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Background
In 2009, Tang et  al. developed the first sequencing technology for single-cell RNA 
sequencing (scRNA-seq). Unlike traditional "bulk" RNA sequencing in the past, scRNA-
seq measures the expression of each gene from the perspective of a single cell [1]. With 
the rapid development of biotechnology, single-cell RNA sequencing (scRNA-seq) has 
become one of the most prioritized sequencing research directions in recent years [2, 
3]. It is meaningful to analysis scRNA-seq data, facilitating to understand the biologi-
cal heterogeneity and to discover new cell types. In the process of data analysis, inte-
grating multiple batches can contain more biological information, which will help us to 
obtain more reliable downstream analysis results. However, biological data can be easily 
affected by systematic variations especially due to experimental technology deviations or 
artificial errors [4]. Effectively removing batch effects can reduce the influence of techni-
cal or artificial errors in the process of analyzing scRNA-seq data [5].
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Traditional methods to remove batch effect for bulk RNA-seq data are not a good 
option for scRNA-seq data since data characteristics are distinct, for example, 
scRNA-seq data is very sparse with a complex distribution. Some approaches espe-
cial for scRNA-seq data have been developed, including anchor-based methods, clus-
tering-based methods and deep learning methods. Anchor-based methods identify 
anchors between batches, which are two cells from different batch and these two cells 
are mutual nearest neighbors. The batch effect is represented by the difference vectors 
of anchor pairs. Representative algorithms of this category include MNN [6], Seurat 
[7, 8], Scanorama [9], BBKNN [10], etc., among which MNN is the first method to 
adopt this idea. It computes the difference vectors between the anchor pairs identi-
fied by K nearest neighbors (KNN) algorithm and uses the Gaussian mixture model 
to calculate the final corrected vector. Seurat introduces the canonical correlation 
analysis (CCA) algorithm [11] on the basis of MNN to reduce the raw data to the 
low-dimensional most relevant subspace, identifies anchor pairs in the subspace and 
applies the graph weighting algorithm to calculate the final corrected vector. BBKNN 
presents a random projection tree algorithm that replaces the KNN algorithm to 
make speed-up. Scanorama uses singular value decomposition (SVD) for dimen-
sionality reduction, identifies anchor pairs in the low dimensionality space, mixes all 
batches together without the restriction that there is at least one shared cell type in all 
batches. Harmony [12] and LIGER [13] are clustering-based method. Harmony uses 
an iterative clustering method and ensures that cells in each cluster come from as 
many batches as possible during each iteration. LIGER uses a non-negative matrix 
factorization to maximize shared information between batches and then employs a 
clustering algorithm to group the shared parts. Most deep learning methods [14, 15] 
are based on autoencoder or variational autoencoder. They are representative learn-
ing which removes noise by data compression and reconstruction.

The methods mentioned above perform well when the batch effect is much smaller 
than biological variation, since in anchor-based methods, anchors actually can be 
considered as the   same cell type between batches. If the batches are highly hetero-
geneous, these methods cannot achieve a satisfactory integration result, since wrong 
anchors could be popped out based on mutual nearest neighbors and consequently 
mislead batch correction. And Harmony maximizes batch diversity while some cell 
types may not be included in a batch. It has been verified in a recent comprehensive 
analysis and comparison [16, 17] in which the above methods are evaluated through 
10 datasets.

With the emergence of single cell atlas, tsunamic data with cell type label definitely 
could provide prior information for new data integration and bring biological inter-
pretability. In this paper, a new algorithm named SSBER, that introduces biological 
priori information, for single cell RNA-seq dataset integration is proposed, aiming to 
improve batch-effect correction when high heterogeneity exist among batches (The 
overall process of SSBER is shown in Fig. 1). Experiments on various datasets in dif-
ferent scenarios show that: (1) when the cell type composition differs greatly among 
batches, SSBER performs better than other algorithms, such as Harmony, Seurat and 
LIGER. (2) When similar cell types exist among batches or quantity distributions of 
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cells from various cell types are seriously unbalanced, SSBER also outperforms other 
algorithms.

Results
To give a comprehension evaluation of SSBER, we implement some experiments on real 
data under three scenarios, cell-type structure across batches is not identical, similar cell 
types across batches exists, and quantity distribution of cells from various cell types is 
seriously unbalanced. And we apply SSBER to time-series datasets for comparing the 
variation of development trajectory, in particular compared to Harmony.

