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Abstract 

Background:  Colocalization is a statistical method used in genetics to determine 
whether the same variant is causal for multiple phenotypes, for example, complex traits 
and gene expression. It provides stronger mechanistic evidence than shared signifi-
cance, which can be produced through separate causal variants in linkage disequi-
librium. Current colocalization methods require full summary statistics for both traits, 
limiting their use with the majority of reported GWAS associations (e.g. GWAS Catalog). 
We propose a new approximation to the popular coloc method that can be applied 
when limited summary statistics are available.

Our method (POint EstiMation of Colocalization, POEMColoc) imputes missing sum-
mary statistics for one or both traits using LD structure in a reference panel, and per-
forms colocalization using the imputed summary statistics.

Results:  We evaluate the performance of POEMColoc using real (UK Biobank pheno-
types and GTEx eQTL) and simulated datasets. We show good correlation between 
posterior probabilities of colocalization computed from imputed and observed data-
sets and similar accuracy in simulation. We evaluate scenarios that might reduce per-
formance and show that multiple independent causal variants in a region and impu-
tation from a limited subset of typed variants have a larger effect while mismatched 
ancestry in the reference panel has a modest effect. Further, we find that POEMColoc is 
a better approximation of coloc when the imputed association statistics are from a well 
powered study (e.g., relatively larger sample size or effect size). Applying POEMColoc to 
estimate colocalization of GWAS Catalog entries and GTEx eQTL, we find evidence for 
colocalization of 150,000 trait-gene-tissue triplets.

Conclusions:  We find that colocalization analysis performed with full summary statis-
tics can be closely approximated when only the summary statistics of the top SNP are 
available for one or both traits. When applied to the full GWAS Catalog and GTEx eQTL, 
we find that colocalized trait-gene pairs are enriched in tissues relevant to disease etiol-
ogy and for matches to approved drug mechanisms. POEMColoc R package is available 
at https://​github.​com/​AbbVie-​Compu​tatio​nalGe​nomics/​POEMC​oloc.

Keyword:  Colocalization, Genome-wide association study, GWAS, Expression 
quantitative trait locus, eQTL, GTEx, GWAS catalog

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

King et al. BMC Bioinformatics          (2021) 22:254  
https://doi.org/10.1186/s12859-021-04170-z

*Correspondence:   
Jacob.Degner@abbvie.com 
†Emily A. King and Fengjiao 
Dunbar have contributed 
equally
AbbVie Genomics Research 
Center, North Chicago, IL, 
USA

http://orcid.org/0000-0003-4898-8575
https://github.com/AbbVie-ComputationalGenomics/POEMColoc
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04170-z&domain=pdf


Page 2 of 20King et al. BMC Bioinformatics          (2021) 22:254 

Background
Genome-wide association studies have identified thousands of disease and trait 
associated loci but as most GWAS associated loci are non-coding, their functional 
interpretation remains difficult. eQTL studies are a popular way to follow up on 
GWAS studies. By providing a link between an associated variant and a gene, they 
facilitate functional interpretation of GWAS results, especially when associated vari-
ants are found in noncoding regions of the genome. A simple approach is to query 
eQTL datasets for GWAS lead variants to determine if they are significant eQTL 
for any gene. However, this approach can lead to false positive GWAS-eQTL links 
as linkage disequilibrium can lead to shared significance at a SNP without the two 
traits sharing a causal variant. Colocalization analysis reduces false positive results 
by directly testing competing hypotheses of causal sharing.

Regulatory Trait Concordance (RTC) [1] is an early method for estimating causal 
sharing that may be applied to situations in which only a GWAS top SNP is known. 
However, it requires individual-level data for the second dataset (e.g. eQTL) and 
does not actually provide a probability of causal sharing, merely a score that can be 
used to prioritize the most likely causal links. Coloc [2] and its multi-trait extension 
moloc [3] are popular colocalization methods with an efficient and easy to use R 
implementation. They require full summary statistics for both traits and compute 
the probability of each causal hypothesis using approximate Bayes factors. eCAVIAR 
[4] is another colocalization method that can also be applied to summary statistics 
(supplemented with LD information) that has the additional advantage of being able 
account for more than one causal variant in a region. Enloc [5] is a third approach to 
colocalization using a Bayesian hierarchical model to compute a regional colocaliza-
tion probability within an LD block containing a GWAS signal.

One limitation for using most of these colocalization methods is that full summary 
statistics for GWAS studies are frequently not available. For example, the largest 
repository of human trait associated variants, the GWAS Catalog, only reports sta-
tistics for the top-associated variants in a given study. For this reason, until recently, 
only simple approaches such as checking the eQTL significance of the reported 
GWAS variant were possible. Like the POEMColoc method, PICCOLO [6] was 
recently developed to compute colocalization of signals when only the top SNP is 
available. PICCOLO first uses PICS [7] to calculate the probability of each SNP being 
causal, and then calculates the posterior probability of colocalization. However, the 
reliance on PICS introduces the disadvantage that colocalization analysis will only 
use SNPs returned by PICS, which is based on 1000 Genomes Phase 1 variants with 
r2 ≥ 0.5 to the top SNP, and the causal probability of these SNPs will be constrained 
to sum to 1. Therefore, PICCOLO cannot account for the scenario in which one or 
more of the datasets contains no causal signal. In contrast, POEMColoc does not 
discard information when full summary statistics are available for one but not both 
of the traits and does not assume that both traits have a causal variant in the region.
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Results
Method overview

