib(CTRP) 0.682 0.679 0.648 0.690 0.698 0.691 0.549 0.596 0.791

JNJ-26854165(CTRP) 0.740 0.707 0.698 0.650 0.745 0.739 0.701 0.671 0.667

KU-55933(CTRP) 0.653 0.661 0.646 0.650 0.647 0.665 0.544 0.665 0.639

Lapatinib(CTRP) 0.661 0.638 0.692 0.662 0.610 0.656 0.548 0.588 0.688

Masitinib(CTRP) 0.820 0.813 0.816 0.821 0.809 0.822 0.721 0.807 0.815

Methotrexate(CTRP) 0.729 0.722 0.724 0.730 0.699 0.746 0.535 0.684 0.762

MG-132(CTRP) 0.374 0.433 0.355 0.403 0.372 0.363 0.626 0.492 0.641

Mitomycin C(CTRP) 0.707 0.655 0.627 0.593 0.662 0.699 0.584 0.526 0.627

MK-2206(CTRP) 0.733 0.733 0.710 0.717 0.742 0.733 0.642 0.754 0.753

Nilotinib(CCLE) 0.616 0.577 0.638 0.583 0.601 0.613 0.535 0.675 0.683

Nutlin-3a(CCLE) 0.928 0.906 0.868 0.910 0.938 0.908 0.906 0.928 0.902

NVP-BEZ235(CTRP) 0.636 0.584 0.543 0.607 0.583 0.626 0.576 0.512 0.616

NVP-TAE684(CTRP) 0.535 0.571 0.494 0.538 0.540 0.525 0.474 0.505 0.666

Obatoclax 
Mesylate(CTRP)

0.672 0.613 0.618 0.607 0.671 0.666 0.619 0.611 0.644

OSI-027(CTRP) 0.701 0.690 0.698 0.674 0.688 0.702 0.610 0.684 0.646

OSI-930(CTRP) 0.808 0.795 0.806 0.819 0.773 0.824 0.740 0.747 0.829

PAC-1(CTRP) 0.734 0.660 0.706 0.661 0.729 0.713 0.706 0.812 0.760

Paclitaxel(CTRP) 0.449 0.405 0.352 0.436 0.414 0.343 0.453 0.547 0.722

Parthenolide(CTRP) 0.623 0.642 0.546 0.616 0.592 0.580 0.601 0.609 0.708

Pazopanib(CTRP) 0.680 0.635 0.616 0.659 0.631 0.661 0.602 0.651 0.679

PD-0325901(CCLE) 0.854 0.841 0.843 0.821 0.840 0.852 0.635 0.828 0.826

PD-0332991(CCLE) 0.645 0.609 0.678 0.552 0.651 0.645 0.680 0.676 0.629

PHA-665752(CCLE) 0.524 0.553 0.487 0.535 0.527 0.534 0.504 0.495 0.612

PHA-793887(CTRP) 0.822 0.808 0.835 0.818 0.815 0.813 0.720 0.798 0.826

PI-103(CTRP) 0.785 0.759 0.758 0.742 0.734 0.751 0.643 0.750 0.781

PIK-93(CTRP) 0.817 0.821 0.826 0.807 0.828 0.820 0.718 0.844 0.814
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the test AUC values on PDX and TCGA for each drug, we could observe that Super.
FELT showed high AUC values for both internal and external validation (Fig. 4).