Evaluation metrics

Evaluation metrics are composed of two categories, removal of batch effects and con-
versation of biological variance [18]. The first category includes the k-nearest neighbor 
batch-effect test (KBET) [16, 19], local inverse Simpson’s index (LISI) [12, 16], average 
silhouette width (ASW) [20]. The second category includes adjusted rand index (ARI) 
[21], isolated label scores, cell cycle variance conservation, and overlaps of highly vari-
able genes (HVGs) per batch before and after integration [18]. Besides t-Distributed 

Fig. 1  Overview of SSBER. a Input of the raw data, b projecting cell type information via SciBet, c detecting 
anchor pairs—based on the distance of cells from shared cell type, d integrating data guided by correction 
vectors from anchor pairs, e plots of integrated data
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Stochastic Neighbor Embedding (t-SNE) [22] as well as Uniform Manifold Approxima-
tion and Projection (UMAP) [23] are employed to give visualizations.

(1)	 K-nearest-neighbor batch estimation (KBET) KBET measures whether batch mixing 
is uniform through comparison of local batch label distribution against global batch 
label distribution. The lower fraction of null hypothesis rejections (range from 0 
to 1) represents that the local distribution is more similar to the global distribu-
tion, which means better batch mixing around a cell. Following the KBET paper 
[19], we respectively choose 5%, 10%, 15%, 20%, and 25% of the sample size and get 
the median of all KBET rejection rates to produce the final KBET result for each 
method.

(2)	 Local inverse Simpon’s index (LISI) LISI can be used to assess goodness of batch 
integration(iLISI) and cell type integration (cLISI) [12, 16]. In the case of iLISI to 
measure batch mixing, the index is computed for batch labels, and a score closer 
to the expected number of batches denotes better batch mixing. For cell type 
LISI (cLISI), the index is computed for all cell type labels, and a score closer to 1 
denotes that the clusters contain purer cell types. Code to compute LISI is available 
at https://​github.​com/​immun​ogeno​mics/​LISI. We computed the iLISI and cLISI 
scores for each cell in the dataset, and then determined the median values.

(3)	 Average silhouette width (ASW) The ASW indicator is similar to the LISI indica-
tor, which can be used to assess goodness of both batch integration (ASW_batch) 
and cell type integration (ASW_celltype). The difference between the ASW and 
LISI indicators is that ASW uses the distance difference between cells within a 
same cluster and different clusters to measure the distribution of cells. The result-
ing score ranges from − 1 to 1, where a high score denotes that the cell fits well 
in the current cluster, while a low score denotes a poor fit. The average score of 
all data points is used to measure overall cell type purity (ASW_celltype) or batch 
mixing (ASW_batch) through the choice of labels. In terms of ASW_celltype, the 
higher score represents the higher purity of the cell type, as for ASW_batch, the 
lower score denotes a better batch-mixing performance.

(4)	 Adjusted rand index (ARI) The ARI is used to evaluate batch correction methods in 
terms of cell type purity. The score is calculated by using the true cell type label and 
the predicted cell type label. The higher ARI value denotes higher purity of the cell 
type.

(5)	 Isolated label scores To estimate rare cell identity annotation, isolated label scores 
evaluate how well the data integration methods dealt with cell identity labels shared 
by few batches. Specifically, we identified isolated cell labels as the labels present in 
the least number of batches in the integration task. The score evaluates how well 
these isolated labels separate from other cell identities. We implemented two ver-
sions of the isolated label metric: the isolated label F1 and isolated label ASW, the 
mean score of two isolated labels is returned as the final score. For specific calcula-
tion details, please see the paper [18].

(6)	 HVG conservation The highly variable gene (HVG) conservation score is a proxy 
for the preservation of the biological signal. As in paper [18], we computed the 
number of HVGs before and after correction for each batch via Scanpy’s highly_

https://github.com/immunogenomics/LISI
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variable_genes function (using flavor = “cell ranger”). If available, we identified 500 
HVGs per batch. If fewer than 500 genes were present in the integrated object for a 
batch, the number of HVGs was set to half the total genes in that batch. The overlap 
coefficient is defined as:

where X and Y denote the HVGs before and after correction. The overall HVG 
score is the mean of the per-batch HVG overlap coefficients. Since Harmony and 
LIGER return data after dimension reduction, it is almost impossible to compute 
HVG score for them, these scores are omitted in Tables 1, 2, 3, 4, 5 and 6.

