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Background
The field of epigenetics has developed significantly in recent years, leading to a more 
nuanced understanding of how chromatin interactions and gene accessibility affect 
protein networks [1, 2]. With the advancement of mass spectrometers and laboratory 
techniques, we can obtain deeper sequencing coverage of proteins and histone post-
translational modifications, leading to thousands of peptides for analysis In order to 
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make biological knowledge from all of the data, we must develop methods of quickly 
processing and analyzing epigenomic data in an efficient and accurate way.

Histone post translational modifications (PTMs) are a prominent epigenetic factor 
that affects nearly all genetic pathways within the nucleus. The histones within cells are 
responsible for binding DNA into tight coils known as chromatin. The core histone pro-
teins (H2A, H2B, H3, and H4) are responsible for forming an octamer complex, known 
as a nucleosome, with the ability to bind ~ 147 bp of DNA around it at a time [3]. The 
extent to which a nucleosome can bind the DNA to itself is dependent on the charge of 
the post translational modifications, which occur on the N-terminal tail of each histone 
within the complex. Several different combinations of modifications can be integrated 
into the histone and change its binding properties. Some examples of modifications 
include phosphorylation, ubiquitination, methylation, and acetylation. When modifica-
tions such as methylation are added to the histone N-terminal tails, it changes the charge 
of the histone to become more positive, leading to tighter DNA binding to the histone, 
which blocks access of transcription factors and down-regulates gene expression. Acety-
lation often has the opposite effect of adding a negative charge and thereby loosening 
the DNA around the nucleosome leading to increased gene expression [4, 5]. A pop-
ular method of analyzing histone PTMs is through a variety of high throughput mass 
spectrometry techniques, such as bottom-up, middle-down, and top-down approaches. 
A common bottom-up technique involves purifying histones using acid extraction. His-
tones contain many lysine and arginine residues in the protein sequence, which are the 
cut sites for a commonly used trypsin digestion. Instead of a typical trypsin digestion, 
the histones are first treated with deuterated (d6-) acetic anhydride, which converts all 
unmodified lysines into d6-acetyl-lysines. This modified lysine residue prevents trypsin 
from cleaving at lysines and generates longer tryptic peptides that are within the detec-
tion limits of the mass spectrometer [6]. A middle-down approach involves using the 
digestion enzyme GluC as opposed to trypsin [7, 8]. GluC cleaves at the C-terminal of 
the glutamic acid residue, which for histone H3 isotypes the first glutamic acid residue is 
in position 50. This generates a polypeptide of 40–50 aa residues (5–6 kDa) that contain 
the majority of histone PTMs and is beneficial for analyzing combinatorial histone mod-
ifications. The top-down mass spectrometry approach analyzes intact proteins. These 
techniques result in complex data that often requires specialized informatics approach 
to analyze [8, 9].

Implementation

PTMViz overview and data requirements

The PTMViz Visualization tool was constructed within the R (version 3.5.1) program-
ming environment [10]. To create the specific graphical user interface, the packages 
Shiny (1.4.0.2), Shiny Dashboard (0.7.1) and shinyWidgets (0.5.1) were utilized [11]. 
Interactive volcano plots were generated using plotly (4.9.2) [12]. The ggplot (3.3.0) 
library was used for parallel construction of graphics, and theRColorBrewer (1.1) 
library was used for color themes [13, 14]. The limma (3.38.3) package was used for 
the differential abundance analysis. To address the need for differential abundance 
analysis and visualization of histone PTMs between sample conditions, we developed 
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PTMViz. Data frame manipulation was performed using the dplyr (0.8.5) library, 
reshape (0.8.8), crosstalk (1.1.0.1), and tidyverse (1.3.0) [15–18].