Here, we propose a method POEMColoc (POint EstiMation of Colocalization) where 
the explicit goal is to approximate the coloc method [2] under the commonly encoun-
tered constraint wherein full summary statistics are unavailable for one or both traits. 
Consider the situation in which Z-scores Z1,1, . . . ,Z1,p are available for one trait at p 
SNPs (e.g., Heart Atrial Appendage expression of SCN5A) while summary statistics 
for only the top SNP Z2,obs in a region is reported for the second trait (e.g. a SNP asso-
ciated with QT interval from the GWAS Catalog). Like the original coloc method, we 
compute posterior probabilities of five mutually exclusive and exhaustive hypotheses:

•	 H0 : Neither trait has a causal SNP in the region
•	 H1 : Only trait 1 has a causal SNP in the region
•	 H2 : Only trait 2 has a causal SNP in the region
•	 H3 : Both traits have a causal SNP in the region, but the two causal SNPs are different
•	 H4 : Both traits have a causal SNP in the region, and the two causal SNPs are the same

of which, we are primarily interested in the posterior probability of H4.
Our method first imputes missing summary statistics using both the summary statis-

tics for the reported variant and the LD structure of the region in a reference population 
(Fig. 1). For a single causal SNP indexed by c , Z scores at the full set of SNPs for trait 2 
(Z2) can be approximated by a multivariate normal distribution with parameters

where the covariance matrix is approximated by:

where rij is the Pearson correlation of genotype dosages between SNPs i and j.
E(Zi) is approximated by:

where ric is the Pearson correlation between SNP i and the causal SNP c [8] and � is the 
standardized effect size at the causal SNP. A reasonable point estimate of the unknown 
parameters is � = Z2,obs and c = obs . That is, we use the Z-score and index of the 
reported top SNP as a point estimate for parameters of the causal SNP (in fact, this esti-
mate is a maximizer of the full data likelihood under the approximate normal distribu-
tion, Supplement Text S1). Using this point estimate of � and c , we can compute the 
expected value of the missing summary statistics conditional on the observed summary 
statistic at the top SNP. This conditional expectation formula has been used in previous 
work on the imputation of summary statistics at untyped SNPs [9, 10].

Similar to coloc, POEMColoc accepts either p-values or coefficient estimates β and 
var(β) as input. In practice, we expect p-values to be the most common form of input 

Z2 ∼ Np(µ,�)

�ij = rij

µi = �ric

Z̃2,mis = µmis|obs = Z2,obsrmis,obs
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to POEMColoc as these are more commonly reported. We transform two-sided p
-values to Z-scores using inverse cdf function Z = F−1(p/2) . We then apply F  to the 
imputed values Z̃2 =

(

Z̃2,1, . . . , Z̃2,obs−1,Z2,obs, Z̃2,obs+1, . . . , Z̃2,p

)

 to obtain two-sided p

-values 2F(−|Z|) and use these imputed p-values as input to coloc.abf from the coloc 
R package, along with p-values or β values for dataset 1. In many cases, such as the 
UK Biobank association statistics we analyze in this paper, p-values are known to 
have been generated from a t-distribution with approximately N  degrees of freedom, 
but in the absence of other information we may also take F  to be the standard normal 
cdf (as does coloc with p-value input). Like the p-value implementation of coloc, 
POEMColoc additionally requires sample size and, for case–control studies, case 
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Fig. 1  Illustration of the POEMColoc method compared to coloc. Under H1 or H2 , only one of the two 
traits has any causal SNP in the region. Under H3 , the two traits have two different causal SNPs. Under H4 
(colocalization) the two traits share a causal SNP. The first row of the plot illustrates the coloc method using p
-values. Input data is p-value at each SNP in the region for each trait, and the output is a posterior probability 
of each hypothesis. The posterior probability of colocalization ( H4 ) is shown on the plot. The second row 
illustrates input to the POEMColoc method. Full summary statistics are available for one trait only, and for the 
second trait only the position and p-value of the top SNP is known. We also require LD from the top SNP to 
at least some of the trait 1 SNPs to be known from a reference panel (shown below in red). We use the LD 
to impute missing p-values for input to coloc. Imputed p-values are shown in the bottom row. POEMColoc 
consists of applying coloc to the imputed datasets and outputting posterior probabilities of colocalization 
(shown in the bottom row)
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fraction. Minor allele frequency and r are either user-supplied or computed from a 
reference panel using SeqArray [11].

When neither of the datasets have full summary statistics, the imputation is per-
formed for both datasets on all SNPs in a reference panel within a user-specified window 
of either top SNP, optionally subject to a minor allele frequency cutoff. When necessary, 
we will distinguish these two versions of coloc using POEMColoc-1(POEMColoc with 
one imputed dataset) and POEMColoc-2 (POEMColoc with two imputed datasets).

