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Introduction
Genes are distinct nucleotide sequences that contain the instructions for synthesizing 
proteins within cells. These instructions are turned into the actual protein that the gene 
codes for via RNA transcripts, and further translation into proteins, the latter in the case 
of protein-coding genes. One of the ways in which this activity is moderated is by inter-
ference from small non-coding RNA molecules called microRNA (miRNA). MiRNAs, 
genes, and their products all interact, forming complex regulatory modules. MiRNAs 
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Results:  We apply Theia to RNA sequencing data from breast invasive carcinoma sam-
ples and demonstrate its effectiveness in discovering biologically significant regulatory 
comodules that are significantly enriched in spatial miRNA clusters, biological path-
ways, and various cancers.

Conclusions:  Theia is a theoretically rigorous optimization algorithm that simultane-
ously predicts the strength and direction (i.e., up-regulation or down-regulation) of the 
effect of modules of miRNAs on a gene. We posit that if Theia is capable of recovering 
known clusters of genes and miRNA, then the clusters found by our method not previ-
ously identified by literature are also likely to have biological significance. We believe 
that these novel regulatory comodules found by our method will be a springboard for 
further research into the specific functional roles of these new functional ensembles of 
miRNAs and genes,especially those related to diseases like breast cancer.
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are short non-coding RNAs (of about 22 nucleotides) that regulate gene expression by 
both transcriptional and post-transcriptional mechanisms via binding to cognate mes-
senger RNAs (mRNAs). Since the first miRNA lin-4 was discovered in 1993 [1], an 
increasing number of miRNAs have been found to affect a wide range of cellular and 
developmental processes through gene regulation [2]. Thus, accurately determining the 
miRNA targetome is crucial for understanding the role of miRNAs in various biologi-
cal processes. However, most miRNAs’ specific functional roles and their combinatorial 
effects are still unclear.

The miRNA interactome: In order to identify potential miRNA-gene interactions, the 
first generation of computational methods relied mainly on complementarity between 
the miRNA seed region and the 3’-UTR section of mRNA, evolutionary conservation, 
and thermodynamic factors [3–6]. Sequence-based methods led to many false positives 
and some false negatives, and they are now primarily used as a tool to build putative 
interaction databases [7], such as in our own work [8–11].

Mapping a dynamic interactome using context-specific interaction data: While 
sequence information is static, expression profiles of miRNAs and genes are context-
specific, providing useful clues on regulatory effects that may vary depending on con-
ditions such as development or disease progression (temporal), and cell-type (spatial) 
context. Thus, context-dependent regulation can be studied by analyzing condition-
specific or time-series expression data. Initial attempts to make use of expression data 
involved correlation analyses that measured the Pearson Correlation Coefficient (PCC) 
between miRNA and gene expression levels [12]. Although PCC can decide regulation 
strength and direction for the validated interacting pairs, the PCC value on its own can’t 
tell which pairs are interacting, since non-interacting pairs may show significant PCC 
values. In addition, the correlation coefficients for interacting pairs can be small, giving 
rise to high error rates [11]. These methods cannot adequately model the joint relation-
ships between miRNAs and genes [13]. To model the combinatorial effects of multiple 
miRNAs on genes, multi-dimensional linear regression with regularizations (e.g., Lasso 
regression [14] and Elastic Net regression [15]) have been proposed. Unfortunately, they 
can only provide a sparse solution, i.e., a relatively small set of strong miRNA-gene inter-
actions while disregarding the much more common subtle interactions [16], or they may 
have inaccurate estimates for weak interactions, further stymied by noisy or false inter-
actions that can have a relatively high PCC, as seen in our recent work [11].

Need for a modular and biologically interpretable framework: Intuitively, miRNA-
gene interactions can be better understood by considering regulatory comodules 
that group miRNAs and genes that collectively interact in the regulation process, as 
evidenced in emerging studies [17, 18]. This line of work typically integrates multi-
ple genomic data sources, including sequence-based putative miRNA-gene interac-
tions (putative interactions for short), protein-protein interactions (PPI), and miRNA 
and gene expression data. For example, SNMNMF [19] jointly analyzed miRNA and 
gene expression profiles in a non-negative matrix factorization (NMF) framework, in 
which matrix components were decomposed to provide information about regula-
tory comodules. To enhance the results, it integrated putative interactions and PPI 
simultaneously as regularization terms of the NMF problem. However, SNMNMF 
was designed to find the regulatory comodules only (i.e., grouping miRNAs and 
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genes) and required additional steps to figure out the regulation strength of a particu-
lar miRNA-gene interaction. A regression-based model called PIMiM [20] handled 
this shortcoming by estimating the interaction strength by multiplying with module 
membership matrices. PIMiM reported better results than SNMNMF in discover-
ing regulatory comodules [20], but its accuracy for estimating interaction strength 
is still lower than the state-of-the-art [11]. Meanwhile, both SNMNMF and PIMiM 
restrict their models to down-regulation only (anti-correlation between miRNA and 
gene expression), which is inconsistent with recent research results reporting that 
up-regulations also exist [21]. In fact, gene up-regulations are rampant in different 
cell phenotypes such as in cancer pathologies, an example being the up-regulation 
of flap endonuclease 1 (FEN1) in cancer progression [22] and up-regulation of the 
small GTP-binding protein, RhoA, in vascular hypertension [23]. The learned mod-
ule membership matrices in our work are used to estimate individual miRNA-gene 
interactions. Similar to Tiresias [11], these interaction estimates are in turn used 
by a regression network along with expression data to find context-specific regula-
tion strength and direction. Using the module membership matrices, which Tiresias 
does not deploy, Theia suppresses noise in the interaction edges better by discon-
necting the miRNAs and genes that do not belong to at least one common regulatory 
comodule.

To summarize, our main contributions in this paper are as follows: 

1	 We develop a framework for simultaneous learning of regulatory comodules and 
miRNA-gene interactions, leveraging inter-dependency between diverse data 
sources. We synergistically associate the miRNA-gene ensembles with the individual 
interactions in a single framework such that optimizing one drives the other also to 
improve. Thus, we find that the accuracy in predicting the interaction profile of these 
miRNA is implicitly tied to the ability to model the miRNA and genes in these func-
tionally meaningful mixed-membership modules.

2	 Our method is able to accurately discover the regulatory comodules, achieving the 
ARI of up to 0.8 even at a biologically-plausible low regulation strength and outper-
forming SNMNMF and PIMiM significantly. With TCGA-BRCA data set, we show 
the comodules we found are significantly enriched in miRNA spatial clusters and 
gene ontology BP terms. From miRCancer, we also show that most of miRNAs (219 
out of 319) and genes (88 out of 112) we found are cancer-related.

3	 We assess the biological significance of miRNA modules through comparison with 
spatial miRNA clusters, cancer-implicated miRNA clusters, and miRNA modules 
with functional roles previously identified in literature. We assess the gene modules 
through Gene Ontology enrichment analysis, through the use of the Ingenuity Path-
way Analysis software, and through a literature survey of the functional roles of gene 
modules.

	 But since the ground truth does not exist for natural data, we further validate these 
systems through the use of synthetic data.

4	 We consider both up-regulations and down-regulations in the miRNA-gene interac-
tions within one unified framework. In doing so, we capture the more recent set of 
upregulated interactions that have been biologically validated.
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Background
Non-negative matrix factorization (NMF): The non-negative matrix factorization (NMF) 
technique [24] was devised to factorize a non-negative matrix X into two lower ranking 
matrices, a basis matrix W  , and a coefficient matrix H , such that neither of these matrices 
contain negative elements. Such factorization can be achieved by minimizing the cost func-
tion as follows:

The non-negativity of W  and H guarantees that parts of the matrix can be combined 
additively to form a whole. Thus, NMF is a useful technique for obtaining a part-based 
representation of the data. NMF is inherently useful for the purpose of clustering 
because of the property that the the jth column of X belongs to the kth cluster when 
Hkj > 0.

The NMF mechanics underlying Theia: While the original use-case for NMF was dimen-
sionality reduction, i.e., producing a low-dimensional feature representation of high-
dimensional input data [24], recently, NMF has been found to be applicable to clustering 
by grouping elements that result in the same feature element [19, 25]. Inspired by this, we 
designed an NMF-based algorithm to produce a particular kind of grouping information-
the comodule membership. Unlike recent manifestations of NMF-based clustering that fac-
torize expression matrices, we apply this technique to putative miRNA-gene interactions 
and protein-protein interactions to assemble interacting miRNAs and genes into modules. 
Thus, the low-dimensional representation of the molecule interactions obtained via factor-
ization becomes the comodule membership. NMF provides us with the ability to handle 
partially incorrect data. Furthermore, sparse representations and easily interpretable fac-
tors can be extracted using NMF. We leverage both these properties in our pipeline.