PTMViz not only analyzes histone PTMs but also allows for the analysis of total 
protein levels in order to investigate changes at both the protein and histone PTM 
level (regulation of gene expression) between sample conditions. This feature is 
enhanced through the incorporation of the WERAM database of reader, writer and 
eraser proteins for different organisms. When a dataset is loaded into PTMViz it will 
be compared against the database and any common proteins will be pulled into a 
tab for further investigation [19]. PTMViz is built to incorporate histone post-trans-
lational modification peptide abundances, as well as protein abundances obtained 
through mass spectrometry in the form a comma delimited.csv file within an R Shiny 
Dashboard environment (Fig.  1). Figure  1 shows the workflow for both the protein 
analysis (Fig.  1a) and the histone PTM analysis (Fig.  1b). The protein and histone 
PTM workflows are run independently in PTMViz. Therefore it is not required to 
have both types of data to utilize the tool. PTMViz allows the user to define the sam-
ple and group names, performs differential abundance analysis using limma, and dis-
plays the results as interactive volcano, stack bar charts, heatmaps, and data tables. 
This graphical user interface provides a unique and powerful way for a user to have 
the ability to scrutinize data through searches, sample group comparisons, and inter-
active visualizations. PTMViz data and R scripts are available in Additional file 1.

Fig. 1  Flowchart that outlines the workflow of PTMViz. The tool has two separate sections that work 
independently from one another. a Protein data analysis includes the user loading in protein intensity data 
matrix and defining the sample metadata used for the analysis. The data distribution is visualized by various 
plots including histogram, boxplot, PCA, and MDS presented in the Protein Preliminary Shiny dashboard tab. 
Limma is used for the differential analysis and results are displayed as interactive data tables and plots in the 
Protein Data Shiny dashboard tab. b PTM data analysis begins with user loaded peptide intensity data and 
the defining of sample metadata. The data is then organized into interactive data tables and plots, which are 
displayed in the Post Translational Modification tab of the Shiny dashboard. The significance thresholds for 
the plots can be modified and the tables can be filtered to search for data of interest interactively
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Comparison to other software

Two of the more prominent software packages available to analyze complex histone 
PTM relative abundances are Epiprofile2.0 and Skyline [1, 20]. These tools were 
developed to perform peak area integration. EpiProfile2 is optimized for histone pep-
tides due to the fact it uses the retention time knowledge of chromatographic elution 
to perform a more reliable peak area extraction of known histone peptides. Alterna-
tively, Skyline can also be used to extract peak area information [7]. The output data 
generated by Epiprofile and Skyline can be used as the input data for PTMViz, which 
will then perform differential abundance analysis of the histone PTMs as well as any 
protein data that is available. This allows PTMViz to function as a downstream tool 
that is capable of integrating the results from other analysis software such as Epipro-
file2.0 and Skyline. Often the biological question is not only how abundant is the his-
tone PTM within a sample but is this modification significantly changed due to an 
experimental condition?

A current workflow and guidelines for analyzing histone post-translational modi-
fications is described in Thomas et al. The workflow includes normalizing modifica-
tions using the total intensity method, where each modification is divided by the sum 
of all modifications in the sample, not just those in the peptide family. This allows for 
the detection of protein abundance differences between samples while being robust to 
peptides with any number of modifications. Once the data is normalized, the guide-
lines state the current standard for statistical analysis of PTM data is to calculate the 
fold change for each modification and perform a classical Student’s t-test. Thomas 
et al. added a workflow to include the analysis of variance (ANOVA) method, which 
selects modifications that are significant in at least one condition, and then calculates 
Tukey’s HSD to generate p values when several conditions are being evaluated.

In contrast to previous analyses, PTMViz performs a moderated t-test statisti-
cal analysis by incorporating the variance in the dataset using limma. We provide an 
additional script outside of the PTMViz tool that allows for the transformation of rel-
ative abundance values to logit transformed M-values for statistical analysis. PTMViz 
provides flexibility in the upstream normalization process by allowing various nor-
malized values to be imported into the tool. As long as the data is in a form accept-
able for limma, the modifications can be normalized using the total intensity method 
(as described in Thomas et al.) or the percent of total peptide family method [15, 21, 
22].