POEMColoc performance using UK Biobank phenotypic associations and GTEx expression 

QTL

To assess the accuracy of our method at recovering the colocalization posterior prob-
abilities using full summary statistics and the original coloc method, we used the com-
bination of binary and quantitative trait associations from the UK Biobank (UKBB) 
and whole blood gene expression associations from the GTEx project [12]. In total, 
we obtained 646,884 combinations of UKBB phenotype associated window and GTEx 
eQTL summary statistics. We ran colocalization analysis on each of these using the 
original coloc method with full summary statistics. We find that approximately 0.4% of 
tested pairs are colocalized ( P(H4) > 0.9).

Next, we imagined the scenario in which instead of having full summary statistics for 
the UKBB phenotypes, these phenotypes had been reported in biomedical literature and 
only the most significantly associated variant for each locus was available. We used our 
method as implemented in the associated R package POEMColoc. Posterior probabili-
ties of each hypothesis were highly correlated between POEMColoc and coloc (Fig. 2a, 
R2 = 0.81 for P(H4) ). Use of p-values in place of regression coefficients as the input to 
coloc improves correlation for some hypotheses but has minimal effect on the poste-
rior probability of colocalization H4 (Additional file  1: Figure S1). Furthermore, treat-
ing colocalization as a binary classification problem where full coloc P(H4) > 0.9 was 
considered a true positive and all other outcomes were considered true negatives, we 
achieve a high degree of sensitivity and specificity using POEMColoc (AUCPR = 0.91 for 
POEMColoc-1 and 0.84 for POEMColoc-2). We performed colocalization analysis for a 
subset of phenotypes using PICCOLO, and found POEMColoc’s colocalization posterior 
probabilities more closely matched those of coloc, even when using only data from the 
top SNP from both traits, in datasets to which both methods could be applied (Fig. 2b, 
Additional file 1: Table S1, Figure S2). The large drop in POEMColoc precision at high 
values of recall seen in Fig. 2b is due to a minority of datasets with very high colocaliza-
tion probability using coloc, but colocalization probability near zero using POEMColoc, 
and is discussed further in the section concerning multiple independent colocalizations 
in a region.

Methods comparison for simulated associations

While our stated goal was to approximate coloc using full summary statistics, per-
formance assessments using coloc as the gold standard cannot compare perfor-
mance between coloc and POEMColoc at correctly assigning associations to the true 
hypothesis. To address these limitations we compared the performance of POEM-
Coloc and coloc on simulated data and compared both to PICCOLO and to what 
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performance would be if we used the simple approach of quantifying causal evidence 
using the eQTL p-value of the top GWAS SNP. Hypothesis posterior probabilities 
calculated with POEMColoc are highly correlated with posterior probability calcu-
lated with coloc method (Fig. 2c, R2 = 0.98 for the posterior probability of colocaliza-
tion). A major advantage of POEMColoc over PICCOLO is that because PICCOLO 
requires the top SNP in both datasets to be found in an old release of 1000 Genomes, 
POEMColoc can be run on a much larger fraction of simulated datasets (97% ver-
sus 39%). Considering simulated datasets to which both POEMColoc and PICCOLO 
could be applied, the precision recall plot in Fig.  2d shows that the performance of 
POEMColoc is close to the coloc method, better than the simple method (eQTL 
p-value) of using the eQTL p-value of the GWAS top SNP, and has higher AUCPR 
than PICCOLO, even when using only the top SNP from each dataset (Additional 
file 1: Table S1).
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Fig. 2  a Comparison of hypothesis posterior probability using POEMColoc-1 method to coloc using GTEx 
whole blood eQTL regression coefficients and UK Biobank summary statistics as input. b Precision-recall 
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Biobank. c Comparison of hypothesis posterior probability between POEMColoc-1 and coloc in simulated 
datasets. d Precision-recall curves for predicting colocalization ( H4 ) in simulated datasets, compared to coloc 
and a simple method using the eQTL p-value of the GTEx top SNP
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POEMColoc caveats
Effect of reference panel ancestry

We next compared performance of POEMColoc when the ancestry of the reference 
panel was mismatched to the GWAS study ancestry. We can see that when GWAS data 
are simulated using British ancestry genotypes, performance of POEMColoc is better 
using individuals from the 1000 Genomes European superpopulation as a reference 
panel than when using all 1000 Genomes individuals or a mismatched superpopulation. 
Differences between ancestry panels are minor given that the GWAS top SNP exists in 
ancestry panel and when only one of the two datasets requires imputation (Fig. 3a). The 
largest difference comes from the proportion of top SNPs that can be found in the panel 
(and therefore the proportion of datasets to which POEMColoc can be applied). While 
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only 3% of GWAS top SNPs from the simulation were missing from the 1000 Genomes 
European samples, 12% were missing from the 1000 Genomes African samples. When 
both datasets require imputation, effects are more substantial (Fig.  3b). Additionally, 
when the smaller eQTL dataset is imputed, performance is more sensitive to ancestry 
mismatch than when the larger GWAS dataset is imputed (Additional file 1: Figure S9). 
In simulation, mismatched ancestry generally reduces recall more than precision using 
a typical cutoff value of 0.9 (Additional file  1: Table  S2) and lowers estimates of colo-
calization probability (Additional file 1: Figure S10). Overall, we find that a well-matched 
ancestry panel improves performance, but that the method will be usable, but conserva-
tive in the presence of mismatched ancestry.