Related work
Comparison with SNMNMF: Recognizing the regulatory comodules that model the groups 
of miRNAs and genes interacting collectively has greatly advanced our understanding of 
complex cellular systems. Representative work, SNMNMF [19] attempted to reconstruct 
the regulatory comodules based on the integration of multiple genomic data sources. How-
ever, fundamentally, it cannot provide the strength and the direction of the miRNA-gene 
interactions. We give the mathematical basis for this below.

Given expression profiles of miRNAs and genes, X ∈ R
N×I and Y ∈ R

N×J , DNA-
sequence-based putative interactions P ∈ {0, 1}I×J , and protein-protein interactions 
Q ∈ {0, 1}J×J , where N is the number of expression samples, I is the number of miRNAs and 
J is the number of genes, the core of SNMNMF is minimizing the following cost function:

where A ∈ R
N×M is a new vector space with M denoting the number of modules, 

B ∈ R
M×I and C ∈ R

M×J are, respectively, new representations of X and Y  on A , and 
Tr(·) denotes the trace of a matrix, the sum of the elements on the main diagonal. That 
is, SNMNMF integrates dynamic expression profiles of miRNAs and genes in a frame-
work of multiple non-negative matrix factorization, and simultaneously integrates 

(1)min
W ,H

�X −WH�, subject toW ≥ 0,H ≥ 0

(2)�X − AB� + �Y − AC� − �1Tr(BPC
T )− �2Tr(CQCT ),
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static supersets in a regularized manner. When trained, B and C matrices determine 
the comodule in such a way that miRNA and genes whose magnitudes on B and C are 
higher than thresholds in the same row belong to a common module.

However, by modeling the membership to the comodule only by a threshold testing on 
the non-negative elements of B and C , i.e., grouping miRNAs and genes, this method 
does not provide the direction and strength of individual miRNA-gene interactions. 
Instead of factorizing X and Y  , Theia groups interacting miRNAs and genes by directly 
factorizing putative interaction data P and Q , and refines the comodule memberships 
with additional modeling for the direction and strength of individual miRNA-gene 
interactions.

Comparison with PIMiM: PIMiM [20] alleviates the limitation of SNMNMF by esti-
mating the interaction strength by multiplying the module membership matrices as 
follows:

where ŷn ∈ R
1×J is an estimate of yn , the nth row of Y  , x ∈ R

1×I is the nth row of X , and 
µ ∈ R

1×J denotes the background mean of yn without regulation. The U ∈ [0,∞)I×M 
and V ∈ [0,∞)J×M are the module membership matrices whose elements larger than 
a threshold indicate the corresponding miRNA or gene (row indices) belong to a cer-
tain comodule (column indices). In PIMiM, the magnitude of an element in UV T is sup-
posed to be proportional to the strength of a regulation relationship, if any. However, 
it still assumes the down-regulations only (i.e., an element in UV T is always non-neg-
ative), disregarding miRNA-modulated up-regulations. In addition, the magnitudes of 
elements in UV T are often non-zero even if they are smaller than a threshold and thus 
assumed to be non-interacting. These non-zero values act a noise when learning (3) by 
regression and thus reduce the accuracy of estimates for true interacting pairs of miR-
NAs and genes.

In contrast to PIMiM, Theia disconnects the non-interacting pairs from a regression 
relationship and thus suppresses the noise.

Comparison with Tiresias: On the other hand, Tiresias [11] models both up-regula-
tions and down-regulations adopting what is called the regulation weight matrix as 
follows:

where W ∈ R
I×J denotes the regulation weight matrix whose elements model the regu-

lation strength by their magnitude and regulation direction by their sign, S ∈ [0, 1]I×J 
is the true interaction indicator matrix whose element becomes 1 when an interaction 
is predicted and 0 otherwise, and the • operator denotes element-wise product. Tire-
sias jointly decides the elements of S and W  so that ŷn can be as close to yn as possible 
in a regression manner. This method was shown effective, achieving a higher F 1 score 
than the previous methods. However, Tiresias does not model the regulation comodules, 
studying the individual miRNA-gene interactions only.

Theia adopts the strategy that Tiresias used, i.e., Theia also models the interac-
tion indicator matrix S and the regulation weight matrix W  , and by multiplying them 
together, Theia prevents pairs of miRNAs and genes that do not interact from affecting 

(3)ŷn = µ− xnUV ⊺,

(4)ŷn = µ+ xn(S •W ),
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ŷn . This helps suppress the unwanted noise when learning ŷn by a regression method. 
However, unlike Tiresias, Theia also models regulation comodules by additionally uti-
lizing DNA-sequence-based putative interactions P and protein-protein interactions Q , 
by which we subdivide miRNAs and genes into modules and allow them to interact only 
when they belong to at least one common module. By reducing this source of falsely 
predicted interactions, the accuracy of the interaction indicator matrix S improves, and 
consequently, the accuracy of the regulation weight matrix W  as well.

Materials and methods
Data sources and preprocessing

We downloaded N = 1161 breast invasive carcinoma samples from the TCGA data por-
tal, and filtered out miRNAs and genes with small expression values (less than 0.1). The 
mature data was extracted using Bioconductor packages [26]. As a result, we obtained a 
data set containing the expression profiles of miRNAs X ∈ R

N×I and genes Y ∈ R
N×J 

where I = 979 miRNAs and J = 19258 genes. The nth sample of miRNA expressions 
and the corresponding gene expressions, i.e., the nth rows of X and Y  , will be denoted 
xn = (xni) ∈ R

1×I and yn = (ynj) ∈ R
1×J , respectively, where xni is the expression of the 

ith miRNA and ynj is the expression of the jth gene, in the nth sample.
We constructed a putative interaction matrix, P = (pij) ∈ {0, 1}I×J , from TargetScan 

[4] (release 7.1). The interactions represented by this matrix are putative because Tar-
getScan is based primarily on target-site complementarity and suffers from a high false 
positive rate. Thus, pij = 1 suggests without any guarantee, that an interaction between 
the ith miRNA and the jth gene exists. It is possible that pij = 0 is a false negative; how-
ever, this is far less common [27, 28]. We constructed a matrix of proteinprotein inter-
actions, Q = (qij) ∈ {0, 1}J×J , from the Biological General Repository for Interaction 
Datasets (BioGRID) [29] (release 3.4.155). When the jth and j′ th genes interact, we set 
qjj′ = 1 ; otherwise, qjj′ = 0 . Figure 1 shows a simple example to help understand our rep-
resentation of data sources.

Module membership and regulation weight matrices

The miRNA membership matrix U = (uik) ∈ [0,∞)I×K  and gene membership matrix 
V = (vjk) ∈ [0,∞)J×K  model the regulatory comodules, where K is the number of mod-
ules. The matrix entries uik and vjk denote the likelihood that the ith miRNA and jth gene 
belong to the kth module respectively (greater magnitude indicates a greater chance of 
belonging to the module). In Theia, a regulatory comodule is defined by miRNAs and 
genes that belong to a particular module in common. As seen in Fig.  1, when the ith 
miRNA and jth gene share membership in a particular module, the value of (UV ⊺)ij , i.e., 
the (i, j) entry of UV ⊺ , is nonzero; thus, computing UV ⊺ reveals the direct interactions 
between particular miRNAs and genes. Theia will utilize UV ⊺ to decipher individual 
miRNA-gene interactions, represented by W = (wij) ∈ R

I×J that we call the regulation 
weight matrix. The value of wij estimates how strongly the ith miRNA regulates the jth 
gene (greater magnitude indicates stronger interaction). Further, the sign of wij defines 
the direction of regulation, such that negative values indicate down-regulation and posi-
tive values indicate up-regulation.
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Overview

Our goal is to simultaneously learn the module membership matrices U  and V  , and 
also the regulation weight matrix W  . Toward this end, we develop Theia, which is 
built from three networks: V-net, U-net, and W-net (see Fig. 2). The V-net first learns 
the gene module membership matrix V  from which the U-net then learns the miRNA 
module membership matrix U  . By calculating UV ⊺ , the W-net predicts the true 
interaction matrix S between miRNAs and genes, and from this, it learns the regula-
tion weight matrix W  . Subdividing miRNAs and genes into modules to allow them to 
interact only when they belong to at least one common module, the source of falsely 

Fig. 1  An example of expression profiles X  and Y  (when I = 3 and J = 2 ) are shown. Putative interaction 
matrices P and Q are shown alongside the expression matrices. Module membership matrices are 
represented by U and V  . By computing UV⊺ , we can predict the interactions between miRNAs and genes

Fig. 2  Overview of Theia. V-net learns the gene module membership, U-net learns the miRNA module 
membership, and W-net learns the regulation weights. This process repeats until the value of the cost 
function converges. All three sub-networks are trained together simultaneously and affect one another
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predicted interactions is reduced. This improves the accuracy of the true interaction 
matrix S and in turn, the accuracy of the regulation weight matrix W  as well.

