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Background
To guide researchers in choosing the most appropriate software and workflows for their 
given study, benchmarking is carried out to compare and evaluate their performance. 
Typically benchmark studies use simulated data or sequence mock communities with 
known composition.

However, conclusions of such benchmarks are limited to their underlying data. The 
benchmark initiative CAMI and Sczyrba et al. [1], Tamames et al. [2] suggested different 
methods depending on sample properties. To assess method performance and selection 
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for a specific study, benchmark data properties should therefore resemble the actual 
data of the study as closely as possible. Creating such benchmark data is challenging, 
since metagenomic communities can vary substantially in complexity and composition 
including fractions of sequences with unknown origin. Artificial design and resulting 
biases further limit the scope and power of benchmarks.

The number of metagenomes sequenced with subsequent retrieval of genome draft 
bins increased drastically in recent years. Pasolli et al. recently uncovered over 150,000 
microbial genomes [3]. 77% of species found in this study were never described before, 
showing the severe lack of reference genomes in current databases despite the massive 
sequencing efforts undertaken. The underrepresentation of microbial diversity in ref-
erence databases will lead to high fractions of unclassified data for metagenomes from 
understudied environments, however these unclassified and unknown sequence frac-
tions will affect analysis of such metagenomes.

Creating benchmark data limited to known genomes will only provide limited appli-
cability for studies targeting largely unknown habitats, however without a ground-truth 
available, methods and workflows cannot be fully assessed. To bypass this limitation, we 
utilize available reference genomes for known fractions of a metagenomic sample while 
incorporating the unknown sequence fraction into a benchmark sample as well. With 
this approach we keep original sample complexity while providing a ground-truth in 
benchmark data sets for method assessment.

We developed Tamock (loosely named from targeted mock communities) to automati-
cally create benchmark data directly based on the taxonomic composition of a metagen-
omic sample to provide a sample specific benchmark for a particular habitat. We utilize 
all available information of NCBI RefSeq [4] to simulate all classifiable sequence frac-
tions of a metagenomic sample while keeping the unknown sequence fraction to main-
tain original sample properties for each benchmark sample. To our knowledge, no other 
benchmark creation tool provides such habitat-specific benchmarks directly based on 
real metagenomic samples.

Comparison to other benchmark data creation tools

Since the advent of genome sequencing, multiple tools to create in silico metagenomic 
data sets have been published. The aim of metagenomic sequence simulators such as 
FASTQSim [5], Grinder [6], BEAR [7] or CAMISIM [8] has been primarily the evalu-
ation of novel bioinformatic methods. For such evaluations, complete control over all 
parameters of a dataset is a prime objective, often resulting in benchmark datasets 
consisting of considerably fewer genomes compared to environmental metagenomic 
samples. Metagenomic samples can easily consist of multiple hundred to thousands of 
species depending on the environment they originate from.

In contrast to previous established tools, Tamock includes the unknown and unclas-
sified sequence fraction for the creation of benchmark data sets. We aim to provide tai-
lored benchmarks (e.g. at the beginning of a bioinformatic study) to evaluate methods 
and tools for a particular habitat or set of data, hence the aim to mirror original sample 
complexity in respective benchmark data by the inclusion of unknown sequence frac-
tions. We believe this approach will be most valuable when analysing understudied habi-
tats, for which no comparable benchmark data has been used in respective benchmark 
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efforts. To minimize the barrier for researchers to create benchmark data with limited 
knowledge about their data at the beginning of a study, Tamock was developed with easy 
usage in mind, requiring no mandatory user input for parameter optimization or the 
preparation of reference genome data. Reference genome data is automatically down-
loaded and prepared the first time a genome is classified in a provided sample.

For the generation of benchmark data, all mentioned tools can use abundance pro-
files as input to create a metagenomic data set. FASTQSim and BEAR provide the pos-
sibility to determine the genome profile directly from a sample. FASTQSim relies on 
BLAST [9] to search sequences from the original sample against reference genomes 
which gets computationally very expensive for multiple, large metagenomic datasets. 
BEAR applies RAPSearch [10] for homology-based inference of abundance profiles 
using protein sequences from RefSeq, limiting the profile generation only to protein-
coding sequences. To improve on these limitations, Tamock applies Centrifuge, which 
can classify all sequences from a metagenomic sample requiring substantially less com-
putational resources to generate an abundance profile based on a complete sample. Both 
Grinder and CAMISIM do not include the creation of abundance profiles directly from 
a metagenomic sample but focus on extended downstream options such as generation 
of transcriptomic, proteomic or 16S rRNA sets for Grinder or in silico replicates, time 
series or differential abundance samples based on various distributions for relative abun-
dances for CAMISIM.