Multiple independent associations in region

While we find that across all tested regions, the correlation between colocalization prob-
abilities is very high, there were notable exceptions. In particular, there is a population 
of tests which has high ( > 0.9 ) probability of colocalization using full summary statistics, 
but that has a low ( < 0.1 ) probability of colocalization using POEMColoc (a false nega-
tive population). This accounts for 9% of datasets with colocalization posterior prob-
ability greater than 0.9 using coloc with full summary statistics. For all false negative 
datasets, the highest posterior probability hypothesis according to POEMColoc is H3 
(two separate causal signals). Within the population of false negatives, we noticed many 
in which there appear to be two peaks. Figure 3c shows an illustrative example. The lower 
GWAS peak appears to have a colocalized eQTL peak, but the GWAS peak containing 
the top SNP does not appear colocalized. Indeed, false negative datasets are enriched for 
datasets with similar UKBB p-value between the GTEx top SNP and UKBB top SNP, but 
low LD between them, a scenario consistent with multiple independent UKBB causal 
SNPs (Additional file  1: Figure S15A). In this scenario, when we impute new associa-
tion statistics from only the top UKBB SNP in the region, we only recover association 
statistics that were in LD with this top peak and which do not have a corresponding 
eQTL peak. The authors of coloc indicate that colocalization probability is generally 
based on the strongest association signal, but will be affected by multiple causal variants 
explaining a similar proportion of variance in the trait, and recommended performing 
colocalization conditional p-values [2]. We find performing a conditional analysis on the 
full summary statistics using GCTA-COJO [13] reduces colocalization discrepancies in 
many datasets (Additional file  1: Figure S15B). False negative datasets are more likely 
than true positive datasets to have multiple associations detected using COJO (Addi-
tional file 1: Table S3). More strikingly, in true positive datasets, for which POEMColoc 
and coloc agree on a high colocalization probability, switching to using conditional sum-
mary statistics rarely appreciably changes the probability of colocalization using coloc. 
However, for 43% of false negative datasets the colocalization probability changes by 
more than 0.5.

Effect of GWAS study properties

GWAS studies reported in the biomedical literature use a variety of genotyping, 
sequencing, and imputation methods to obtain genome-wide genotypes on the study 
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cohort. We reasoned that the performance of POEMColoc might depend on the accu-
racy and density of these genotypes as in turn, these details might affect the significance 
level and the probability that the top SNP was a good proxy for the causal SNP. The 
UKBB data presented above was derived from direct genotyping of approximately 850 K 
variants followed by imputation of approximately 90 M variants. A common alternative 
is for only directly genotyped variants to be tested. To simulate this scenario, we took 
our original analysis of full UKBB summary statistics and subset them as if one of 3 pop-
ular genotyping platforms spanning a range of genomic coverage had been used, now 
choosing only the top “directly genotyped” variant as the input to POEMColoc. We find 
that the POEMColoc method tends to miss colocalized signals rather than identify false 
colocalizations in this analysis and we find that performance suffers most when the set 
of directly genotyped SNPs is small (Fig. 3d, Additional file 1: Figure S4).

Another alternative is that genotypes are derived from whole genome sequenc-
ing WGS. This may be optimal for POEMColoc as we expect genotyping or imputa-
tion error would affect the ability of the top SNP to act as a proxy for the causal SNP. 
Additional file 1: Figure S6 shows a comparison between coloc and POEMColoc-1 for 
a selection of studies using WGS. The correlation of estimates of P(H4) between coloc 
and POEMColoc-1 was similar for WGS and imputed UKBB data (0.77 vs 0.81, respec-
tively). Similarly, the proportion of false negatives ( P(H4) < 0.1 with POEMColoc-1 and 
P(H4) > 0.9 with coloc) was comparable (9% in imputed vs 10% WGS). However, the 
total number of associations based on WGS is still small (174) relative to the UKBB and 
there are confounding factors like smaller sample size among WGS studies that make 
the interpretation of any differences difficult.

While we explored ancestry mismatch effects in simulations, we did not consider the 
effect of summary statistics from meta-analysis across diverse populations. We used a 
large such study to explore this effect analyzing data with ∼ 4000 hematological traits 
and from a sample size comparable to the UKBB. Again, compared to UKBB results, 
the correlation between P(H4) of coloc and POEMColoc-1 was very similar ( R2 = 0.82 , 
Additional file 1: Figure S5) as was the proportion of false negatives (10%).

Parameter sensitivity

The coloc prior allows SNP associations with the two traits to be non-independent. It 
has three parameters p1 , the prior probability a SNP is associated with trait 1, p2 , the 
prior probability a SNP is associated with trait 2, and p12 , the prior probability a SNP 
is associated with both traits. Higher values of prior parameter p12 relative to p1p2 lead 
colocalization to be more favored over other hypotheses a priori. The default coloc 
prior may be too liberal [14]. Additional file 1: Figure S3 shows the correlation between 
POEMColoc-1 and coloc posterior probabilities is relatively insensitive to the value of 
p12 in the UK Biobank, while using lower values of p12 increases the correlation between 
POEMColoc-2 and coloc posterior probabilities.

We also considered how POEMColoc’s performance varied in simulations when her-
itability (Additional file  1: Figure S11) and sample size (Additional file  1: Figure S12) 
are reduced from the values used in Figs. 2 and 3. AUPRC decreases as heritability and 
sample size are reduced. When sample size in the imputed dataset(s) is sufficiently low, 
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POEMColoc performance is substantially worse than coloc. Ancestry misspecification 
also has a greater impact when sample size is lower (Additional file 1: Figure S13).