All three sub-networks are trained together using X , Y  , P , and Q such that the infer-
encing of U  , V  , and W  affect one another. Such training is done by minimizing a sin-
gle cost function (see (11)), adjusting U  , V  , and W  simultaneously. This will benefit the 
learning process because of the inherent dependencies between these biological data 
sources.

V‑net and U‑net: non‑negative matrix factorization

As seen in Fig. 3, to incorporate the putative interaction data P and proteinprotein inter-
action data Q into our inference framework, we learn the module membership matrices 
by factorizing P into UV ⊺ (i.e., P ≈ UV ⊺ ) and Q into VV ⊺ (i.e., Q ≈ VV ⊺ ). A non-zero 
value of (UV ⊺)ij means that the ith miRNA and the jth gene interact belonging to a com-
mon module, and thus, UV ⊺ should be similar to P . For a similar reason, VV ⊺ should 
look like Q . Note that P and Q have a common factor V  . We manage this constraint by 
first factorizing Q in the V-net, and provide the result V  to the U-net, which in turn will 
learn U  by factorizing P . The factorizations performed by V-net and U-net minimize the 
respective cost functions,

and

Because all the elements of U  and V  must be non-negative, the factorization should be 
accomplished using an NMF method [24]. Thus, we use the projected gradient descent 
algorithm [30] to minimize (5) and (6), which projects U  and V  to their nearest point in 
[0,∞)I×K  and [0,∞)J×K  , respectively, whenever they contain negative quantities.

Note that unlike the common use case of NMF as a dimensionality reduction tech-
nique [19, 31], we adapt the algorithm for our specific use case. Conventionally, only 
one of the decomposed factors corresponding to representation of data matrix is useful 
and the other corresponding to the vector space (known as the basis matrix, typically 
with reduced dimensionality) does not play a role. Here, we decompose P and Q , and 
the resulting factors U  and V  are all utilized as module membership matrices. It is also 
worth noting that unlike in PIMiM where zero elements of Q are abandoned, we fully 
utilize all the information in Q.

(5)JV (Q) =
∥

∥Q − VV ⊺
∥

∥

(6)JU (P,V ) =
∥

∥P −UV ⊺
∥

∥.

Fig. 3  NMF to learn V  and U . V-net factorizes Q into VV⊺ . Given V  from V-net, U-net factorizes P into UV⊺
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Here, the module membership matrices U  and V  are mainly learned from the putative 
interaction information. However, later in W-net, these U  and V  will be refined in con-
junction with expression profiles X and Y .

W‑net: regression

Using UV ⊺ , W-net first computes S = (sij) ∈ {0, 1}I×J , which we call the true interaction 
matrix. The value of sij is the probability that the ith miRNA truly regulates the jth gene, 
and it is defined as:

where σ(z) = 1/(1+ exp(−z) denotes the sigmoid activation function, and β is a scaling 
factor (which we set to β = 2 ). In other words, (UV ⊺)ij is scaled by 2 β with a bias - β , in 
order to predict the probability of the true interaction between the ith miRNA and the 
jth gene. The value of sij becomes nearer to 1 as the probability of the ith miRNA and the 
jth gene belonging to a common module increases, or equivalently, as the ith miRNA 
and the jth gene share an increasing number of modules in common. The tanh func-
tion is a scaled version of the sigmoid activation function, shifted vertically to adjust the 
range. The tanh activation can be rewritten as tanh(z) = 2σ(2z)− 1 . By introducing a 
bias of of - β , we shift the scaled activation horizontally. An advantage of the scaling fac-
tor, is that the gradient is larger than a regular sigmoid. Not only is this because of the 
multiplication by a 2 β factor, but also because the function becomes more sensitive to a 
change in the input. In our case, these two effects combined lead to faster convergence, 
assuming that the learning rate does not cause exploding gradients.

The regulation model R(S, xn,µ) produces an estimate of yn , which is defined as:

where ŷn = (ŷnj) ∈ R
1×J , µ = (µj) ∈ R

1×J with µj denoting the sample mean of the jth 
gene, and W • S denotes the element-wise product (also known as the Schur product) 
between two matrices W  and S . Thus, ŷnj is expressed as:

Namely, the R(S, xn,µ) is a regression network whose main purpose is to learn the regu-
lation weight matrix W  . The unknowns of the W-net (i.e., wij’s) are learned by mainly 
minimizing a cost function:

where σ−2 = (σ−2
j ) ∈ R

1×J with σ 2
j  denoting the sample variance of the jth gene. Scaling 

(ŷnj − ynj) by 1/σ 2
j  is intended to prevent a certain gene from dominating other genes in 

the regression due to its large expression magnitude.
Note that unlike in PIMiM [20], we utilize U  and V  to predict whether there are inter-

actions (on or off), and separately adopt W  by which we can model the direction of regu-
lations (up or down) as well as the strength. By taking the Schur product between S and 

(7)sij = σ
(

2β(UV ⊺)ij − β
)

= σ
(

β(2(UV ⊺)ij − 1
)

),

(8)ŷn = R(S, xn,µ) = xn(W • S)+ µ,

(9)ŷnj =
∑

∀i

wijsijxni + µj ,

(10)JW (X ,Y ,U ,V ) =
1

N

∑

∀n

∥

∥

∥

(

ŷn − yn
)

• σ−2
∥

∥

∥
,
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W  in (8), the ith miRNA and the jth gene whose sij = 0 are disconnected in the regres-
sion network, and thus do not affect the minimization of the cost function in (10). This 
suppresses the unwanted interference when we learn W  by regression, and helps Theia 
decipher the small magnitudes of interactions, which are usually indistinguishable from 
noise in conventional regression methods. Note also that towards minimizing (10), the 
value of sij is automatically learned.

Combining U‑net, V‑net, and W‑net

We have introduced three sub-networks of Theia, V-net, U-net, and W-net. These are 
dependent on one another and thus training one particular sub-network alone will not 
lead to the intended results. For example, the W-net requires U  and V  as its inputs, 
which are outputs of U-net and V-net. The U-net also needs V  that is the output of 
V-net. Training the V-net alone causes V  to be learned from Q only, without considering 
X , Y  , and P . Hence, a global optimization of all three networks is required, for which we 
find an appropriate objective function.

In order to train Theia such that all input data sets X , Y  , P and Q are integrated, we 
minimize the following total cost function using the projected gradient descent:

where each �n is a a weight that determines the relative importance of each term in the 
total cost function. The term 

∑

∀i,j |wij|/(IJ) functions as a regularizer for the W-net in a 
similar manner as in the least absolute shrinkage selector operator (LASSO) regression. 
This helps Theia select significant interactions in W  while disregarding irrelevant ones.

We determined the values of �1 , �2 , and �3 to be 0.5, 0.5, and 0.25 by an exhaustive 
search as seen in Fig. 4, in which we search the range from 0 to 1 for each of the three 
aforementioned parameters. For each of the runs, we generated synthetic data (see 
the Synthetic data results section for a more in-depth discussion) and calculated the 
adjusted Rand Index. Note that Theia is not particularly sensitive to these parameters 
and performs relatively well (ARI near 1.0) even for sub-optimal configurations. We also 
tested the effect of varying �n terms on the F 1 score. In this case, we saw that the varia-
tion was smaller than that of the ARI score and thus was not useful for determining the 
ideal set of parameters.

Theia pipeline

In order to use Theia with the most recent biological data, the most recent putative 
interactions and proteinprotein interactions should be downloaded from databases such 
as TargetScan and BioGRID, respectively. MiRNA and gene expression data correspond-
ing to the specific condition being studied must be downloaded as well. Then the train-
ing is initiated by executing the software program.