Results
To illustrate the use of PTMViz, we demonstrate the tool features on a drug abuse 
study in which mice were given acute injections of either a saline control or meth-
amphetamine. The details of the animal treatments and protein and histone sample 
preparation are described in Graw et al. 2020 and in Additional file 2 [23]. The reward 
circuitry nucleus accumbens and dorsal striatum brain regions were harvested to test 
for protein and histone PTM changes due to methamphetamine drug exposure. Pro-
teins from the whole cell lysate as well as acid extracted histones were sequenced by 
high resolution mass spectrometry and analyzed by PTMViz. We identified 15 out of 
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3,163 proteins and 3 out of 580 histone PTMs with significantly differentiated changes 
due to drug exposure in the nucleus accumbens. These proteins and PTMs have also 
been identified by other studies and validate the functionality of PTMViz [24–27].

Within the tool the user has the option to analyze either the protein and/or PTM 
data using the tabs on the left hand side of the graphical user interface. The protein 
input and results are visualized using the “protein” tab and the histone PTMs input 
and results are located on the “PTMs” tab. Both tabs work independently and do not 
require input from one another to operate. Both analysis tabs provide interactive 
plots and tables to explore the analytical results.

Protein data analysis

The protein analysis work flow is graphically displayed in Fig. 1a. There are three sub 
tabs included for the “protein” analysis tab on the Shiny Dashboard including 1. Pro-
tein upload, 2. Preliminary, and 3. Protein Data. To begin the protein analysis, the 
user is required to upload the “protein data” and input the “metadata” information in 
the protein upload tab. The protein data consists of a comma delimited file contain-
ing a matrix of MS1 protein abundances for each sample. The user is then required 
to define the sample metadata, which will define the sample names and groups to 
be compared in the differential abundance analysis (Fig. 1a). The required metadata 
includes a label for each sample group (ex: tissue region, cell type, etc.), the biological 
or technical replicate number of the sample, the experimental group to be analyzed 
for differential abundance analysis (ex: treatment vs control), and an optional custom 
identification name (unique and will be displayed on the plots). An example metadata 
table for the example data set is provided in Table  1. By providing these metadata 
labels, the user will have control over how the figures display information and what 
sample group comparisons are being performed. Once the metadata has been com-
pleted, the analysis will automatically run and display the results in the analysis tab of 
the GUI.

Next, the protein data characteristics can be visualized using the “Preliminary” tab, 
which includes a histogram of the entire protein abundance distribution, boxplots 
displaying the log2 abundances for each sample, and principal component analysis 
(PCA) plot of the first two PC components. Next, PTMViz generates a “Protein Data” 
tab which displays the results from a differential abundance analysis by the limma R 

Table 1  Sample metadata table that accompanies the input of the protein data

This table allows the user to define the sample groups, each samples replicate number, the experimental group for the 
differential analysis, and a unique custom id that is displayed in the figures

File name Sample group Replicate Experimental group Custom ID

Reporter.intensity.corrected.0 Nucleus Accumbens 1 Treatment NA_1_T

Reporter.intensity.corrected.1 Nucleus Accumbens 2 Treatment NA_2_T

Reporter.intensity.corrected.2 Nucleus Accumbens 3 Treatment NA_3_T

Reporter.intensity.corrected.3 Nucleus Accumbens 1 Control NA_1

Reporter.intensity.corrected.4 Nucleus Accumbens 2 Treatment NA_2

Reporter.intensity.corrected.5 Nucleus Accumbens 3 Treatment NA_3
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package. The obtained fold change, p value, and false discovery rate (FDR) adjusted p 
value information is then utilized to create interactive figures such as a volcano plot 
and heatmap. The interactive plots allow for easy exploration of significant proteins 
and protein patterns.