GWAS sample size and heritability used in Figs.  2 and 3 were chosen so that the 
great majority of simulated datasets would contain a genome-wide significant result 
( p < 5× 10−8 ), as colocalization analysis is frequently performed to follow up on such 
genome-wide significant findings. Reducing either sample size or effect size leads to 
fewer genome-wide significant findings in simulated datasets. Binning all simulations 
under H3 and H4 by the lowest GWAS and eQTL p-values, we see that POEMColoc 
performance closely matches coloc when p-values are < 10−6 (Additional file 1: Figure 
S14). However, higher GWAS p-values will cause POEMColoc-1 (GWAS imputed) and 
POEMColoc-2 (GWAS and eQTL imputed) performance to degrade relative to coloc. 
Higher eQTL p-values have a large impact on the performance of POEMColoc-2 but not 
POEMColoc-1.

Application to full GWAS catalog

Having confidence that the POEMColoc method accurately approximated the full coloc 
method in real data from UKBB and GWAS Catalog and that it recovered true colo-
calized signals generated from simulation, we sought to apply the POEMColoc method 
to GWAS results for which full summary statistics are not available. Figure 4a summa-
rizes exclusion criteria, cohort ancestry, and study design among analyzed associations. 
In total, we assessed 47,049 reported GWAS associations with p-value ≤ 5× 10−8 for 
colocalization. Note that associations excluded due to missing information were usually 
from difficult to parse sample size and design and in most cases should be possible to 
analyze using POEMColoc after manual review of the entry or linked PubMed article. 
Additional associations were excluded due to not being able to locate the associated SNP 
in our reference panel. Colocalizations with posterior probability greater than 0.9 are 
provided in Additional file 2: Supplementary dataset 1.

GWAS Catalog associations meeting inclusion criteria were tested for colocalization 
using GTEx eQTL in 48 tissues using the POEMColoc method. Our analysis detected 
151,247 colocalized association-cis gene-tissue triplets, or 0.2% of those tested. The aver-
age run time of this analysis per triplet was 0.1 s. Although slower than coloc because of 
the need to compute LD from a reference panel, if multiple eQTL from a single locus are 
supplied, POEMColoc can take advantage of this to only compute LD once for the locus. 
Figure 4c shows the number of colocalized genes detected per association. Using cutoff 
0.9, 44% of associations have at least one detected colocalization with a GTEx eQTL in 
some tissue, and 22% have colocalizations for more than one gene. Given there are one 
or more colocalized genes, the median number of tissues involved is 2, though much 
larger numbers of tissues are also common (Fig. 4b). More colocalizations are detected 
in tissues with larger sample sizes (Additional file 1: Figure S8). Performing colocaliza-
tion analysis using POEMColoc yields substantially different results compared to using 
an eQTL p-value criterion (Fig. 4d). In fact, in most cases when the top GWAS SNP had 
a eQTL p-value less than 10−6 there was evidence against colocalization.
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Tissue enrichment

To evaluate the biological relevance of POEMColoc output, we assess whether colocali-
zations are enriched in disease-related tissues. Figure 5a shows tissue enrichments for 
traits with both large numbers of colocalizations and significant enrichment in some 
tissue (enrichment p-value < 0.001 and at least 7 colocalized genes). For figure legibil-
ity, the 48 GTEx tissues have been collapsed into 27 tissue groups as provided by GTEx 
and the top 15 enriched tissue groups across the selected traits are shown. These enrich-
ments are largely biologically interpretable, for example enrichment of blood count phe-
notypes in whole blood, lipid, cholesterol and protein measurements in the liver, and 
hypothyroidism in the thyroid. Additional file 1: Table S5 gives a complete list of enrich-
ments detected at the tissue level. We also provide a comparison to enrichments that 
would be detected using eQTL p-values and show that some biologically interpretable 
enrichments (e.g. QT interval in the heart left ventricle) are only detected using POEM-
Coloc. Because of the large-scale nature of this analysis and because we wish to reduce 
the impact of human biases in evaluating the method, we quantify disease-related tissues 
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using an independent and automated approach that quantifies the co-occurrence of tis-
sues and traits in the biomedical literature using a standardized MeSH vocabulary. Sig-
nificantly enriched tissue-trait pairs using POEMColoc are more similar by the literature 
co-occurrence metric than those that are not enriched (Fig. 5b).

Ability to predict approved drug mechanisms

We ask whether colocalized associations are enriched for matches to approved drug 
mechanisms, an independent source of evidence for target involvement in disease using 
methodology and supplementary datasets from [15] and [16]. Additional file 1: Table S6 
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shows matches to approved drug mechanisms from colocalized GWAS Catalog eQTL. 
We find significant enrichment for both significant top SNP eQTL and colocalized eQTL 
(Fig. 5c). The largest enrichment is found when there is both an eQTL significant at 10−6 
and high to intermediate posterior colocalization probability. There are few matches to 
approved drug mechanisms for significant eQTL with low P(H4)(< 0.5 ). In part, this 
may be because these eQTL are less likely to be coding, and if coding, are less likely to 
be drug targets than those with high or intermediate colocalization posterior probabil-
ity (Additional file  1: Figure S18). Upon examination of Additional file  1: Table  S6 we 
see many closely related drug mechanisms are supported by colocalization evidence (e.g. 
PPARA for Hypercholesterolemia and Hyperlipidemias). In order to account for this, we 
counted the number of distinct targets with approved drug mechanisms, and find sig-
nificantly higher counts than expected by chance (35 targets, p < 0.0001).