Once training is done, the ith miRNA and the jth gene are assigned to the kth regula-
tory comodules if uik > TU and vjk > TV  , where TU and TV  are cutoff thresholds. Note 
that each miRNA and gene may belong to multiple comodules, allowing for the identifi-
cation of multiple functions. Theia will filter wij by multiplying it with sijpij because the 

(11)J (X ,Y ,P,Q) =JW (X ,Y ,U ,V )+ �1JU (P,V )+ �2JV (Q)+
�3

IJ

∑

∀i,j

|wij|,
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value of wij is hardly adjusted during training if sijpij is near zero, and thus wij is not par-
ticularly meaningful in this case. In order to detect individual miRNAgene interactions, 
Theia will compute the regulatory network edge matrix, E = (eij) ∈ R

I×J , defined as:

The edge matrix gives us an indication toward the existence of an interaction between 
ith miRNA and jth gene. To prevent spurious predictions, we apply a threshold TW  , 
where the interaction exists only if eij > TW  . The regulation strength and the direction 
(up or down) of the detected interactions are determined by the magnitude and sign of 
wij respectively.

Our most novel algorithmic contribution involves learning the module membership 
matrices by decomposing P and Q using an NMF method, and utilizing them to pre-
dict true interactions. These interaction indicators are then used to disconnect non-
interacting miRNAgene pairs in the regression network by which we can suppresses the 
unwanted interference when we learn the strength and direction of an regulation and 
improve the ability deciphering the small magnitudes of interactions.

Results
In addition to recovering interactions between miRNAs and genes, our work aims to 
discover comodules composed of a cluster of miRNAs that work together to regulate 
genes that share a function. Ground truth of such modules do not directly exist. Thus, 
we are forced to rely on indirect evidence of the biological significance of our modules 
in the form of enrichment analysis and by searching for overlap between known gene 
clusters and our modules. The underlying intuition is that if Theia is capable of recover-
ing known clusters, then the clusters found by our method not previously identified by 
literature are also likely to have biological significance.

We decided to set the dimension of the matrix factorization K to 195 because our 
data set contained a total of 979 miRNA and we expect approximately between 2 and 

(12)eij = sijpijwij .
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Fig. 4  Adjusted Rand index for varying values of �1 , �2 , �3 . psignal and pfp were held constant and set to 0.1 
and 1 respectively (see the Synthetic data results section for the definitions of psignal and pfp ). Theia was run 
for each combination of �1 , �2 , and �3 . The adjusted Rand index was calculated for each run, resulting in a 
three-dimensional matrix of results. This plot shows four horizontal slices of this matrix
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5 miRNAs per module ( 979/5 ≈ 195 ) based on results from Zhang et al. [19] and the 
distribution of spatial miRNA cluster sizes. Additionally, the parameters �1 , �2 , �3 , and β 
were set to 0.5, 0.5, 0.25, and 2, respectively. We set TU = 0.5 and TV = 0.25 when decid-
ing whether a particular miRNA or gene was part of a module. After applying Theia and 
discarding comodules containing less than two miRNAs or less than two genes, we have 
obtained 112 comodules with an average of 4.0 miRNAs and 102.2 genes per module.

Since we cannot be entirely sure of the biological significance of our comodules, we 
also validate our method by testing against synthetically generated data sets, in which we 
can control for some parameters, such as varying rates of false positives in the putative 
interactions and varying strength of regulation in the relationship between miRNA and 
gene expressions. This way, we can be more sure that our results on real data are mean-
ingful despite being unable to verify this directly.

The comodules are enriched in spatial microRNA clusters

Studies show that most miRNAs within 50 kilobase pairs (kb) tend to be co-expressed 
and regulate overlapping sets of target genes [32, 33]. This suggests that spatially clus-
tered miRNA are likely to be functionally related or participate in cooperative reg-
ulation. Thus, one of the ways in which we evaluate the biological significance of the 
miRNAs within the comodules produced by Theia is by testing for spatial miRNA clus-
ter enrichment.

Accordingly, we obtained miRNA sequences from the miRBase database [34–38] 
(release version 22) and grouped sequences within an inter-miRNA distance of 50 kb. 
This criterion resulted in a sample of 1479 clusters containing from 2 to 125 miRNAs. 
The average number of members per cluster is 3.2. Approximately half (748 out of 1479) 
of the miRNA clusters contained only two miRNAs. As mentioned earlier, this distribu-
tion of cluster sizes influenced our decision to set K to 195. The statistical significance 
(p-value) of the miRNA module’s enrichment in the spatial cluster was calculated using 
Fisher’s exact test. This statistic was transformed into a q-value by correcting for the false 
discovery rate [39]. Of the 112 comodules identified in this study, 37 are significantly 
enriched in at least one miRNA cluster (q-value < 0.05; see Table 1). All 112 comodules 
can be found in the additional files (see Additional file 1). For example, comodule 5 con-
tains five miRNAs (miR-449a, miR-449b-3p, miR-449b-5p, miR-449c-5p, miR-483-3p), 
of which all but miR-483-3p belong to the miRNA cluster located on chromosome 5, 
band 11.2. Even though miRNAs within 50 kilobase pairs (kb) tend to be co-expressed 
and regulate overlapping sets of target gene, it is not necessary for comodules to only 
contain miRNAs within 50 kb; they may contain a mixture of miRNAs within 50 kb and 
further than 50kb. Our tool is an improvement over previous state-of-the-art methods, 
however, it is not perfect. Also, the miRBase database is growing as more discoveries 
are made. Perhaps our tool is predicting certain clusters not previously validated in the 
database, and some of these may be discovered in the future, while others may be false 
detections.

Quite a few of the miRNA modules found in this study are supported by existing 
literature. Notably, the miRNAs in comodule 20 are part of the C19MC cluster. Origi-
nally discovered by Bentwich et al. of Rosetta Genomics [40], the C19MC cluster 
spans 100 kb and yields 59 mature miRNAs, making it the largest cluster of miRNAs 
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in the human genome [41]. The functional roles of the miRNA clusters in our mod-
ules are described exhaustively in Table 2.

The comodules are enriched in known functional sets

In addition to testing our comodules for overlap with spatial miRNA clusters, we 
also performed functional enrichment analysis for genes in the identified comod-
ules. Specifically, we looked for enrichment in Gene Ontology [64, 65] (GO) bio-
logical process (BP) terms. We filtered out GO terms with more than 300 associated 
genes or fewer than 5 genes. The thresholds used here for filtering GO terms, are 
the same ones used in SNMNMF [19]. The GO enrichment analysis was performed 
on each cluster using GOATOOLS [66], which computes the statistical significance 
of a module’s enrichment with Fisher’s exact test, with a q-value threshold of 0.05 
(false discovery rate adjusted via the Benjamini-Hochberg procedure [67]). Also, 
note that the software was set such that term counts were not propagated to parents 
(propagate_counts=False).

Of the 112 gene modules identified by Theia, 48 (43%) have at least one overrep-
resented GO biological process (BP) term with an FDR-corrected q-value < 0.05. All-
together, the modules are enriched in 302 unique GO biological processes. The most 

Table 1  Selected miRNA modules that are enriched in spatial miRNA clusters

Index, the index of the comodule; q-value, the corrected p-value of enrichment; Overlap miRNAs, miRNAs in the module 
overlapping with the spatial cluster; Loci, the chromosomal location of the cluster

Index q-value Overlap miRNAs Loci

20 0.00 miR-512-3p, miR-515-3p, miR-516a-5p, miR-516b-5p, 
miR-517-5p, miR-517a-3p, miR-517b-3p, miR-518a-3p, 
miR-518a-5p, miR-518b, miR-518c-3p, miR-518c-5p, miR-
518e-3p, miR-518f-3p, miR-518f-5p, miR-519a-3p, miR-
519a-5p, miR-519c-3p, miR-520a-3p

19q13.42

5 2.13-6 miR-449a, miR-449b-3p, miR-449b-5p, miR-449c-5p 5q11.2

59 3.29-6 miR-489-3p, miR-653-3p, miR-653-5p 7q21.3

104 3.29-6 miR-221-3p, miR-222-3p, miR-222-5p Xp11.3

49 7.83-6 miR-34b-3p, miR-34b-5p, miR-34c-5p 11q23.1

110 7.83-6 miR-301a-3p, miR-301a-5p, miR-454-3p 17q22

31 1.55-5 miR-1247-3p, miR-1247-5p 14q32.31

33 1.55-5 miR-10a-3p, miR-10a-5p 17q21.32

58 1.55-5 miR-552-3p, miR-552-5p 1q34.3

56 5.46-5 miR-132-3p, miR-212-3p 17q13.3

2 5.46-5 miR-105-5p, miR-767-3p, miR-767-5p Xq28

68 5.46-5 miR-153-3p, miR-153-5p 7q36.3

78 1.59-4 miR-1-3p, miR-133a-3p 20q13.33

11 2.14-4 miR-15b-3p, miR-16-5p 3q25.33

76 2.72-4 miR-154-3p, miR-369-3p, miR-376a-3p, miR-409-5p, miR-
411-5p, miR-487a-3p, miR-494-3p, miR-758-5p

14q32.31

62 2.96-4 let-7f-5p, miR-98-5p Xp11.22

44 2.96-4 miR-199a-5p, miR-214-3p, miR-214-5p 1q24.3

95 6.54-4 miR-506-3p, miR-508-3p, miR-509-3p, miR-514a-3p Xq27.3

35 7.51-4 miR-106a-3p, miR-20b-5p, miR-363-3p Xq26.2

82 1.37-3 miR-192-3p, miR-194-5p 11q13.1
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frequently enriched BP terms were cornification (14), cellular protein metabolic pro-
cess (11), keratinization (8), fibrinolysis (5), muscle filament sliding (5), epidermis 
development (5), and platelet degranulation (5).