(7)	 Cell cycle conservation The cell cycle conservation score evaluates how well the cell 
cycle effect can be scored before and after integration. We computed cell cycle con-
servation scores using the same calculation process as in paper [18]. Score closes to 
0 indicating lower conservation and 1 indicating complete conservation of the vari-
ance explained by cell cycle.

Scenario 1: cell type structure across batches is not identical

We collected two published datasets, human blood cell dendritic data [24] and human 
pancreas data [25, 26]. In human blood cell dendritic data, pDC and DoubleNeg are 
shared cell types in both batches. We delete CD1C cells in the first batch and CD141 
cells in the second batch, so they respectively appear in two different batches. As shown 
in Fig. 2a, the visualization of the raw data, DoubleNeg and pDC are completely sepa-
rated due to the batch effects. As shown in Fig. 2b, SSBER achieves the best data integra-
tion performance. Batch effects are removed, cells of same subpopulation are mixed well 
and different subpopulations even similar subpopulations are separated. As shown in 
Fig. 2c, Seurat mixes CD141 and CD1C together after data integration. The main reason 
is that Seurat mismatches anchors which in return mislead batch correction. As shown 
in Fig. 2d, although Harmony separates all cell types well while mixing them in batches, 
some cells of DoubleNeg and pDC are also separated from the main cluster and could be 
grouped into a new cluster. The reason lies on maximization of batch diversity within a 
cluster. LIGER mixes CD141 and pDC, CD1C and DoubleNeg together after data inte-
gration (Fig. 2e) since it also tries to maximize the shared space across batches.

(1)overlap(X, Y) = |X ∩ Y |
/

min(|X |, |Y |)

Table 1  Metrics on the human blood dendritic cell dataset

Bold represents the best indicator among four algorithms

Seurat Harmony SSBER LIGER

iLISI 1.5804 1.4912 1.4125 1.342

cLISI 1.3951 1.1733 1.1652 1.4322

ARI 0.707 0.7806 0.8496 0.6824

ASW_batch 0.064 0.037 0.031 0.059

ASW_celltype 0.186 0.336 0.395 0.168

Isolated label 0.387 0.416 0.623 0.327

Cell cycle 0.473 0.636 0.583 0.450

HVG 0.613 0.624
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As shown in Table  1, SSBER achieves the best performance on the cell type purity, 
cLISI, ASW_celltype and ARI reaching 1.165224, 0.395 and 0.8489714 respectively. Seu-
rat, Harmony, and LIGER mix CD141 and CD1C cells in the integrated data and split 
pDC cells into two clusters, so the indicators for measuring cell purity are not as good 
as SSBER. On the metrics indicating batch mixing, SSBER is best on ASW_batch and 
Seurat is best on iLISI. As for metrics on conversation of biological variance, SSBER 
achieves the best performance on isolated label score and HVG conservation score, Har-
mony is the best on cell type conservation score. As for KBET score, shown in Fig. 3, 
SSBER is basically comparable with Harmony and better than Seurat and LIGER.

In order to further explore the effect of SSBER on the fusion of multiple batches, we 
reformed human pancreas dataset. Instances of some cell types were removed for each 
batch, for example, we removed all alpha cells from the celseq dataset, all beta cells 
from the smartseq2 dataset. After perturbation, acinar is a shared cell type among all 
batches, delta, beta and ductal cells only appear in two batches, and acitivated_stellate, 

Fig. 2  Comparison on the human blood cell dendritic data. a Visualization for raw data, b UMAP analysis on 
the integrated data after SSBER, c UMAP analysis on the integrated data after Seurat, d UMAP analysis on the 
integrated data after Harmony. e UMAP analysis on the integrated data after LIGER
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alpha, endothelial, and gamma belong to only one batch. The detail dataset description is 
shown in Table 2.

SSBER, Seurat, Harmony and LIGER were also used to integrate this perturbed data-
set. SSBER effectively separates the above cell types with a good batch mixing, shown in 
Fig. 4b. As shown in Fig. 4c, Seurat mixes alpha with gamma, beta with delta cells. The 
reason lies on that KNN algorithm pops out some anchor pairs in which two cells are 
not a same cell type. These wrong anchors lead to the cells from different subpopulations 
being mixed together. As shown in Fig.  4d, e, Harmony and LIGER totally integrates 
delta, beta, gamma, and alpha cells into a large cluster. Harmony is a clustering-based 
algorithm, the objective function of it includes as many batches as possible in a cluster, 
so when the cell type structure differs greatly among batches, cells from different sub-
populations will be mixed incorrectly.