Pharmacogenomics analysis

The in vivo drug response data such as TCGA are important to understand the pharma-
cogenomics of drugs, but the available in vivo drug response data are small. However, 
TCGA contains multi-omics data for thousands of samples without drug response data. 
Thus, we predicted drug response of the samples in TCGA using our model trained with 
GDSC and investigated most contributing genomic features related to drug response, 
which is similar to the analysis performed by Chiu et al. [43]. For 6194 TCGA samples 
having gene expression, CNA, and mutation data, we calculated the drug response prob-
ability on cisplatin, temozolomide, and docetaxel using Super.FELT. Then, for each drug, 
we constructed two groups of samples, 1% of the most sensitive samples and 1% of the 
most resistant samples (Fig. 5A). We selected 200, 50, and 50 genes with the most dif-
ferent values between the two groups in gene expression, CNA, and mutation data, 
respectively, using a t-test. These genes might be contributing genomic features for the 
drug response. The genes related to cisplatin, temozolomide, and docetaxel are shown in 
Additional file 1: Tables S37, S38, and S39, respectively, and Fig. 5B shows heat maps of 
each omics data. For these genes, we performed a functional enrichment test using the 
Database for Annotation, Visualization and Integrated Discovery [44] for gene ontology 
(GO) terms [45].

Bold values indicate methods with best performance for each drug

Table 6  (continued)

Drug Super. FELT MOLIF AE ANNF MOLI Super.FELT E Super.
FELT M&C

Auto 
BorutaRF

SVM

piperlongumine(CTRP) 0.727 0.639 0.682 0.627 0.657 0.740 0.658 0.616 0.585

PLX4720(CCLE) 0.875 0.873 0.871 0.839 0.868 0.884 0.640 0.781 0.870

Ruxolitinib(CTRP) 0.763 0.756 0.775 0.745 0.744 0.773 0.619 0.769 0.777

SN-38(CTRP) 0.735 0.730 0.717 0.675 0.749 0.721 0.620 0.742 0.776

SNX-2112(CTRP) 0.800 0.789 0.782 0.740 0.793 0.779 0.633 0.759 0.672

Sorafenib(CCLE) 0.552 0.633 0.555 0.666 0.623 0.627 0.576 0.595 0.773

Sunitinib(CTRP) 0.552 0.642 0.578 0.628 0.591 0.570 0.589 0.580 0.755

Tamoxifen(CTRP) 0.617 0.630 0.591 0.619 0.575 0.632 0.516 0.609 0.701

Temozolomide(CTRP) 0.834 0.827 0.820 0.826 0.818 0.825 0.609 0.771 0.794

Temsirolimus(CTRP) 0.731 0.692 0.689 0.654 0.679 0.726 0.688 0.762 0.748

TG101348(CTRP) 0.771 0.786 0.803 0.754 0.774 0.770 0.696 0.790 0.781

TGX221(CTRP) 0.461 0.421 0.414 0.544 0.455 0.476 0.434 0.646 0.646

TPCA-1(CTRP) 0.784 0.779 0.788 0.778 0.795 0.777 0.668 0.793 0.795

Trametinib(CTRP) 0.772 0.783 0.746 0.772 0.770 0.761 0.597 0.717 0.773

Tubastatin A(CTRP) 0.870 0.866 0.888 0.865 0.865 0.872 0.739 0.895 0.878

TW 37(CTRP) 0.599 0.444 0.504 0.512 0.520 0.606 0.511 0.505 0.527

Vorinostat(CTRP) 0.793 0.820 0.847 0.776 0.749 0.799 0.619 0.826 0.745

VX-680(CTRP) 0.724 0.773 0.719 0.715 0.802 0.749 0.679 0.750 0.899

YK 4-279(CTRP) 0.786 0.763 0.785 0.759 0.765 0.800 0.574 0.628 0.747

YM155(CTRP) 0.662 0.591 0.602 0.601 0.513 0.507 0.481 0.505 0.632

ZSTK474(CTRP) 0.773 0.783 0.779 0.756 0.729 0.771 0.651 0.753 0.770

AVG 0.697 0.685 0.677 0.674 0.685 0.693 0.607 0.663 0.721
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Cisplatin is an alkylating agent used to treat a number of cancers. The alkylating 
agent inhibits DNA synthesis and RNA transcription by damaging DNA [46]. The 
functional enrichment test on genes related to cisplatin showed that cell division 
(GO:0051301), DNA replication (GO:0006260), and cellular response to DNA damage 
stimulus (GO:0006974) are enriched, with a false discovery rate (FDR) [47] of 6.13E-
13, 1.54E-08, and 0.00244, respectively. It is supporting that the genes discriminat-
ing the sensitive and resistant samples are related to DNA synthesis. The enrichment 
results on GO biological process are shown in Additional file 1: Table S40.