For comparison, when we performed the same test (three times) on the same num-
ber of randomly generated modules of the same size (112 total of size 102 genes), at 
most one module (1%) was enriched in at least one BP Term. This result is confirmed 
by the findings of Zhang et al. [19], who also performed GO enrichment on randomly 
generated modules and reported that only 2.4% of the modules were enriched in BP 
terms.

Table 2  Summary of miRNA cluster functional roles based on literature survey

Index, comodule index; Description, function according to literature abstract

Index Description References

2 Aberrant expression of GABRA3 and the miRNAs it harbors (miR-105, miR-767) is reported 
in several tumor types. Furthermore, these miRNAs have been identified as protective in 
anaplastic gliomas

[42, 43]

5 The miR-449 cluster regulates the Rb-E2F pathway, which controls the initiation of DNA 
replication and functions as a singal for inducing apoptosis

[44, 45]

11 miR-15b and miR-16 target BCL2, which inhibits chemotherapeutic drug-induced apoptosis [46]

20 Originally discovered by Bentwich et al. of Rosetta Genomics, the C19MC cluster spans 
100 kb and yields 59 mature miRNAs, making it largest cluster of miRNAs in the human 
genome

[40, 41]

31 The miR-1247 cluster directly targets SOX9, a transcription factor essential for cartilage 
formation and function and thus may be an important regulator of cartilage function. 
Increased expression of these mirNAs has also been shown to inhibit proliferation, tumo-
rigenicity, colony formation and triggered G0/G1 cell cycle arrest in pancreatic cancer 
cells

[47, 48]

33 miR-10a is located in the Hox clusters of developmental regulators and was identified as a 
regulator of ribosome biogenesis and thus also global protein production. miR-10a and 
other miRNAs in the miR-10 family are de-regulated in several types of cancer

[49]

44 miR-199 and miR-214 cooperatively function to differentiate mammalian skeletal precursor 
cells into osteoblasts or chondrocytes as well as develop muscles and the heart. These 
miRNAs are responsible for the development and progression of various cancers

[50]

49 The p53/miR-34 pathway regulates cell death via apoptosis, thus the miR-34 family acts 
primarily as a tumor suppressor

[51]

56 miR-212/132 are tandem miRNAs that are responsible for the proper development, matura-
tion and function of neurons. They are also known to function in inflammatory and 
immune processes

[52]

58 miR-552 suppresses both transcription and translation of cytochrome P450 2E1, known to 
be important in the metabolism in ethanol and other low molecular weight chemicals

[53]

62 KMT2A upregulates the expression of the let-7 family, which in turn inhibits cyclin D2. 
Inhibition of cyclin D2 in combination with up-regulation of these miRNAs mediate the 
suppression of cardiac hypertrophy

[54]

68 miR-153 is negative regulator of both insulin and dopamine secretion. It is also both a sup-
pressor and enhancer in tumor growth

[55, 56]

78 miR-1/133a are transcribed together but have opposing effects on myoblast proliferation 
differentiation. The former inhibits proliferation and promotes differentiation while the 
latter has the opposite effect. These miRNA are also known to be downregulated in blad-
der cancer and thus these miRNAs function as tumor suppressors

[57, 58]

82 miR-192/194/215 play a role in kidney development and differentiation. These miRNAs are 
downregulated in clear cell renal cell carcinoma and thus are responsible for tumor-
suppressor pathways

[59, 60]

104 miR-221/222 are known to be potent regulators of p27Kip1, a cell cycle inhibitor and tumor 
suppressor

[61, 62]

110 miR-130a/301a/454 promote the proliferation of colon cancer cells through inhibition of 
Smad4

[63]



Page 15 of 29Roth et al. BMC Bioinformatics          (2021) 22:237 	

The comodules are strongly implicated in cancer

Since our input data included the miRNA and gene expression profiles of breast can-
cer samples, we expected the identified comodules to be related to cancer. We validated 
this hypothesis by comparing the miRNAs in our modules to those in miRCancer, a 
miRNAcancer association database (release version October, 2017) [68]. This database 
contains a total of 767 oncomirs. Our 112 modules consisted of 319 unique miRNA of 
which 219 were found in the miRCancer database. Given that our input data consisted of 
979 miRNA of which 289 are related to cancer, this ratio (219 / 289) is highly significant 
(p-value = 1.21-76). In addition, 88 of the 112 (79%) modules have at least two onco-
genic miRNAs. Comodules were also analyzed via Ingenuity Pathway Analysis (IPA) 
software (QIAGEN Inc.). The software identified cancer as a top network in 77 of the 
112 modules (69%). Results can be found in Table 3 with more detials in the additional 
files (see Additional file 2).

The comodules form highly connected networks

The edges in IPA’s database of molecular interactions [69] connect genes on the basis 
of cause-effect relationships. Given that Theia groups genes that are related, we expect 
that dense graphs can be created from our generated gene modules. We used the default 

Table 3  Functional analysis of selected gene module

Index, comodule index; Top Networks, top biological networks as identified by IPA software. Parenthesized value is the 
negative log of Fisher’s exact test p-value; Cancer, number of cancer-related genes within this comodule according to IPA 
software compared to total number of genes; q-value, multiple-test-corrected p-value of enrichment in cancer genes as 
reported by software

Index Top Networks Cancer q-value

1 Behavior, Endocrine System Development and Function, Cancer (35) 77/88 1.77-2

7 Connective Tissue Disorders, Developmental Disorder, Gastrointestinal Disease (46); 
Organismal Injury and Abnormalities, Renal Damage, Renal and Urological Disease 
(40)

107/122 2.85-2

9 Cancer, Organismal Injury and Abnormalities, Reproductive System Disease (57) 66/81 4.5-2

36 Cellular Movement, Immune Cell Trafficking, Connective Tissue Development and 
Function (43); Cellular Development, Cellular Growth and Proliferation, Connective 
Tissue Development and Function (43)

110/138 1.53-2

61 Cell Death and Survival, Cellular Compromise, Cell-To-Cell Signaling and Interaction 
(50); Endocrine System Disorders, Gastrointestinal Disease, Immunological Disease 
(37); Cell-To-Cell Signaling and Interaction, Hematological System Development 
and Function, Immune Cell Trafficking (35); Inflammatory Response, Cell Death and 
Survival, Cellular Compromise (35)

183/195 1.36-7

63 Lipid Metabolism, Small Molecule Biochemistry, Connective Tissue Development 
and Function (38); Cardiovascular Disease, Cell Death and Survival, Connective 
Tissue Disorders (38)

137/157 6.42-3

67 Cell Morphology, Cellular Function and Maintenance, Molecular Transport (46); Can-
cer, Connective Tissue Disorders, Organismal Injury and Abnormalities (41)

98/123 1.29-3

90 Connective Tissue Development and Function, Skeletal and Muscular System Devel-
opment and Function, Tissue Development (36)

68/76 9.59-2

93 Hematological System Development and Function, Lymphoid Tissue Structure 
and Development, Tissue Morphology (40); Cancer, Dermatological Diseases and 
Conditions, Hematological Disease (38)

78/86 4.77-4

109 Cancer, Connective Tissue Disorders, Organismal Injury and Abnormalities (45) 84/102 1.52-3

110 Behavior, Cell-To-Cell Signaling and Interaction, Cellular Growth and Proliferation 
(40); Carbohydrate Metabolism, Cellular Function and Maintenance, Small Mol-
ecule Biochemistry (40)

85/101 1.47-2
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settings and found that in 88 of the 112 gene modules (79%) identified by our method, 
highly connected networks of genetic interactions could be constructed (score ≥  35). 
Table 3 shows the top networks for some of the comodules. Among the top networks 
identified by the software were cancer (10), hereditary disorder (10), lipid metabolism 
(10), organismal development (10), cell morphology (12), cell-to-cell signaling and inter-
action (12), molecular transport (13), small molecule biochemistry (18), organismal 
injury and abnormalities (19).