SSBER is the best one in terms of isolated label, cell type conservation score and HVG 
conservation score that measure on the conservation of biological variance, shown 
in Table 3. SSBER is also best in terms of ARI, ASW_celltype and cLISI that measure 
on the cell type purity. On the metrics indicating the degree of batch mixing, such as 
ASW_batch and iLISI, superficially SSBER is slightly inferior to Seurat, Harmony and 
LIGER. The main reason is that when there are many subpopulations that are not shared 

Fig. 3  KBET score on the human blood dendritic cell dataset

Table 2  Detail description on the human pancreas dataset

celseq celseq2 smartseq2

Acinar ✓ × ✓
Beta ✓ × ✓
Delta ✓ ✓ ✓
Activated ✓ ✓ ×
Alpha ✓ × ×
Ductal × ✓ ✓
Gamma × ✓ ×
Endothelial × ✓ ×
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between batches, SSBER will not mix these cells like other algorithms, but integrate data 
strictly according to the cell type, while ASW_batch and iLISI only evaluate the uniform-
ity of batch mixing without same cell type constraint, at this time, mixing more cells 
across batches even wrong mixing that means different subpopulations could reach 

Fig. 4  Comparison on the reformed human pancreas dataset. a Visualization for raw data, b UMAP analysis 
on the integrated data after SSBER, c UAMP analysis on the integrated data after Seurat, d UAMP analysis on 
the integrated data after Harmony. e UAMP analysis on the integrated data after LIGER

Table 3  Metrics on the human pancreas dataset

Bold represents the best indicator among four algorithms

Seurat Harmony SSBER LIGER

iLISI 1.878475 1.864391 1.46051 1.8448

cLISI 1.2320 1.3623 1.0169 1.2632

ARI 0.6649 0.5393 0.8599 0.5839

ASW_batch 0.026 0.015 0.032 0.018

ASW_celltype 0.523 0.404 0.786 0.518

Isolated label 0.738 0.702 0.921 0.673

Cell cycle 0.606 0.681 0.703 0.583

HVG 0.702 0.747
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better score. As for KBET score, shown in Fig.  5, SSBER is basically comparable with 
Harmony, Seurat and LIGER.

It is easy to conclude that, when the cell type structure is heterogeneous among 
batches, SSBER performs better than Seurat, Harmony and LIGER. If there are 
unshared subpopulations among batches, iLISI, KBET and ASW_batch scores are not 
good metrics since they measure the uniformity of batch mixing.

Scenario 2: similar cell types exist across batches

We collected the human peripheral blood mononuclear dataset [27], in which the cell 
type structure between batches is basically similar and there are two pairs of similar 
cell types, CD4 T and CD8 T, Monocyte_CD14 and Monocyte_FCGR3A.

As shown in Fig.  6, none of SSBER, Seurat, Harmony and LIGER could generate 
distinct clusters of Monocyte_CD14 and Monocyte_FCGR3A, or CD4 T and CD8 T 
in the visualization plots.

As shown in Table  4, SSBER is best, except on iLISI and cell type conservation 
score. Since CD4 T cells and CD8 T cells are hard to be distinguished, we specially 
calculated the cLISI score for CD4 T cells and CD8 T cells, Seurat, Harmony, LIGER 
and SSBER reach 1.1323, 1.2836, 1.224 and 1.377 respectively, SSBER is the best. The 
KBET score is shown in Fig. 7 and we can see that SSBER is the top method regardless 
of the sampling ratio, and Seurat ranks the second.

Scenario 3: distribution of cells from various cell types is seriously unbalanced

To compare the data-correction performance of four algorithms when the quantity 
distribution of cells from various cell types is seriously unbalanced, we collected the 
mouse retinal cell dataset [16] and the 293t_jurkat cell line dataset [27] as experimen-
tal datasets.

Fig. 5  KBET score on the human pancreatic dataset
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As shown in Fig. 8, in the mouse retina dataset, bipolar cells monopolizes batch 1 
while rod cells monopolizes batch 2, and ganglion, vascular endothelium as well as 
horizontal cells do not exist in batch 1. Due to the large number of cell types, it is 
hard to visually distinguish the results after data integration from four algorithms. 