Discussion
We report a new method for performing colocalization analysis when only the summary 
statistics at a lead SNP are reported (POEMColoc). We show that the method provides a 
close approximation to the popular coloc method in application to real association sum-
mary statistics from the UK Biobank or GWAS Catalog and GTEx projects. Applica-
tion to colocalization of associations from the GWAS Catalog and GTEx eQTL provides 
22,673 distinct colocalization-based links between gene and traits with posterior prob-
ability 0.9 or higher. Applying colocalization analysis gave substantially different results 
than relying on an eQTL statistical significance criterion for the lead GWAS SNP.

When there are large differences between POEMColoc and coloc, most commonly 
coloc gives a high probability of colocalization and POEMColoc a low probability. 
The “false negative’’ population is relatively smaller in our simulated datasets, but 
occurs more often in mismatched ancestry panels (Additional file  1: Table  S4) and 
under lower GWAS sample size (Additional file  1: Figure S16). In the UK Biobank 
analysis, we find that this “false negative” population is enriched for regions where 
there is evidence of multiple causal variants in the GWAS trait. When multiple causal 
variants are present, imputed summary statistics used by the POEMColoc method 
will only be accurate for variants linked to the top SNP. Recent changes to coloc (not 
part of the CRAN release as of writing), are designed to account for the scenario 
of multiple causal variants [14]. However, we do not expect these developments to 
apply to POEMColoc imputed datasets due to having summary statistics from only 
one variant. Comparing the size of the false negative population using POEMColoc-1, 
POEMColoc-2, and PICCOLO, we find it is largest using PICCOLO (9%, 15%, 27% of 
UK Biobank loci—whole blood eQTL pairs on which all three methods could be run 
and coloc using full data detected a positive result respectively). We find the great-
est number of true positives using POEMColoc-1 and somewhat greater numbers of 
true positives detected using PICCOLO relative to POEMColoc-2, likely due to this 
method’s greater tendency to output probabilities close to zero and one (Additional 
file 1: Figure S17).

Our method uses a population reference panel to obtain LD estimates and from these, 
we impute missing summary statistics in the region. As LD can differ between popula-
tions of different ancestries, we wondered how the method would perform if there was 
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a mismatch between reference panel ancestry and the original GWAS ancestry. Our 
simulations show that mismatched ancestry has a minor effect on POEMColoc-1 and 
while the best performance is achieved when GWAS and reference panel ancestries 
are matched, overall ability to correctly assign causal configurations in simulated data 
remains high when using completely mismatched ancestry panels (e.g., all European vs 
all African) provided that the GWAS study is well-powered. In real data, we see simi-
lar performance between GWAS datasets derived from imputed vs directly sequenced 
genotypes and similar performance comparing single-population studies to multi-ethnic 
meta-analysis. We observed a more substantial decay in performance of POEMColoc-2 
and POEMColoc-1 when the top SNP reported in the GWAS catalog comes from a lim-
ited subset of directly typed variants. In simulations in which we vary sample size of the 
GWAS and eQTL datasets, we find reduced performance of POEMColoc-1 relative to 
coloc as GWAS sample size is reduced, and POEMColoc-2 as both eQTL and GWAS 
sample size are reduced, suggesting sample size in the imputed dataset has an important 
effect on performance (Additional file 1: Figure S12). The specific value of sample size 
required for POEMColoc performance to be comparable that of coloc will depend on 
trait heritability. For example, an eQTL sample size of 500 is adequate assuming a mean 
heritability of 0.1, but imputing summary statistics for a GWAS with sample size 2000 
and mean heritability 0.0099 leads to a greater performance reduction. Subsetting simu-
lated datasets by lead SNP p-value for GWAS and eQTL datasets, we find that when 
both GWAS and eQTL p-values are less than 10−6 , POEMColoc performance tends to 
be close to that of coloc (Additional file 1: Figure S14).