Theia can recover validated miRNA‑gene interactions

We also evaluate Theia’s ability to discover individual miRNA-gene interactions. For this 
experiment, we downloaded the list of experimentally-validated interactions from miR-
TarBase (release 6.0) [70]. To increase the confidence of the ground-truth interactions, 
we filtered the list of interactions with |PCC| ≥ 0.001 , |PCC| ≥ 0.01 , and |PCC| ≥ 0.1 . 
Note that we use absolute value of PCC here because positive values indicate up-regula-
tion and negative values indicate down-regulation. This process resulted in 114, 108, and 
45 validated interactions respectively. Note that the absence of an interaction in miR-
TarBase for the other pairs of miRNAs and genes does not necessarily mean that these 
pairs do not actually interact. Some of these pairs may indeed interact but are not yet 
validated by experiments. Thus, we cannot evaluate the precision and recall of Theia 
because non-validated interactions would be incorrectly counted as false positives. 
Instead, we focus on evaluating how well Theia can recover the validated interactions 
by computing the detection rate, which we define as the ratio of detected interactions to 
the total number of validated interactions (after filtering).

In Fig. 5 we can see that Theia’s detection performance is naturally dependent on the 
regulation strength. Interactions are easier to detect when they are strong ( |PCC| ≥ 0.1 ); 
thus, both Tiresias and Theia suffer when weaker interactions are considered as well 
( |PCC| ≥ 0.001 ). The detection rate that Theia achieves is 0.8 when |PCC| ≥ 0.1 and 
0.57 when |PCC| ≥ 0.001 . This is significantly higher than the detection rate of our com-
petitors. In the same conditions, Tiresias [11] achieves at most 0.64 and PIMiM [20] 
obtains at most 0.13. PIMiM was not originally designed to consider regulation direction 
and always assumes down-regulation. To level the playing field, we advantaged PIMiM 
by giving it perfect knowledge of the regulation direction. That is, when PIMiM predicts 
a true interaction, we count it as a true positive regardless of its direction. Despite pro-
viding a similar advantage to SNMNMF, its detection rate was near zero and we omit its 
results here.

Evaluation using cross validation We evaluate Theia using ten-fold cross validation 
similar to what has been done in previous studies [71, 72]. The experiments have been 
performed using experimentally-validated interactions from the miRTarBase (release 
6.0) [70]. In the ten-fold cross validation, all experimentally-validated interactions are 
randomly divided into ten-folds. For each round, one set is held-out and used for test-
ing while the rest are used for training. The corresponding predicted result of test sam-
ples is considered as true positive (TP) when the predicted relevance score is greater 
than the threshold. Otherwise, false negative (FN). Similarly, for the unknown miRNA-
disease interactions, the corresponding predicted result is considered as false positive 
(FP) when the predicted relevance score is greater than the threshold. Otherwise, true 
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negative (TN). The AUC for each fold is calculated and the mean of these values is taken 
to get the mean AUC over ten folds. The training procedure remains identical except for 
a change in one of the inputs: the putative matrix P = (pij) ∈ {0, 1}I×J , constructed from 
TargetScan [4] (release 7.1) is replaced by a matrix P′ = (p′ij) ∈ {0, 1}I×J constructed 
from the miRTarBase (release 6.0) [70]. All three sub-networks are trained together 
using X , Y  , Q , and P′ . The mean AUC across ten folds is calculated for Theia, Tiresias 
[11] and PIMiM [20] and found to be 0.9294, 0.8536 and 0.6137 respectively.

Evaluating Theia with synthetic data

Existing literature has only discovered a small fraction of the interacting miRNA-gene 
pairs. Target genes for rice miRNAs have been mainly predicted by computational 
approaches, and only a small fraction of targets has been experimentally validated 
[73]. Several high-throughput crosslinking-immunoprecipitation (CLIP) approaches 
have been reported to produce a high number of false negatives [4]. Furthermore, the 
detailed combinatorial roles of most miRNAs and genes are still unclear. This fact makes 
real datasets inadequate for computing evaluation metrics, for which knowledge of the 
ground truth is required. Consequently, we synthetically generate miRNA-gene interac-
tions, regulatory comodules, miRNA and gene expressions, putative interactions, and 
protein-protein interactions. With this data where we can control ground truth, we eval-
uate the efficacy of Theia with varying rates of false positives in the putative interac-
tions and varying ratios of signal to noise in the miRNA/gene expression.

The need for synthetic datasets Previous works focus on evaluating their methods on 
biological datasets. Out of previous works SNMNMF, PIMiM and Tiresias, only previ-
ous state-of-the-art Tiresias [11] makes use of synthetic data. However, in contrast to 
Tiresias, we evaluate the methods in our work on a much larger set of synthetic datasets. 
Figure 1 gives an example of matrices X and Y  from which the PCC values are calcu-
lated. The sequences derived from these matrices, for an MiRNA and a gene, are used 
in this calculation, with each term corresponding to a sample; the number of terms is 
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Fig. 5  Detection rate when validated interactions are filtered by PCC thresholds. Note that during filtering we 
use |PCC| because positive values indicate up-regulation and negative values indicate down-regulation. Theia 
achieves the detection rate up to 0.8 depending on the strength of regulations, which is vastly superior to 
Tiresias and PIMiM. In all cases, we set TW = 0.001
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equal to the number of samples N  . In this work, while generating synthetic datasets, we 
vary parameters psignal ∈ {0, 0.05, 0.1, . . . , 1} and pfp ∈ {0, 0.05, 0.1, . . . , 2} . This gives rise 
to 861 combinations, since there are 21 possibles values of psignal and 41 possible values 
of pfp . Table 4 shows us the effect that varying psignal has on the PCC values, and hence 
on the dataset matrices X and Y  . Even if we assume that synthetic datasets match each 
other closely for some range of psignal , this range is small compared to the range of values 
in which we vary psignal ; observe in Table 4 that the change in PCC values is appreciable 
as we vary psignal . Another question which arises is how closely the TCGA BRCA dataset 
matches the synthetic datasets. Even if we assume that for a certain pair of psignal and 
pfp the TCGA BRCA dataset matches the corresponding synthetic dataset, it is impos-
sible for the TCGA BRCA to be matched closely to all synthetic datasets used, as this 
would contradict the observations of Table 4. In fact, in the case the TCGA BRCA data-
set matches a synthetic dataset, it will be related to only a very small percentage of all the 
synthetic datasets used in this study. In this way we ensure two things; the availability 
of a ground truth to compare the predictions made by Theia with, and the evaluation 
of Theia on a large number of datasets. Both these factors reinforce the applicability of 
Theia to a larger range biological contexts.

Synthetic data generation Several studies indicate that the sizes of clusters of function-
ally related genes are distributed according to a positively skewed distribution. That is, 
the vast number of genes sets are relatively small, while a few are much larger [74]. One 
can also arrive at this conclusion from the perspective of genetic hubs, small class of 
genes that affect many different biological pathways [75]. These hubs tend to have a high 
level of connectivity in biological networks, and this means that they tend to be a part of 
large-sized modules and also appear in a large number of modules. On the other hand, 
the more common non-hub genes form smaller modules and appear in a few modules. 
Likewise, we see a similar skewed distribution in spatial miRNA clusters. The distribu-
tion as well as the distribution of GO BP term module sizes can be found in more detail 
(see Additional file 4). For these reasons, we generated comodules such that the num-
ber of members per module followed a positive-skewed distribution. In order to reflect 
the high connectivity of the genetic hubs, we also model the number of modules per 
miRNA/gene as a positive-skewed distribution. More details can be found in the addi-
tional files (see Additional file 3)

In detail, we generate the module membership matrices U  and V  such that their ele-
ments are either 0 or 1. The number of nonzero elements in each column of U  and V  
(which represents the number of miRNAs or genes in a module) is distributed accord-
ing to the skew normal distribution, SN (ξ ,ω,α) , with location parameter ξ = 1 , scale 
parameter ω = 1 , and shape parameter α = 5 . In addition, the number of nonzero ele-
ments in each row of U  and V  (which represents the number of modules in which a 
particular miRNA or gene has membership) is also distributed according to the skew 

Table 4  PCC corresponding to psignal

The PCC value shown here is the average of top 10 PCC values in interacting pairs of miRNAs and genes, generated with 
pdown = 0.8 , µx = 3 , µy = 10 , and σ 2

x = σ 2
y = 1

psignal 0.001 0.005 0.01 0.05 0.1 0.5

PCC 0.087 0.089 0.091 0.113 0.159 0.374
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normal distribution, SN (ξ ,ω,α) , with ξ = D/K  , ω = 10 , α = 5 ( D = I for U  and D = J  
for V ).