Fig. 6  Comparison on the human peripheral blood mononuclear dataset. a Visualization for raw data, b 
UMAP analysis on the integrated data after SSBER, c UMAP analysis on the integrated data after Seurat, d 
UMAP analysis on the integrated data after Harmony. e UMAP analysis on the integrated data after LIGER

Table 4  Metrics on the human peripheral blood mononuclear dataset

Bold represents the best indicator among four algorithms

Seurat Harmony SSBER LIGER

iLISI 1.458856 1.562768 1.578711 1.58021
cLISI 1.074385 1.065975 1.048792 1.0723

ARI 0.5720612 0.6247241 0.696191 0.61782

ASW_batch 0.064 0.096 0.056 0.089

ASW_celltype 0.348 0.329 0.387 0.319

Isolated label 0.501 0.583 0.606 0.469

Cell cycle 0.674 0.761 0.733 0.612

HVG 0.729 0.815
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We count on evaluation metrics. It is shown in Table  5, SSBER outperforms other 
alorithms on the metrics of cLISI, ARI and ASW_celltype, which reflect the cell type 
purity. Especially on ARI, SSBER is much better than the other three algorithms. 
Since some cell types are not shared in both batches, the credibility of iLISI and 
ASW_batch should be compromised. As for label-free conservation metrics, SSBER 
achieves the best performance on isolated label score and HVG conservation score, 
Harmony is the best on cell type conservation score. In the term of KBET, SSBER and 
Harmony are similar and better than Seurat and LIGER (Fig. 9).

In the 293t_jurkat cell line data, the cell type structure between batches is basically 
similar and only two cell types 293t and jurkat are contained. The ratio of the number of 
293t cells to jurkat cells in batch 1 is 1:9, while this ratio in batch 2 is 5:5.

It can be seen there are obvious batch effects from the visualization of the raw data 
(Fig.  10a). Seurat, Harmony and LIGER are more likely to divide jurkat cells into two 
clusters (Fig.  10c–e), and SSBER gives a much closer group of jurkat cells. It is also 
shown in Table  6, SSBER gets 0.994 on ARI score, much better than 0.864 of LIGER 
and 0.885 of Harmony. Besides, on all other metrics, including iLISI, cLISI, ASW_batch, 
ASW_celltype (Table 6) and KBET (Fig. 11), SSBER is also the best one.

Fig. 7  KBET scores on the human peripheral blood mononuclear dataset

Table 5  Metrics on the mouse retina dataset

Bold represents the best indicator among four algorithms

Seurat Harmony SSBER LIGER

iLISI 1.166076 1.200744 1.146624 1.17424

cLISI 1.054624 1.36209 1.044166 1.2365

ARI 0.6525991 0.53935 0.850938 0.54793

ASW_batch 0.142 0.145 0.148 0.184

ASW_celltype 0.673 0.684 0.765 0.703

Isolated label 0.592 0.647 0.783 0.618

Cell cycle 0.521 0.587 0.556 0.538

HVG 0.529 0.582
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Fig. 8  Comparison on the mouse retinal cell dataset. a Visualization for raw data, b UMAP analysis on the 
integrated data after SSBER, c UMAP analysis on the integrated data after Seurat, d UMAP analysis on the 
integrated data after Harmony. e UMAP analysis on the integrated data after LIGER

Fig. 9  KBET scores on the mouse retina dataset
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Time course developmental trajectories analysis

To explore the integrating performance of SSBER in analysis of time course devel-
opmental trajectories, we implemented the same experiment as Harmony [12]. The 
datasets include eight times points of mouse hematopoiesis, from E6.75 to E8.5 and 