The approach of Tamock has been utilized to assess assembly and binning methods 
for the analysis of urban metagenomes, providing researchers guidelines for the analy-
sis of urban metagenomic data [11]. We present the use of benchmark samples created 
by Tamock for the evaluation of assembly and binning methods as an example use case 
for selected urban metagenomes and samples from the Integrative Human Microbiome 
Project [12] (Additional file 2: Table S1).

Implementation
Tamock uses taxonomic abundances obtained by classifying sequences from a metagen-
omic sample to define the taxonomic profile for the creation of benchmark data.

Taxonomic profile

Tamock determines the taxonomy of all sequences by applying Centrifuge [13], a 
resource-efficient, k-mer based taxonomic profiler. The use of Centrifuge enables 
Tamock to run on a standard desktop machine due to its low memory requirements. By 
default, an index for prokaryotic, human, and viral sequences (p + h + v) provided by the 
Centrifuge authors is used. Additional indexes as well as custom indexes can be created 
or are available from Centrifuge.

Selection of reference genomes

Sequence counts classified at species or strain level are used to create the profile for a 
benchmark sample. All sequence reads classified to taxonomic species level or below (i.e. 
strain level) are assigned to a reference genome from NCBI RefSeq while reads classi-
fied to higher taxonomic levels (genus and higher) are not simulated as they cannot be 
assigned to a single reference genome.
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Sequences with multiple taxonomic assignments are counted proportionally (counts 
for a taxon increased by one third for a sequence classified to three different taxa). 
Depending on the reference database, sequences assigned to a strain might not have a 
corresponding reference genome in NCBI RefSeq. To incorporate such sequences, they 
are reassigned as follows:

(1)	 All sequences assigned to sub-species level without a corresponding reference 
genome found in NCBI RefSeq are added to their respective species counts.

(2)	 All species counts are assigned to strains of the same species with a corresponding 
reference genome already present.

Sequence counts from species to strain level are distributed using the ratio of already 
assigned sequence counts of all strains of the respective species. Ultimately, all sequences 
from strains without reference genomes or classified to species level are assigned to a 
specific reference genome. This strategy accounts for the taxonomic profile of the sam-
ple while optimizing for all genomes present in the reference database, closely maintain-
ing the original complexity (Fig. 1a).

Benchmark data creation

Benchmark sequences are simulated from the taxonomic profile with according abun-
dances. Tamock replaces all sequences classified and matched to reference genomes 
from the original sample with simulated sequences (see Additional file 2: Table S1 for 
metrics). By default, only the bacterial domain is simulated, however other domains such 
as Eukaryota, Archaea or Viruses can be simulated as well as far as reference genomes 
are present in NCBI RefSeq.

Sequencing simulation is performed by ART [14]. The resulting simulated sequence 
collection is combined with all unclassified sequences for the final benchmark sample 
(Fig.  1b). Thereby, the benchmark sample reflects the original sample while providing 
exact sequence counts for the classified sequence fraction as a ground truth for further 
analysis. Through this process, effects of e.g. read depth, error rates, species and sub-
species diversity can be explored for real metagenomic communities. Additional, report 
files with information for all abundances, classification results and selected reference 
genomes are provided together with the final benchmark data.

Tamock learns and applies parameters such as sequence error profile, read length, and 
sequencing depth directly from the input sample by default since the aim is to reproduce 
the original sample as close as possible. Nonetheless, these parameters can be changed if 
the user wants to create benchmark data with differing characteristics to conduct exper-
iments to improve experimental design of a study.

Results and discussion
To highlight the benefit of applying Tamock for study design and method selection, 
we showcase the use of benchmark samples created by Tamock (v1.3.0). For genome-
centric analysis of metagenomes, assembly and binning methods are frequently applied 
to extract metagenomic bins, resulting in ever-increasing numbers of novel genomes 
reconstructed from a metagenomic sample. We use Tamock benchmark data to assess 
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the quality of results from an assembly and binning experiment, analysing contamina-
tion and presence of tRNA and rRNA genes as described in the MIMAG standards for 
high (HQ), medium (MQ) and low quality (LQ) metagenome-assembled genome bins 
[15], while following the workflow from Pasolli et al. [3].