Temozolomide is an alkylating agent used in the treatment of brain tumors. It meth-
ylates the purine bases of DNA and the affected DNA triggers the death of tumor 
cells [48]. From the enrichment test, we found significant terms related with temo-
zolomide mechanisms including mitotic nuclear division (GO:0007067), cell division 
(GO:0051301), and DNA replication (GO:0006260), where their FDRs are 1.73E-10, 
1.73E-10, and 7.59E-06, respectively (Additional file 1: Table S41).

Fig. 4  Comparison between the AUC values in GDSC and the test AUC values of drugs on PDX and TCGA for 
a Super.FELF, b Super.FELF E, c Super.FELF M&C, d AutoBorutaRF, e SVM, f MOLF, g AE, h ANNF, i MOLI, and j 
MOLI*

Fig. 5  a The box plots of drug response prediction probability of Cisplatin, Temozolomide, and Docetaxel 
on TCGA samples, respectively. The red lines represent the top and bottom 1% prediction probabilities on 
samples. b Heat maps of gene expression, CNA, and mutation values of most discriminative genes between 
resistant and sensitive samples of Cisplatin, Temozolomide, and Docetaxel
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Docetaxel, a taxoid antineoplastic agent, binds to microtubules and inhibits depolym-
erization of microtubules induced by calcium ions [49]. Thus, it disrupts the cytoskel-
eton of malignant cells during the mitotic phase [50]. We found significant molecular 
function terms of GO including calcium ion binding (GO:0005509) and structural con-
stituent of cytoskeleton (GO:0005200) with FDRs of 0.00135 and 0.00135, respectively 
(Additional file 1: Table S42).

Discussion
In drug response prediction, the translatability from cell line data to non-cell line data 
is important because non-cell line data, such as PDX and TCGA, are of high cost and 
have a small number of samples. Thus, we often rely on cell line data, such as GDSC, 
CCLE and CTRP, to train machine-learning models. However, the model trained on cell 
line data tends to not work well for non-cell line data owing to various elements, such as 
the high dimension of omics data and its batch effects. Previous studies to predict drug 
response have frequently focused on reducing the large omics dimension. In particular, 
AE was mostly used in various models [12–16].

In the section ‘Cross-validation’, the average AUCs of all drugs for each method were 
greater than 0.69, except for Super.FELT M&C. This indicates that gene expression is the 
most important data for this task, and it is difficult to obtain a distinct difference on the 
results of methods on cross validation test when the input data includes gene expression, 
in terms of the average AUC score. However, as shown in Fig. 2B, Super.FELT showed 
higher scores than the other methods in most of the cases.

The aspect of results in the section ‘On CCLE and CTRP’ was similar to that in the 
section ‘Cross-validation’ except that SVM achieved the best performance in terms of 
the average score. The result showed that we could obtain high translatability just by 
normalizing between two different platform types of gene expression.

In the section ‘On PDX and TCGA’, AE and AutoBorutaRF were the worst among the 
models unlike the section ‘Cross-validation’ and ‘On CCLE and CTRP’. Although previous 
studies frequently used AE [12–16], the model based on AE could not obtain good perfor-
mance for the external non-cell line data in our experiment. As the embedded data of AE, an 
unsupervised training model, were not encoded to predict drug response, AE trained on cell 
line and feature selection based on AE would not be proper for external non-cell line data. In 
contrast, although Super.FELT, MOLIF, and MOLI were trained using GDSC dataset, those 
showed better performance than AE. The reason is that the encoder using triplet loss func-
tion was trained for focusing on the features that decide drug response. This indicates that 
although test data have different properties from training data, the encoder using triplet loss 
function could learn the important features for determining the drug response. From these 
results, we could estimate that AE could not distinguish dataset-specific features and biologi-
cal features, and it could not extract proper biological features for external data.