Our approach deals with the specific scenario where only summary statistics for the 
top associated variant in a region is reported. However, one may encounter situations 
where summary statistics for a panel of variants are reported in a region. Here, it may 
be beneficial to use more sophisticated summary statistic imputation methods (e.g., 
[17]–[21]) and follow this imputation with colocalization analysis. Further, the POEM-
Coloc approach does not account for uncertainty in linkage disequilibrium, the identity 
or strength of signal at the causal SNP in the imputed dataset, or in uncertainty in the 
imputed summary statistics. We expect that accounting for these could increase per-
formance under some scenarios at additional computational cost. We show that colo-
calized gene-trait pairs are enriched in tissues relevant to the underlying GWAS trait. 
Some of these enrichments seem intuitive and confirm colocalizations inferred by the 
POEMColoc method can recover known relationships between traits and relevant tis-
sues. Other trait-tissue enrichments are not as intuitive but are supported by known dis-
ease biology. Total cholesterol, low density lipoprotein, and lipid levels are enriched for 
eQTL colocalizations in the liver, a major site of both production and metabolism of 
cholesterol and LDL. Migraine and headaches are most enriched for colocalizations with 
artery eQTL and several lines of evidence including the ability of vasoactive substances 
to induce migraine, the effective treatment of migraines with drugs acting in the vascu-
lar system, and increased comorbidity of migraines and cardiovascular diseases support 
a causal role of the vascular system on migraine [22]. Overall, we find that significant 
enrichments in colocalizations between traits and tissues is predictive of the co-occur-
rence rates of the same traits and tissues in the PubMed literature. Drug targets with 
genetic support for their therapeutic hypothesis are more likely to result in approvals 
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than drug targets without genetic support [15, 16]. We recently demonstrated that this 
increase in approval probability seems to depend on the type and quality of genetic sup-
port with genetic support derived from Mendelian associations and GWAS associa-
tions with a clear causal gene having a stronger effect than GWAS associations where 
the causal gene was more uncertain [16]. We tested whether colocalized gene-trait pairs 
were enriched among approved target-indication pairs. Indeed, we find that gene-trait 
pairs that have evidence of colocalization and evidence of an eQTL association at the 
trait associated locus are enriched by approximately threefold in approved target-indi-
cation pairs. This enrichment is not found in gene-trait pairs that have evidence of an 
eQTL at the trait associated locus but do not show evidence of colocalization with the 
trait. Thus, evidence of colocalization from the POEMColoc method may be useful for 
identifying drug targets that are more likely to succeed in clinical development.

Conclusions
We report a new method for performing colocalization analysis when only the summary 
statistics at a lead SNP are reported. We show that the method provides a close approxi-
mation to the popular coloc method in simulations and in applications to real asso-
ciation summary statistics from the UK Biobank and GTEx projects. We find that our 
method performs well even when reference panels are not perfectly matched to study 
populations. We find significant reduction relative to coloc in performance where there 
are likely multiple causal variants, when reported top summary statistics come from 
a limited subset of genomic variation (e.g., only variants typed on a low density SNP-
chip), and under conditions of low heritability and sample size in the imputed dataset. 
By imputing information, POEMColoc allows for the statistically principled testing of 
competing hypotheses of shared causality where previously not possible.

Methods
Evaluating POEMColoc on GWAS hits and GTEx eQTL

Full summary statistics for GWAS conducted on UKBB phenotypes were downloaded 
on 4 June 2019 from http://​www.​neale​lab.​is/​uk-​bioba​nk/. We removed duplicated phe-
notypes by excluding sex-specific GWAS runs and excluding raw quantitative variables 
in favor of the inverse rank transformed alternative. For each GWAS, we selected non-
overlapping windows around genome-wide significant ( p < 5× 10−8 ) lead SNPs as can-
didates for colocalization with eQTL. Variants marked as low confidence were excluded 
(defined by minor allele frequency < 0.001 and additionally for case–control < 25

2ncase
 ). 

Starting with the most significant SNP for a given trait, we extracted summary statistics 
in a 4 Mb window surrounding the lead SNP. Now excluding the top region, we chose 
the next most significant lead SNP and extracted all summary statistics in 4  Mb win-
dow. We stopped this process when no more genome-wide significant lead SNPs existed 
for that GWAS. For each UKBB window described above, we selected eQTL summary 
statistics from GTEx release 7 whole blood eQTL of the entire cis-candidate window 
of any gene containing associated UKBB variant within its cis-candidate window [12]. 
From the 2197 UKBB phenotypes with at least one genome-wide significant hit, there 
were 1553 phenotypes where at least one of the genome-wide significant hits overlapped 
a tested eQTL in GTEx whole blood. We merged summary statistics for all variants in 

http://www.nealelab.is/uk-biobank/
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common between the GTEx eQTL tests and the UKBB phenotype tests and used each 
gene, UKBB phenotype, and UKBB selected region as a way to evaluate POEMColoc in 
comparison to coloc. For each combination of UKBB and GTEx summary statistics, we 
applied coloc via the coloc.abf function from the coloc R package (version 3.2-1) using 
default priors. On the same combinations of UKBB and GTEx summary statistics, we ran 
POEMColoc using the full list of p-values from GTEx eQTL but using only the top SNP 
from the UKBB region as if it was reported in the GWAS catalog. We used LD informa-
tion from unrelated European individuals in the 1000 Genomes phase3 reference panel 
as processed/distributed for use with the BEAGLE imputation software package (http://​
bochet.​gcc.​biost​at.​washi​ngton.​edu/​beagle/​1000_​Genom​es_​phase3_​v5a/). We evalu-
ated performance of POEMColoc under the scenario where the reported GWAS SNP 
came from a limited SNP subset by choosing the UKBB top SNP from only those SNPs 
contained on each of three Illumina genotyping chips that vary in total SNP content 
from 1 to 5 million SNPs (1 M—OmniExpressExom8; 2.5 M—HumanOmni2.5Exome; 
5 M—HumanOmni5Exome).