We created benchmark samples for 18 urban metagenome samples from the MetaSUB 
Consortium [16–18] as well as 8 human microbiome samples from the integrative 
Human Microbiome Project (iHMP) [12]. All original samples and their correspond-
ing simulated samples by Tamock were assembled using MetaSPAdes v3.13.1 [19] with 
default parameters. Relative changes in assembly performance from original to their cor-
responding Tamock benchmark samples (“simulated” samples) are shown in Fig. 2.

Assembled sequences were subsequently binned by MetaBAT v2.15 [20]. Following 
the MIMAG standards [15], we used CheckM v1.1.2 [21] for completeness and contam-
ination values, barrnap [22] to predict rRNA genes and tRNA-Scan-SE v1.3.1 [23] for 
tRNA genes (Additional file 1: Methods).

High-quality (HQ) genome bins are required to fulfil the following requirements: > 90% 
completeness and < 5% contamination as well as the presence of 5S, 16S and 23S rRNA 

Fig. 1  Tamock design and workflow. a Creation of benchmark data by Tamock simulating the bacterial 
sequence fraction. By default, Tamock only simulates the bacterial fraction, however Tamock is also able 
to include or simulate only Eukaryota, Viruses or Archaea to the extent of available reference genomes. b 
Workflow of Tamock to create tailored in silico benchmark data. Classified reads are replaced by simulated 
reads of equivalent abundance from reference genomes, while unclassified or reads without a reference are 
kept to maintain original sample complexity
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genes together with at least 18 different rRNA genes. Medium-quality bins (MQ) are 
only required to fulfil ≥ 50% completeness and < 10% contamination whereas all remain-
ing bins are classified as low quality (LQ) following MIMAG standards.

No genome bins with high-quality (HQ) could be assembled and binned from both 
original as well as corresponding simulated samples. Resulting genome bins did not 
reach HQ due to the lack of all three rRNA genes present in the genome bins as required 
by MIMAG standards. One single bin did contain a copy of a 5S, 16S and 23S rRNA 
gene respectively, however due to insufficient completeness this genome bin only met 
the requirements for MQ. Genome bins fulfilling all criteria for HQ except the presence 
of rRNA genes were labelled as MQ* (Fig. 3).

The number of genome bins dropped from a total of 337 to 258 from original to simu-
lated samples.

Due to incomplete reference sequence databases, especially for strains present in a 
sample but not in reference databases, alterations from an original sample towards its 
corresponding simulated sample are to be expected and unavoidable. Depending on the 
composition of a sample, mainly two effects can be observed.

	(I)	 If a sample contains multiple different strains for which only one reference genome 
is available, classified sequences will be replaced only from a single genome. This is 
most prominent for samples from MetaSUB Boston. All samples from this group 
represent urban metagenomes with high fractions of sequences classified to Homo 

Fig. 2  Relative change of assembly performance. The relative change of assembly statistics from original 
samples to their corresponding simulated samples is shown. A value of 1 displays no change, whereas a 
value below 1 represents lower values in benchmark samples as well as a value above 1 represents higher 
values for respective assembly statistics compared to the corresponding original samples. Fold changes are 
shown for the total, average, and maximum length as well as number of contigs together with N50 value 
and percentage of reads mapping back to the assembly. Figures were produced using the packages ggplot2 
v3.3.0 [25], reshape2 v1.4.4 [26], gridExtra v2.3 [27] in R v3.6.3 [28]
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sapiens (27 to 81%, Additional file  2: Table  S1). As urban metagenomes harbour 
human sequences from multiple individuals, classification to and resampling from 
a single reference genome reduces assembly complexity and leads to a reduced 
total length and number of contigs due to reduced strain variance as well as a 
higher maximum length of contigs (Fig. 2).

	(II)	 However, if a strain is present in a sample with no direct, but a closely related ref-
erence genome in a database, only a subset of sequences will be classified to the 
respective reference genome with subsequent sampling, resulting in two strains 
(original and reference) present in the simulated where only one strain has been 
present in the original sample. Faecal samples from iHMP as well as MetaSUB 
samples from New York City (NYC) have consistently high fractions of sequences 
classified as bacterial (34 to 92%) as well as in average 89% sequences assigned to a 
reference genome (Additional file 2: Table S1). Multiple strains will not be present 
in a database but will be classified to closely related reference genomes and there-
fore increase strain diversity and assembly complexity in the simulated sample, 
leading to reduced average length of contigs and N50 values as well as an increase 
in the number of contigs (Fig. 2).