For evaluating feature selection using variance thresholds based on the elbow method, 
the results of ANNF, MOLIF, and MOLI in the section ‘On PDX and TCGA’ seem to 
be useful. First, although ANNF consists of feature selection and the simple classifier, 
it provided the better results than MOLIF and MOLI. Second, comparison of MOLIF 
and MOLI revealed that feature selection also seems to improve the performance of the 
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encoder. Given these results, we suggest that feature selection is powerful for external 
validation of different types of data.

By comparing Super.FELT with MOLIF, based on ANNF, in the section ‘On PDX and 
TCGA’, we verified the importance of independent training. Although both Super.FELT 
and MOLIF used feature selection and triplet loss function, their results were better and 
inferior than that of ANNF, respectively. This shows that it is helpful to not use encoders 
jointly trained with the classifier.

From the perspective of omics data, the performance of Super.FELT M&C was impres-
sive on PDX and TCGA dataset. Although Super.FELT M&C did not use gene expression 
data, the result of Super.FELT M&C was the second best. In Cetuximab (TCGA), Dox-
orubicin (TCGA), Paclitaxel (TCGA), and Cetuximab (PDX), Super.FELT M&C showed 
the best performance. When comparing Fig. 4C with other plots in Fig. 4, the AUCs of 
Super.FELT M&C in GDSC were most positively correlated with those in PDX and TCGA, 
although its average AUC was lower than that of Super.FELT. Therefore, we could confirm 
the importance of mutation and CNA data for the translatability to non-cell line data.

Because of its properties, Super.FELT, which used feature selection, encoder using 
triplet loss, independent training, and multi omics approach, outperformed the other 
methods with the average AUC value of 0.622 in the section ‘On PDX and TCGA’. In case 
of drugs for which Super.FELT was not the best, AUC values of Super.FELT were similar 
to those of the best model, except the case of Etoposide (TCGA) (Fig. 3B).

Recent studies have proposed models with adversarial networks by training both in vitro 
and in  vivo datasets and obtained increased performance compared with that of models 
trained using only in vitro datasets [51]. This approach is helpful when appropriate in vivo 
datasets for a given drug are available. However, when there is no in vivo dataset available for a 
given drug, our proposed Super.FELT model can be used to predict drug response in patients.

In this study, although Super.FELT was applied for the drug response prediction, it 
can be further applied for other biomedical tasks using multi-omics datasets. Recently, 
disease progress prediction, such as survival and recurrence, and cancer subtype clas-
sification,   has been performed using multi-omics datasets [52–55]. In those studies, 
AE, a chi-squared test, and a feedforward network have been used to represent features 
in omics data. Super.FELT can further improve prediction by applying the supervised 
learning approach for feature representation.

Conclusion
In our study, we found that high translatability could be achieved between the same cell 
line data, but it is difficult to achieve reasonable translatability from cell line data to non-
cell line data. To achieve high translatability, we used feature selection using variance 
thresholds based on the elbow method and triplet loss function, which are often used 
for improving the encoder in image classification models [56, 57]. Our study focused 
on how to properly utilize triplet loss function unlike MOLI [25]. From the result of the 
case that ANNF afforded higher scores than MOLI and MOLIF in the section ‘On PDX 
and TCGA’, it can be suggested that using triplet loss function improperly is worse than 
not using it. Additionally, we reported the strength of feature selection using a variance 
threshold based on the elbow method. The translatability of Super.FELT was found to be 
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quite high because the average AUC of internal cross validation test, external validation 
on cell line data, and non-cell line data were 0.729, 0.697, and 0.622, respectively.
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