The interactive volcano plot is generated by the R package plotly. Figure 2a represents 
an interactive volcano plot displaying the log2 fold change values comparing metham-
phetamine treatment versus saline controls in the nucleus accumbens on the x-axis and 
the FDR adjusted p values on the y-axis (Fig. 2a). Within the volcano plot the user can 
hover the cursor over the individual data points to identify specific proteins, log2 fold 
change, and p values. This helps to identify which proteins are up- or down-regulated 
and pass statistical significance. Additionally, the volcano plot highlights proteins iden-
tified in the Writers, Erasers and Readers of Acetylation and Methylation (WERAM) 

Fig. 2  Displays the primary figures obtained from the protein section of PTMViz. a The top figure displays 
a volcano plot with the log2 fold change on the x-axis and either the p value or the FDR adjusted p value 
on the y-axis depending on the options selected. The points on the plot are interactive such that hovering 
the cursor over each individual point shows the protein Uniprot id, gene id, description, log2 fold change, 
and p value. Proteins that are identified as significant based on user defined thresholds (dashed lines) are 
highlighted in red. Modifying proteins that match to the WERAM database are highlighted in blue. Multiple 
points on the graph can be selected and viewed in the primary table to allow for the export of points of 
interest. b A heatmap of the z-score scaled log2 normalized protein intensities for the proteins identified as 
significant in the Volcano plot
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database [19]. The threshold labels on the side of the volcano plot can be selected to 
show only the WERAM proteins on the volcano plot in order to visualize clearly if these 
modifying proteins are significant in the protein analysis (Additional file 2: Fig. S1). One 
such modifying protein, Prmt5, was identified as slightly down-regulated in mice treated 
with methamphetamine. It has been shown the global level of Histone H3K27me3 
increases with decreasing Prmt5 [28]. We identified 15 significant proteins between 
drug treated and saline controls, including Oxytocin (Oxt) and sodium- and chloride-
dependent GABA transporter 3 (Slc6a11). Thresholds for significance can be modified 
using the “settings” tab on the volcano plot, which are visualized through dashed lines 
on the graph. These thresholds represent the p value and log2 fold change and are used 
to identify statistically significant proteins.

Another popular method of showcasing the protein expression differences between 
sample groups is through a clustered heatmap. PTMViz utilizes an interactive heatmap 
produced by the R package plotly. The interactive plot allows the user to hover over indi-
vidual tiles of the heatmap to view the gene id and the z-score intensity value of the 
particular sample that is being viewed. Figure 2b displays the z-score scaled log2 nor-
malized protein abundances of those proteins that are differentially expressed based on 
the same thresholds set for the volcano plot.

Additionally, data tables are provided, which include the limma results for all pro-
teins, the proteins that are significant with an FDR p value < 0.05 and fold change > 2, 
the normalized protein abundances for all proteins and samples, and the normalized 
abundances for each of the significant proteins. A common feature that is ubiquitous 
throughout the tool are interactive data tables. The purpose of the data tables in our tool 
is to provide the user with organized data that is easy to search. Some of the data tables 
have filters and/or are linked to graphs that allow the user to exclude undesired data 
points and identify results of interest. All the tables come with the option to download 
the full table as either a csv, copy the data to clipboard, or create a pdf of the table. This 
allows for additional figures to be created in other software.

Post translational modification analysis

Under the PTM tab on the left hand side of the Shiny Dashboard, the tool is designed 
to clearly demonstrate the types of modifications within each sample and identify sig-
nificantly differentiating modifications between two groups. The workflow for the PTM 
analysis is displayed in Fig.  1b. Similar to the protein analysis, the user is required to 
upload a comma delimited file in the “PTM upload” tab which contains the post-trans-
lational modifications as rows and sample name, intensities, relative abundance values 
calculated as beta-values and m-values as columns. Beta-values are commonly used in 
DNA methylation data analyses. In the context of histone PTMs, a beta-value can be 
interpreted as the intensity percentage of a specific modification out of total measured 
intensities of a given PTM site. Analogously to DNA methylation, an offset of 100 is 
added to the denominator to regularize beta values for low intensities. As the beta-value 
is bounded by 0 and 1, it violates Gaussian distribution assumption of many statistical 
methods [29].
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The m-value is a logit-transformation of the beta value. The m-value can be appro-
priately analyzed by such statistical methods [29], such as limma. Please note the vari-
ance correction in limma becomes imprecise for low number of features. An R script, 
“Histone PTM relative abundance.R”, is included with the PTMViz application in Github 
to calculate PTM beta and m-values from a matrix of peptide intensities as additional 
support. Similar to the protein data tab, the user will need to provide the sample meta-
data to define the samples and the group comparisons. The analysis results will then be 
displayed in the Post Translational Modifications tab of the Shiny Dashboard.