Ultimately, the aim of Tamock is to create benchmark data as similar to the original 
sample as possible by mirroring sample composition, sequence errors, depth and length 
while replacing the classified sequence fraction with sampled sequences from reference 

Fig. 3  Binning statistics for all genome bins from original and simulated samples. Contamination and 
completeness values, number of bins as well as tRNA and rRNA genes for all low quality (LQ), medium quality 
(MQ) and near-high quality (MQ*) bins from both original and Tamock benchmark samples (“Simulated”) are 
shown. The lack of rRNA genes is prominent in low as well as medium and near-high quality genome bins. 
Figures were produced using the packages ggplot2 v3.3.0 [25], reshape2 v1.4.4 [26], gridExtra v2.3 [27] in R 
v3.6.3 [28]
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genomes to provide a ground truth for experiments. Despite the inherent limitations as 
described above for sampling genomes from known reference genomes for unknown 
metagenomes, most assembly parameters were stable over various metagenomic habi-
tats, reflected in all variables near the value 1 for the comparison of assembly statistics 
from original and corresponding simulated samples in Fig. 2.

Results from simulated samples with available ground-truth for all sampled refer-
ence genomes can subsequently be utilized to assess methods and workflows of interest 
for an individual study. The abundance, genome coverage, and source for all resampled 
genomes in a simulated sample provide the base to assess a study design under realistic 
conditions based on the actual data of interest.

Applied to the presented show case, we can determine the genome coverage required 
to extract genome bins without any misassemblies compared to their reference genome. 
We applied MetaQUAST v5.0.2 [24] to assess any potential misassemblies in extracted 
genome bins. Tables with all sampled genomes and the corresponding abundance are 
available in the output of Tamock. We were able to successfully extract genome bins 
without any misassemblies, such as from the iHMP2 stool sample J00827 for Bifidobac-
terium adolescentis ATCC.

The extracted genome bin in the simulated and original data of sample J00827 (Addi-
tional file 3: Table S2) only failed HQ standards due to the lack of rRNA genes. In the 
corresponding simulated sample for J00827, sequences from B. adolescentis ATCC were 
sampled at 9 × coverage for the reference genome and the extracted genome bin cov-
ered 89.73% of the reference genome with 1.39% of all reads mapping to the respective 
genome bin (Additional file 4: Figs. S1–S4).

Comparison to benchmark data without unknown sequence fraction

The creation of benchmark data for metagenomic samples from complex environments 
can lead to high numbers of reference genomes required. Multiple hundred to thousands 
of reference genomes quickly lead to extensive computational resources required, either 
by long runtimes or high memory usage. The most recent developed CAMISIM, which 
has been used to create benchmark data for the CAMI Challenge [1], requires several 
hundred GB of RAM for higher numbers of genomes according to the documentation of 
CAMISIM.

In contrast to CAMISIM, relative abundances in Tamock are drawn directly from 
the unknown sample by classifying all sequences with Centrifuge. The usage of Centri-
fuge and subsequent processing also enables Tamock to process multiple thousands of 
reference genomes on a standard desktop due to the low memory usage of Centrifuge 
for indexes i.e. of RefSeq, with runtimes of a few hours for a sample with about 20 Mio 
sequences and about 4.000 reference genomes excluding the download time of reference 
genomes (only required once).

To enable a comparison with benchmark data created by current tools such as 
CAMISIM without inclusion of the unknown sequence fraction, we created bench-
mark data only from the classified sequence fraction with reference genomes avail-
able. Three versions of benchmark data were created. One set of benchmark data 
consisted only of sequences which are simulated by Tamock and used to replace all 
corresponding sequences in the original sample (“simonly” benchmark, Additional 
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file  2: Table  S1). The subset of original sequences which Tamock replaces with 
“simonly” is used to create the benchmark data set “orig-repl” for direct comparison 
with “simonly”. For the third set of benchmark data, the number of sequences which 
are simulated by Tamock are scaled to the sequence depth of the original sample, 
i.e. for a sample with 1500 reads of which 1000 reads are classified and assigned to a 
genome while the remaining 500 reads are unclassified, the second data set multiplied 
all counts by 1.5 × to create a sample with 1500 reads using relative abundances from 
the taxonomic profile of classified sequences (“simscaled” benchmark, Additional 
file 2: Table S1). The functionality to scale the number of classified sequences to a set 
sequence depth while maintaining relative abundances is available in Tamock via the 
option “-rn-sim”. This alters sequence depth and composition of the simulated sample 
compared to the original sample but enables users to create benchmark data for fur-
ther experiments with different characteristics (see Additional file 1: Methods).