Table 6  Metrics on the cell line dataset

Bold represents the best indicator among four algorithms

Seurat Harmony SSBER LIGER

iLISI 1.369536 1.48654 1.56786 1.46342

cLISI 1.005186 1.0045738 1.000456 1.00428

ARI 0.7753852 0.885436 0.993591 0.86463

ASW_batch 0.167 0.146 0.086 0.186

ASW_celltype 0.447 0.668 0.783 0.658

Isolated label 0.729 0.858 0.925 0.837

Cell cycle 0.618 0.707 0.662 0.609

HVG 0.726 0.784

Fig. 10  Comparison on the 293t_jurkat cell line data. a Visualization for raw data, b UMAP analysis on the 
integrated data after SSBER, c UMAP analysis on the integrated data after Seurat, d UMAP analysis on the 
integrated data after Harmony. e UMAP analysis on the integrated data after LIGER
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mixed gastrulation. After data integration, we used the DDRTree method in the mon-
ocle package [28] to perform trajectory analysis, shown in Fig. 12. Both SSBER and 
Harmony recovered a branching trajectory structure that correctly captures the pro-
gression from common mesoderm and hematoendothelial progenitor populations 
to differentiated endothelial and erythroid populations. And SSBER also preserved 
the separation between the two blood progenitor populations and among the three 
erythroid populations. LIGER failed to present a clear branching trajectory structure 

Fig. 11  KBET scores on the cell line dataset

Fig. 12  Time course developmental trajectories analysis. a Visualization for the trajectory analysis after 
Harmony, b visualization for the trajectory analysis after SSBER, c visualization for the trajectory analysis after 
LIGER
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and separate some distinct populations. MultiCCA failed to converge to an answer, as 
some of the samples contained too few cells, causing the Seurat optimization step to 
fail to converge.

Robustness analysis

Determining some genes for scRNA-seq data analysis is to avoid curse of dimensionality. 
Usually, genes are selected based on the variance of expression abundance. In this sec-
tion, we checked the robustness of SSBER for the number of selected genes. The results 
are shown in Fig. 13 in terms of ARI on the above five datasets. The number of genes 
with most variances are set as 500, 1000, 2000, 3000, 4000 and 5000 respectively. It can 
be seen that SSBER has good robustness since the ARI scores basically keep stable. The 
suggestion of the number of genes seems to be 3000 to 5000.

Discussion
SSBER depends on a supervised classifier to label cell types with high precision. By now, 
SciBet is one of the best classifiers. It is easy for SSBER to transfer to other classifiers. At 
present, classifiers of more than 100 common cell type of humans and mice have been 
provided [29]. If some new tissues or new cell types are not covered in them, researchers 
could try to find the relevant labeled datasets to train corresponding classifiers. Although 
the current public datasets cannot support the needs of all human and mouse cell types, 
the human cell atlas and other animal cell atlases become more and more complete, the 
labeled datasets and corresponding classifiers will become more abundant. In the worst 
case, valid cell population labels cannot be provided, anchors could be identified without 
constraint of common cell type, SSBER degenerates to Seurat.

Fig. 13  ARI scores under different numbers of genes
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Conclusions
In this paper, a method named SSBER to remove batch effect of scRNA-seq data is 
presented. SSBER considers the partial shared cell types predicted by a cell annotation 
algorithm and detects mutual neighbor cell pairs among the shared cell types, which 
improves the accuracy of anchors. Besides, batch effects are calculated for each cell type, 
unlike Seurat, Scanorama and BBKNN with global treatment. Therefore, when batches 
are highly heterogeneous, especially when the cell type structure among batches or dis-
tribution of cell population varies considerably, or some similar cell types exist across 
batches, SSBER outperforms other algorithms about integrating scRNA-seq data.

Methods
To remove batch effect, it is ideal that some cells are sequenced in each batch which 
work as control to calibrate batch effects. Those same cells across batches act as anchors. 
Actually, cells of a same cell type are the realistic alternative of anchors. Usually, anchors 
are identified from pairs of cells, in which (1) two cells ( j1, j2 ) come from two batches 
(B1, B2) and (2) j1 is one of the k cells in batch B1 with the smallest distances to j2 , 
and vice versa j2 is one of the k cells in batch B2 with the smallest distances to j1 . The dif-
ferences between gene abundance of ( j1, j2 ) represent batch effects.

Traditional data integration methods based on the anchor idea, such as MNN, Seurat, 
and BBKNN, must follow three assumptions [7]:

(1)	 There is at least one cell population that is present in both batches (i.e., in the refer-
ence and the new batch to be merged with it).

(2)	 The batch effects are almost orthogonal to the biological subspace.
(3)	 Variation in the batch effects across cells is much smaller than the variation in the 

biological effects between different cell types.