The ground truth interactions between miRNAs and genes, G = (gij) ∈ {−1, 0, 1}I×J , 
is the product of the miRNA and gene module membership matrices. Thus, gij is non-
zero if the ith miRNA and the jth gene share at least one module in common. A majority 
(controlled by pdown ) of the non-zero elements are made negative (representing a down-
regulation). Precisely, we define G as follows:

where Pr(bij = 0) = 1− Pr(bij = 1) = pdown.
The miRNA expression, X ∈ R

N×I , and gene expression, Y ∈ R
N×J , are distributed 

normally. Each sample of expression data is generated as follows:

where µx and µy are the average miRNA and gene expression levels respectively when 
there is no regulation. The parameters σ 2

x  and σ 2
y  are the expression level variances. The 

value of psignal controls the strength of the effect of the miRNA expression level on the 
gene expression level. By increasing this signal, the modules embedded in the expression 
data become easier to extract, while decreasing the signal results in the modules becom-
ing obscured by the variance. The correspondence between psignal and the PCC is shown 
in Table 4.

Putative miRNA-gene interactions P are generated:

where Pr(b′ij = 1) = 1− Pr(b′ij = 0) = pfp
∑

∀i,j gij/(IJ ) . The parameter pfp controls the 
number of false positive interactions relative to the density of G . For example, when 
pfp = 1 , the density of P is (roughly) doubled and approximately half of the interactions 
will be false positives. When pfp = 2 , the density is (roughly) quadrupled and approxi-
mately three-quarters of the interactions will be false positives, and so on. The purpose 
of this relative false positive rate is to make the effect of pfp independent of the dimen-
sions of G.

Lastly, the protein-protein interactions Q are generated:

That is, qij = 1 if (VV ⊺)ij ≥ 1 , and qij = 0 otherwise.
Synthetic data results All parameters for Theia were kept the same as in the biological 

dataset evaluation, except both the cutoff for U  and V  were set to 0.5. Comodules were 

(13)gij = min((UV ⊺)ij , 1)(2bij − 1),

(14)xni ∼ N

(

µx, σ
2
x

)

(15)ynj ∼ N

(

µy + psignal
∑

∀i

gijxni, σ
2
y

)

,

(16)pij = max
(

gij , b
′
ij

)

,

(17)qij = min
(

(VV ⊺)ij , 1
)

.
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generated according to the previously described procedure with the following param-
eters: N = 1000 , K = 10 , I = 50 , J = 500 , µx = 3 , µy = 10 , and σ 2

x = σ 2
y = 1.

In order to measure the similarity between modules discovered by Theia and the true 
modules, which we know in the case of the synthetic data, we use the adjusted Rand 
index (ARI). The basic Rand index (RI) computes a similarity measure between two clus-
terings by considering all pairs of elements and counting pairs that are assigned to the 
same cluster and dividing this value by the total number of pairs. However, the RI does 
not account for chance, i.e., two clusterings that are similar purely by chance. The likeli-
hood of such chance placements is higher when there is a small number of clusters or 
a small number of elements or both. Thus, instead of the RI, we decide to use the ARI, 
which adjusts the index value to account for the expected similarity between the cluster-
ings. The ARI lies between -1 and 1. Random clusterings have an ARI close to 0 while 
1 stands for perfect match, and an ARI less than zero represents a worse-than-random 
clustering.

To evaluate Theia’s ability to recover the true miRNA-gene interactions, we use the 
F 1 score. If both the interaction and the direction of the interaction were correctly pre-
dicted, then this was considered a true positive. On the other hand, if an interaction was 
predicted when no interaction existed, this was considered a false positive. But if the 
lack of an interaction was correctly predicted, this was considered a true negative. The 
remaining cases were considered false negatives.

The ARI and the F 1 score were computed for every combination of 
psignal ∈ {0, 0.05, 0.1, . . . , 1} and pfp ∈ {0, 0.05, 0.1, . . . , 2} . A Gaussian filter with σ = 0.5 
was applied to the 40 by 20 matrix of results to reduce the noise. Figure  6 shows the 
resulting contour plot. We can see that Theia can achieve an ARI near 0.9 when 
pfp = 0 and psignal = 0.5 . This tells us that with no false positives in P and a high signal 
strength, Theia can recover the ground-truth comodules almost perfectly. In the most 
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Fig. 6  Performance of Theia on synthetic data. ARI of similarity between true modules and modules 
discovered by Theia, and the F 1 score of Theia recovering the true interactions. The x-axis indicates the 
regulation strength and the y-axis indicates the relative false positive rate in the putative miRNA-gene 
interactions. The x-axis of the F 1 score ends at 0.15 because the flat trend seen in this plot continues
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biologically-plausible region (i.e., small PCC values, typically less than 0.1, which cor-
respond to the region around psignal = 0 ), Theia can still achieve ARI ranging from 0.5 
to 0.8, depending on pfp . This is significantly better than existing solutions as we will 
see later. We can also see that Theia can achieve an F 1 score of up to 0.7 even when 
psignal = 0 . This is the benefit of Theia’s use of P and Q , from which we can learn much 
about interactions even without using expression data. With a high psignal and a low pfp , 
Theia can perfectly recover true interactions (F1 = 1).

The fact that Theia performs so well on synthetic data without the need for additional 
tuning of the hyper-parameters is suggestive of two facts. First, this indicates that Theia 
can easily adapt to different data sets, making this algorithm useful for a wide array of 
patho-physiological conditions. Second, this result validates the biological significance 
of our synthetic data generation procedure. Thus, our data generation algorithm can 
confidently be used to evaluate the effectiveness of future methods within this class of 
algorithms. This contribution is especially significant in the domain of computational 
genomics because the availability of high-quality ground truth data sets is often limited.

Comparison with other methods

Unlike other recent methods for miRNA-gene regulatory comodule identification, 
Theia learns the comodules along with the regulation strength represented by W  in the 
regression network. This feature helps improve the accuracy of the comodules, since the 
regression network is mutually related with the comodules, and thus minimizing the 
cost of the regression network, which is contributed proportionally to W  by each inter-
acting miRNA-gene pair, forces the module clustering as well to improve.

To demonstrate that Theia’s approach can indeed improve the accuracy of comodules, 
we compare Theia with SNMNMF [19] and PIMiM [20] using TCGA-BRCA data set. 
For this experiment, the number of comodules K was set to 195 (which is roughly equal 
to #|miRNAs|/5) for all three methods. We set the weight parameters for SNMNMF �1 , 
�2 , γ1 , and γ2 to 0.0001, 0.01, 20, and 10, respectively because these were found to be 
optimal in [19]. By following the procedure as described in the Supplementary Material 
in [19], we determined the optimal SNMNMF threshold T to be 1 because this value 
yielded the highest ratio of modules enriched in GO BP terms to total modules as com-
pared to other values of T in the range 1 to 10. The regularization and weight param-
eters of PIMiM, α , β , C1 , and C2 were optimized by performing an iterative line search 
to determine the values of these parameters using the F 1 score as the target function to 
optimize (as described in [20]). The optimal parameters were found to be 1, 0.5, 3, and 
3 respectively. The results of a comparative analysis can be seen in Fig. 7. In this figure, 
the metrics are influenced by the number of comodules predicted by each method. Note 
that some of the comodules predicted by the methods may not be functionally valid, and 
these metrics are affected by these errors.

We can see that Theia outperforms SNMNMF significantly in all respects. Although 
a slightly greater proportion of PIMiM’s modules were enriched in at least one GO BP 
term (C), we can attribute this to a large degree of inter-module overlap, as evidenced by 
the low number of unique GO BP terms (F). That is, there is a large amount of duplica-
tion within PIMiM’s modules causing causing (C) and (E) to be inflated.



Page 22 of 29Roth et al. BMC Bioinformatics          (2021) 22:237 

The fact the modules discovered by Theia were enriched in such a large and varied 
group of GO terms indicates that our solution was able to cluster many miRNAs and 
genes according to their function, rather than just the most obvious relationships. Theia 
also had great success in constructing miRNA modules that overlapped with spatial 
miRNA clusters compared to competing solutions; 37 of Theia’s modules were enriched 
in these spatial clusters while less than 10 of SNMNMF’s and PIMiM’s modules were 
enriched in this way. Finally, many of the miRNAs in our modules are known to be asso-
ciated to cancer. This result seems to suggest that our method is truly context sensitive 
in that it can identify regulatory comodules that are related to the patho-physiological 
condition from which the RNA expression data originated.