The first feature of the PTM tab is an interactive data table, displaying all of the modi-
fications included in the analysis, where the user can filter the data to observe specific 
samples, histone proteins, histone amino acid positions, or modification type. The his-
tone PTM analysis is summarized within a stacked bar plot, showcasing the different 
modification types by displaying the beta values, percentage of a given modification out 
of the total signal in that peptide, at each amino acid position within a histone. In the 
sample data provided, we identified significantly differentiating histone PTMs including 
histone H3K9me, H3K27me3, and H4K16ac, that were regulated due to drug exposure 
(Fig. 3, Additional file 2: Fig. S2) and are visualized in the stacked bar chart and heatmap. 
These modifications have been identified in previous experiments [25–27]. Visualiza-
tion options include but are not limited to: toggling between the sample groups, viewing 
either the average or individual sample replicates, and selecting specific amino acid loca-
tions on a histone protein (Fig. 3a).

Fig. 3  PTM analysis interactive figures. a Stacked bar chart demonstrating the global PTMs identified 
for Histone H3.3. The mean of all sample replicates beta values for each group and PTM are displayed. b 
Heatmap of significant PTMs identified from the limma differential abundance analysis. The M-value of each 
histone PTM is displayed for each sample
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Next, the tool features a differential analysis table, including the limma results, where 
the user can visualize the significant modifications. Within this section the user can 
select the two groups of data they wish to compare and visualize as a differential analysis 
and in an interactive heat map (Fig. 3b) similar to the heatmap created in the protein 
section of the tool. All these features give the user the control to view their data in many 
ways to achieve a maximum understanding of the results.

Conclusion
As mass spectrometry has advanced and allows for the detection of thousands of pro-
teins and histone post-translational modifications, there is a growing need for differen-
tial analysis of PTMs in biological conditions. Tools such as Epiprofile 2.0 and Skyline 
are valuable methods to extract peak areas from mass spectrometry data. The data can 
then be analyzed further using PTMViz to perform differential analysis between sample 
conditions and interactive plots can be used to explore the results.

We applied the PTMViz to explore the effects histone post-translational modifications 
of drug exposure to the nucleus accumbens in the mouse brain and identify potential 
modifying proteins that write, erase, or read the significant modifications. We were 
able to identify known protein and histone PTMs that change due to drug exposure to 
provide positive controls for the analysis. Through the use of PTMViz, we were able to 
identify 15 significant proteins and 3 significant PTMs that are a result of acute meth-
amphetamine drug exposure in the nucleus accumbens in mice. Some of the more bio-
logically significant results include proteins that belong to the SLC6 neurotransmitter 
transporters and oxytocin proteins. In previous studies it has been shown that metham-
phetamine and other psychostimulants can cause lasting changes to these pathways. For 
example, Cadet, Jean Lud et al. showed a similar fold change increase to Oxt mRNA in 
the nucleus accumbens of male rats when dosed with methamphetamine. Additionally, 
the SLC6 proteins are shown to be common targets of psychostimulants and are linked 
to drug abuse [24]. Within the PTM analysis, we also found H4K16ac and H3K9me reg-
ulations in the methamphetamine exposed group, agreeing with another study showing 
that (1) H4K16 experiences a global decrease in acetylation and (2) that H3K9 is meth-
ylated as a result of methamphetamine exposure within mouse brain [30]. For greater 
integration of the two datasets we identified a writer protein known as prmt5 which is 
slightly downregulated in treatment group. Previous studies show this downregulation 
can lead to an increase in H3K27me3, which we identified as significant in the modifica-
tion analysis [28]. This demonstrates that other potential reader, writer and eraser pro-
teins can be potentially identified and investigated using the PTMViz tool through the 
use of both histone and protein datasets.

In conclusion, the PTMViz tool was designed using R Shiny to assist users in down-
stream analysis of proteomic histone post-translational modifications between sample 
conditions. Through the use of this tool users can obtain publication quality figures, 
explore interactive plots, and data tables.
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