In fact, the assumptions might not hold up in real data, particularly given that differ-
ent batches may easily differ in many aspects, including samples used, single cell capture 
method, or library preparation approach. If true biological variations are not orthogonal 
to batch effects, or differences from batch effect are not smaller than its from biologi-
cal variations, traditional methods will meet a big challenge. Anchor pairs detected by 
KNN method may be cells from different cell types, misleading the batch-effect correc-
tion. For example, under the scenario depicted in Fig. 14, MNN leads to cluster 1 (C1) 

Fig. 14  Detecting mutual nearest neighbors between two batches in non-orthogonal scenario
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and cluster 2 (C2) mis-corrected due to mismatching single cells in the two clusters/cell-
types across batches [6].

What’s more, we collected the cell line dataset [16] as an example to illustrate the 
impact of anchor pairs. The overall data visualization is shown in Fig. 15a. The datasets 
contain only two cell types, with two out of the three batches containing only one cell 
type that is also only shared with the third batch. Cell types, jurkat and 293t, appear sep-
arately in batch 1 and batch 2. After integration, Seurat or MNN produces four batch-
mixed clusters, but with two cell types mixing (Fig. 15b, c), and the ARI (Adjusted rand 
index, one indication of clustering accuracy) only reaches 0.63, which seriously dam-
ages structure of the raw data. Through further analysis of the anchor pairs identified in 
Seurat, we find that about 63.13% of 8012 anchor pairs are not from the same cell type, 
that is, a large number of wrong anchor pairs seriously affect the final data integration 
performance.

Fig. 15  An example to illustrate the impact of anchor pairs. a Visualization for the cell line datasets, b UMAP 
analysis on the integrated data after Seurat, c clustering on the integrated data after Seurat
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To address those issues, here we present SSBER, a supervised method utilizing biolog-
ical prior knowledge combined with anchor-based approach. The key idea of SSBER is to 
improve accuracy of detected anchors, two cells of which should come from a same cell 
type, consequently to improve performance of integration. SSBER first employs a super-
vised classifier to group cells with high confidence, then identifies anchors in shared cell 
type, which breaks the constraints that batch effects are orthogonal to the biological 
subspace and differences from batch effects are much smaller than its from biological 
variations.

The framework of SSBER is shown in Fig. 1, that includes four parts: (1) data preproc-
essing, Single-cell gene expression data from different batches are considered as input 
data and preprocessed according to the standardized process in Seurat software package 
(Fig. 1a). (2) Identification of shared cell types, SSBER utilizes SciBet (a single cell anno-
tation tool) to annotate cell types (Fig. 1b), then identifies shared cell types. (3) Anchor 
detection, anchor pairs are detected in shared cell types (Fig. 1c). (4) Data integration, 
correction vectors for each cell are computed from anchor pairs (Fig. 1d, e).

Data preprocessing

SSBER normalizes each cell using natural logarithmic transformation method with a fac-
tor of 10,000. Next, it uses z-score transformation to standardize the expression value of 
each gene. In order to avoid curse of dimension, top genes in variance are selected.

Identification of shared cell types

After making a comparison of SciBet [29] with ScMap [30], Garnett [31], CellAsign 
[32] and so on, SSBER uses SciBet [29] to annotate cell type in each batch, consequently 
some shared cell types could be identified within labelled cells with high confidence. Sci-
Bet is a supervised model that predicts cell type for query data [29]. In order to ensure 
the annotation accuracy, the probability threshold of a cell type given by SciBet is set to 
0.8, otherwise, cell type is assigned as unknown.

Anchor identification

First, the raw data is mapped to a shared low-dimensional space through CCA (canoni-
cal correlation analysis). The typical correlation vector calculated by CCA can capture 
the shared signals between batches. Then KNN algorithm is employed to detect mutual 
nearest neighbors within a shared cell type in both original data space and low dimen-
sional space. Those mutual nearest pairs in both spaces are identified as anchors [9].

Data integration

SSBER calculates correction vector for each cell in combination with Gaussian kernel 
weights. More importantly, correction vector for a cell with a shared cell type is com-
puted only from anchors within the same cell type, it could ensure distinguishing local 
batch effect on each cell type. If cell type is unknown, near anchors without cell type 
constraint are used to compute correction vector for a cell.



Page 19 of 20Zhang and Wang ﻿BMC Bioinformatics          (2021) 22:249 	

Since SSBER detects anchors only in shared cell types, it not only improve the accu-
racy of anchors which actually in biological motivation should come from a same cell 
type, but also in the case of multi-batch data integration, the final integration result will 
not be affected by the order of batch integration.
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