We also compare Theia with SNMNMF, PIMiM, and Tiresias in terms of the F 1 score 
and ARI using the same synthetic data set, which we used to evaluate Theia. Figure 8 
shows the results of each method relative to Theia. Theia outperforms SNMNMF and 
PIMiM in both ARI and F 1 score for all combinations of psignal and pfp . We hypothesize 
that SNMNMF and PIMiM performed poorly during these ARI experiments because 
these methods were not tested with synthetic data during their formulation. We believe 
that the design and the tuned hyper-parameters of these methods overfit to the specific 
data sets on which they were originally fitted. Thus, they are unable to model different 
data sets as easily as Theia. Compared to Tiresias, Theia has a significant advantage 
when the signal strength ( psignal ) is weak. We postulate that this stems from Theia’s 
novel use of U  and V  to disconnect non-interacting miRNA-gene pairs in the regression 
network.

Figure  9 zooms in on one combination of psignal and pfp (1.0 and 0.1 respectively), 
and shows the precision-recall curve for Theia, PIMiM, and Tiresias. Because Theia 
is able to suppress noise in the miRNA-gene interaction matrix better than Tiresias, we 
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Fig. 7  Metrics calculated using Theia, PIMiM, and SNMNMF on TCGA-BRCA data set. Metrics (B–G) are 
influenced by the total number of comodules discovered (A). The bars depict (A) the total number of 
comodules discovered by each method, (B) the number of modules with at least two oncomirs, (C) the 
number of modules enriched in at least one GO BP term, and (D) the number of modules enriched in spatial 
miRNA clusters, (E) the total number of GO BP terms that were enriched in the modules discovered by the 
method, (F) the total number of unique GO BP terms, and (G) the total number of oncomirs in the miRNA 
modules discovered by each method
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minimize the number of false positive interactions, and thus we are able to push the 
threshold lower; by doing so, we greatly increase our recall without sacrificing much 
precision.
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Fig. 8  ARI and F 1 score comparison between Theia, SNMNMF, PIMiM, and Tiresias. The ARI and F 1 score 
of SNMNMF and PIMiM are compared relative to Theia, i.e., the more negative the value, the better 
Theia performed relative to the alternative methods. A value greater than zero indicates that Theia was 
outperformed and zero indicates that both methods performed equally. In each case, the x-axis indicates 
the regulation strength and the y-axis indicates the relative false positive rate in the putative miRNA-gene 
interactions. Note that the x-axis stops at 0.15 for the F 1 comparison because all of the methods except 
Tiresias reached their maximum potential score at or before this point. The ARI for Tiresias cannot be 
calculated because Tiresias only predicts miRNA-gene interactions; thus, we plot the F 1 score a second 
time (bottom left) with a different axis to show Tiresias reaching its maximum potential F 1 score. In this 
plot, we see that Tiresias has a slight advantage over Theia in recovering interactions when the regulation 
strength is high. However, at a low regulation strength, which is biologically more relevant, Theia significantly 
outperforms Tiresias. We can also see that Theia achieves a significantly higher ARI than SNMNMF and PIMiM
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Using the synthetic data set, we also study the effect of number of modules (K) 
on Theia, SNMNMF, and PIMiM. For this, we vary the value of K, and correspond-
ingly the numbers of miRNAs (=5X number of modules) and genes (=50X number 
of modules) as well. The result of the ARI and F 1 score is shown in Fig. 10. We can 
see that both ARI and F 1 score change depending on K. However, in case of Theia, 
ARI and F 1 score stay above 0.9 and 0.8, respectively. In contrast, SNMNMF and 
PIMiM achieve much lower ARI and F 1 score, regardless of K. Note also that as the 
number of modules increases, the sparsity of the input matrices also increases, and 
this is characteristic that Theia handles particularly well.
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Fig. 9  Precision-recall curve. Theia is able to achieve high recall without an uptick in the false positives. 
Tiresias on the other hand performs well at lower recall regions, while PIMiM suffers from a high level of 
false-positives. The AUPR (area under precision-recall curve) values for Theia, Tiresias and PIMiM are 0.91, 0.73 
and 0.47 respectively
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Visualizing Theia’s Results
As part of our Theia framework, we also include a method of a visualizing the gen-
erated modules (See Fig. 11). Typical approaches-such as the one used in Le, et al. 
[20]-create a graph by connecting pairs of genes and pairs miRNAs and genes that 
interact.

The problem is that if such a graph is created with a non-trivial number of input 
miRNAs and genes, the result becomes unreadable. For this reason, we create one 
node for each comodule and point all the genes that are part of that comodue to it. If 
a gene is part of two modules than it will point to two modules and so on. We used 
the force-directed algorithm [76] to render the resulting graph. Our implementation 
is interactive and allows the user to rotate the graph, which means that overlapping 
nodes are less of a problem.

We can see from the visualization that the number of modules in which a par-
ticular gene is a member follows the skew normal distribution-the majority of genes 
only point to one module, a fair number point to two, and even fewer point to three, 
and so on. We also see the varying number of genes per module. A few modules are 
very large while the majority only contain a few genes.

Discussion
In this paper, we have presented an algorithm called Theia that can predict the effects 
of modules of miRNAs on genes. Our work gets to the heart of the biological discovery 
that groups of miRNAs act combinatorially to regulate genes. Theia is a theoretically 
rigorous optimization algorithm that simultaneously predicts the strength and direction 
(i.e., up-regulation or down-regulation) of the effect of modules of miRNAs on a gene. 
We validated Theia by testing it on 1161 breast invasive carcinoma samples from the 

Fig. 11  Three-dimensional visualization of a subset of the modules discovered by Theia 
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TCGA data portal, which contains 979 miRNAs and 19,258 genes. This resulted in the 
identification of 112 regulatory comodules. We found that some of the miRNA modules 
generated by our model are biologically significant (37 are enriched in spatial miRNA 
clusters and 48 have at least one enriched GO biological process), e.g., the miRNAs 
belonging to a given module are found to have similar functional roles, as determined 
by prior laboratory studies, or are proximate (prior studies have indicated that spatially 
clustered miRNAs often have similar functional roles). Similarly, we found that the gene 
modules are significantly enriched in many GO BP terms and form highly connected 
interaction networks. We posit that if Theia is capable of recovering known clusters of 
genes and miRNA, then the clusters found by our method not previously identified by 
literature are also likely to have biological significance. We believe that these novel regu-
latory comodules found by our method will be a springboard for further research into 
the specific functional roles of these new functional ensembles of miRNAs and genes, 
especially those related to diseases like breast cancer.

To further validate Theia, we generated synthetic data sets where the ground truth 
was known for all samples using parameters determined from real data. Notably, we 
found that the same hyperparameters of our model work well for both the real and 
synthetic data sets, indicating that our algorithmic framework is stable and robust to 
changes in the quality and type of input data. We evaluate the quality of miRNA-gene 
clustering and the accuracy of the interaction predictions obtained by Theia through 
comparison to prior works PIMiM, SNMNMF, and Tiresias. At a very high level of 
false positives ( pfp = 2 , psignal = 0.5 ), we see that Theia achieves an ARI score of 0.60 
(2.9 times improvement over SNMNMF and PIMiM), and the F 1 score of 0.55 (1.9 
times improvement over SNMNMF and PIMiM). When the signal strength is very low 
( psignal = 0.15 , pfp = 2 ), Theia achieves an F 1 score of 0.55 (1.4 times improvement 
over Tiresias).

In future work, we are looking at modeling the effects of modules of miRNAs using a 
non-linear regression model. More substantively, we are looking at jointly modeling the 
effects of miRNAs, Transcription Factors, and cis-regulatory modules on gene expression 
levels. By considering the overall logic of gene expression profiles, we can holistically map 
out the gene regulatory networks and thus have a better handle on how to detect anomalies 
in gene expression in disease.

On the algorithmic front, we are looking at creating building blocks, which we call ker-
nels, of genome annotating algorithmic motifs. These kernels can then be put together and 
optimized for specific end goals, rather than creating these kernels de novo, as outlined in 
our vision for the Sarvavid domain-specific language (DSL) framework [77]. For example, 
we will be augmenting our Theia framework by including additional trans-regulatory fac-
tors, such as TFs, plus additional cis-regulatory factors, such as DNA regulatory sequences 
[78], in an attempt to wholly map out the gene expression landscape. We have already seen 
a glimpse of this by augmenting Tiresias with the insight that genes and miRNA work 
together in many-to-many capacities, and in modules, in addition to acting individually. 
Our machine learning models will become progressively better as more biologically vali-
dated data becomes available, whether it is putative miRNA-gene interactions, their expres-
sion levels through mutual interactions, or protein-protein interaction data.
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