CAMISIM, representing the most current benchmark creation tool, allows taxo-
nomic profiles to be used for benchmark data creation and utilizes ART as well to 
simulate Illumina sequences. A benchmark data set from Tamock consisting only 
of the classified sequence fraction with known abundances and a reference genome 
therefore is the equivalent of a benchmark dataset created by CAMISIM or other 
tools creating benchmark data from a taxonomic profile with set abundances which 
is provided by Tamock. No tool to our knowledge deduces the abundance profile 
directly from a metagenomic sample, simulates and replaces the known sequence 
fraction while maintaining the characteristics of the original sample by learning 
parameters such as sequence errors, length and depth for simulation from the origi-
nal sample and keeping the unknown sequence fraction.

We assembled and binned the “orig-repl”, “simonly” and “simscaled” benchmark in 
the same manner as described above for original and simulated samples by Tamock. 
Since the unknown sequence fraction is not part of the benchmark, we observe a 
loss of total assembly length and number of contigs for all samples with substantial 
fractions of unclassified data as expected. This is most prominent for samples from 
MetaSUB Sacramento and iHMP Feces with only 35.4 and 43.4% of all sequences 
classified on average (Additional file 4: Fig. S5) and can be explained with the lower 
sequence depth using only the known sequence fraction. However, even in “sim-
scaled” samples with the same sequence depth but reduced sample complexity, we 
observe a drop in total sequence length for MetaSUB Boston and NYC whereas Sac-
ramento shows a strong increase (Additional file 4: Fig. S6). Comparing only the two 
benchmark data sets “orig-repl” and “simonly”, the sequence fractions which Tamock 
effectively exchanges to create a simulated Tamock benchmark sample, assembly sta-
tistics such as maximum length, total length and number of contigs increased from 
“orig-repl” to “simonly”. Since classification of sequences is incomplete, the loss of the 
unknown sequence fraction will lead to the loss of fractions of sequences for assem-
bly, whereas sampling from a reference genomes for the exact same sequence depth 
as done for all counts in “orig-repl” to create “simonly” will improve assembly perfor-
mance. As described above, this will lead to a slight reduction in sample complexity, 
particularly for assembly. This is especially true for samples with large fractions of 
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eukaryotic sequences such as from iHMP Nasal Cavity, where e.g. for sequences clas-
sified to human only one reference genome is sampled (Additional file 4: Fig. S7).

Samples with fairly high fractions of classified data such as from MetaSUB NYC with 
78.2% of sequences classified in average show a drop in total assembly length for purely 
simulated benchmark data, whereas the simulated sample by Tamock showed only a 
slight increase in total length compared to the assembly of original samples (Fig. 2). The 
loss of total assembly length indicates that substantial parts of the unknown sequence 
fraction did belong to partially classified sequences, leading to the observed loss of 
sequence coverage during assembly, particularly for MetaSUB NYC samples.

Since a substantial part of the original sample is missing, there is a considerable loss 
in the number of resulting genome bins in purely simulated benchmarks. The complete 
“simonly” dataset is sampled from reference genomes, as such sample diversity is low-
ered, reducing overall assembly and binning difficulty, shown by the less severe loss of 
near high-quality genome-drafts (MQ*), however the total number of resulting genome 
bins dropped strongly from 337 from the original samples to 101 for “simonly” (Fig. 4). 
This is very close to the number of resulting genome bins from “orig-repl” with 96 bins, 
supporting the exchangeability of these two sequence fractions as performed by Tamock 
to create benchmark data. A slight increase of both MQ* and LQ quality genome bins is 
to be expected due to the both the likely loss of non-classified sequences belonging to a 
genome with classified sequences while reducing assembly complexity due to the selec-
tion of reference genomes for replacement. Assembly complexity can be reduced by e.g. 

Fig. 4  Binning statistics for original and all simulated data sets without unknown sequence fractions. 
Contamination and completeness values, number of bins as well as tRNA and rRNA genes for all low quality 
(LQ), medium quality (MQ) and near-high quality (MQ*) bins from original samples, original samples with only 
the classified sequence fraction “orig-repl”, “simonly” as well as “simscaled” benchmarks with only simulated 
sequences are shown. Despite less sample diversity, the lack of rRNA genes is even more prominent in 
both purely simulated benchmark data sets. Figures were produced using the packages ggplot2 v3.3.0 [25], 
reshape2 v1.4.4 [26], gridExtra v2.3 [27] in R v3.6.3 [28]
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the merging of closely related strains into one reference genome if only one is present in 
the reference database.

For “simscaled” samples, a slight increase in genome draft bins of MQ* quality can be 
observed, which is based on the increased coverage by scaling up all counts. Nonethe-
less, the diversity of the original samples is still lost and even with less complexity, there 
is a drop in the total number of resulting genome bins from 337 to 211.

Ultimately, benchmark samples created by Tamock showed performance closest to 
the original samples in both assembly and binning performance, underlying the impor-
tance to include unknown sequence fractions for metagenomic data with unclassified 
data. Considering only the respective sequence fractions Tamock alters in an original 
sample creating a simulated sample by Tamock, we could show the consistent number 
of resulting genome bins for only these sequence fractions, supporting the approach of 
Tamock to replace all classified sequences. Benchmark data based on only the known 
sequence fraction from a metagenome sample provided results deviating further from 
corresponding results of original samples as Tamock benchmark data.

Conclusion
Benchmark data created by Tamock can be used to quickly evaluate a workflow for a 
novel metagenomic dataset, compare and evaluate methods, as well as to improve the 
interpretation for any results from metagenomic studies, since assumptions for the qual-
ity of results can be easily tested and evaluated. Particularly for studies analysing novel 
or extreme habitats, we believe Tamock to be of high value for informed study design 
and formulation of a hypothesis with realistic expectations for the quality of results prior 
to an experiment.

To our knowledge, Tamock is the only benchmark data creation tool which enables 
researchers to simulate samples directly from an original sequence file without any fur-
ther input or action in form of required parameter settings, reference data preparation 
or other time-consuming preparation steps. Tamock creates habitat-specific benchmark 
data for metagenomic samples. Resulting benchmark data sets can be used to assess any 
metagenomic workflow or method for a particular study, providing researchers with 
performance assessments on their individual research question and data.

Availability and requirements

Project name: Tamock.
Project home page: https://​github.​com/​gerne​rs/​tamock.
Operating systems: Linux and MacOS.
Programming language: Perl.
Other requirements: Perl >  = v5.12.0; GNU Scientific Library (GSL).
License: GNU GPL 3.0.
Any restriction to use by non-academics: None.

https://github.com/gerners/tamock
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Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04154-z.

Additional file 1: Supplementary Figure 1. Genome fractions for the top five Bifidobacterium strains classified in 
the iHMP2 stool sample J00827 (Benchmark data set) for which contigs of the genome bin 36 could by aligned are 
shown. The reference genome GCF_000010425.1 corresponds to Bifidobacterium adolescentis ATCC 15703 with 
89.73% coverage and has been sampled 9x in the simulated sequence fraction constituting for 1.39% of all reads. 
The figure is produced with MetaQUAST v5.0.2 (Mikheenko et al. 2016).

Additional file 2: Supplementary Figure 2. Percentage of sequence reads mapping to the respective reference 
genome for the top five Bifidobacterium strains classified in the iHMP2 stool sample J00827 (Benchmark data set). 
1.36% of sequences mapped to the reference genome GCF_000010425.1 (Bifidobacterium adolescentis ATCC 
15703) while 1.39% of sequences mapped back to genome bin 36. The figure is produced with MetaQUAST v5.0.2 
(Mikheenko et al. 2016).

Additional file 3: Supplementary Figure 3. The number of misassemblies for genome bin 36 compared to the top 
five Bifidobacterium strains classified in theiHMP2 stool sample J00827 (Benchmark data set) is shown. No misas-
semblies were identified for all five reference genomes. The figure is produced with MetaQUAST v5.0.2 (Mikheenko 
et al. 2016).

Additional file 4: Supplementary Figure 4. The total length of aligned contigs for genome bin 36 compared to the 
top five Bifidobacterium strains classified in theiHMP2 stool sample J00827 (Benchmark data set) are shown. The total 
aligned length of all contigs sums up to 1875 kbps, constituting for 89.73% genome coverage for GCF_000010425.1 
(Bifidobacterium adolescentis ATCC 15703). The figure is produced with MetaQUAST v5.0.2 (Mikheenko et al. 2016).
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