To evaluate the performance of POEMColoc on a wider variety of GWAS types, we 
obtained summary statistics from the GWAS Catalog. To evaluate the effect of diverse 
ancestry, we obtained statistics for a single study of 15 hematological traits from meta-
analysis of five global populations [23]. To evaluate the effect of direct sequencing vs 
genotype imputation, we obtained statistics from two additional studies reporting WGS 
derived summary statistics [24, 25]. We selected significant regions, merged with GTEx 
Whole Blood summary statistics, ran coloc and POEMColoc as described above for the 
UKBB summary statistics.

Evaluating POEMColoc performance with simulations

Simulation studies were performed using genotype data from UK Biobank British 
ancestry individuals and simulated quantitative trait phenotypes. The LD structure in 
our simulation therefore reflects that of the UK Biobank British population. For each 
simulated dataset, a causal eQTL SNP was randomly selected among variants across the 
genome with minor allele frequency at least 0.01. Under H3, a second, distinct causal 
SNP was randomly selected from variants with minor allele frequency at least 0.01 
within a 1 kb window from the first causal SNP. Close proximity of the two causal SNPs 
ensures that many datasets will present a challenging colocalization problem, in which 
the causal GWAS SNP may have a statistically significant association without shared 
causality due to linkage disequilibrium. We randomly sampled N1 = 500 UK Biobank 
British individuals to simulate eQTL phenotypes (eQTL group), and N2 = 10000 new 
individuals from the same population to simulate GWAS phenotypes (GWAS group). 
The phenotype for i th individual in group k ( Yki ) (where k = 1 indicates the eQTL dataset 
and k = 2 the GWAS dataset) is simulated based on the causal SNP genotype gc from 
UKBB data, Yki ∼ N (βcgci, 1) where βc =

√
h2/

√

2fc(1− fc)(1− h2) is computed from 
the minor allele frequency fc at site c and single SNP heritability h2 . h2 values were sam-
pled from beta distributions with means 0.0099 for GWAS and 0.1 for eQTL (Beta(4, 
400) and Beta(2, 18) respectively). We computed summary statistics for all SNPs with 
minor allele frequency greater than 0.01 within a 0.5 Mb window on either side of the 
causal eQTL variant. We compared POEMColoc with coloc, PICCOLO and with the 

http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/
http://bochet.gcc.biostat.washington.edu/beagle/1000_Genomes_phase3_v5a/
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simple approach using top SNP eQTL p-values. As in other analyses, coloc and POEM-
Coloc were run using the default coloc priors on causal configurations. The analysis was 
run over the full 1 Mb region for which summary statistics were computed. Results from 
additional simulations using reduced heritability, N1 , and N2 are presented in the sup-
plementary materials.

Comparison to PICCOLO

POEMColoc was compared to PICCOLO using its default settings and PICS causal 
probabilities obtained from pics.download using the EUR ancestry option. We attempted 
to run PICCOLO on all simulated datasets and a random sample of 100 UK Biobank 
phenotypes with at least one genome-wide significant association. Due to its use of PICS 
for estimating causal SNP probabilities and the fact that PICS uses only variants in 1000 
Genomes phase I, PICCOLO is not able to run on a large fraction of analyzed datasets. 
All comparisons presented between PICCOLO and POEMColoc are restricted to the 
subset of datasets on which both could be run.

Running POEMColoc on GWAS Catalog

GWAS Catalog data were downloaded on Nov 26, 2018. For each GWAS Catalog entry, 
we attempted to obtain the SNP p-value, whether the study is case–control or quan-
titative trait, the sample size N  , and, for case–control studies, the fraction of observa-
tions that are cases. We also attempted to assign each entry to a broad ancestry group in 
order to choose an appropriate reference panel for imputation (broad ancestry groups 
matched 1000 Genomes superpopulations and were one of African, admixed American, 
East Asian, European, or South Asian). We excluded associations for which case–control 
or quantitative trait status and sample size could not be ascertained using our automated 
approach, and those not meeting the p-value threshold 5× 10−8 . For each GWAS Cata-
log SNP rsid, we extracted GTEx summary statistics for all genes and tissues with availa-
ble summary statistics overlapping the GWAS SNP. When a matched ancestry panel was 
available, POEMColoc was implemented using both the matched ancestry panel and 
the full 1000 Genomes from all unrelated individuals; otherwise the full 1000 Genomes 
was used. Using those associations for which a matched reference panel was available, 
we show that more colocalizations were detected using a matched reference (Addi-
tional file  1: Figure S7). For subsequent analyses, we used colocalization results from 
the matched ancestry panel where available and otherwise used the full 1000 Genomes. 
We evaluated the biological relevance of GWAS Catalog colocalizations using two dif-
ferent metrics, tissue enrichments of eQTL signals, and enrichments for approved drug 
mechanisms.

Estimating tissue enrichment of eQTL signal

We collapsed replicate associations to obtain one colocalization posterior probability 
per gene-trait-tissue trio as the maximum across associations. Using a colocalization 
cutoff of 0.9, we determined an enrichment score for each trait-tissue combination as 
the −log10p-value from Fisher’s exact test for enrichment of colocalizations in the tissue-
trait pair (Supplement Text S2).
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Association with approved drug targets

We used target-indication pair approval status from the supplementary materials of [16] 
to assess whether colocalization was associated with approval. xMHC targets (Chromo-
some 6 25.7–33.4  Mb) are unavailable because they were excluded from this analysis. 
Colocalizations were collapsed at the level of gene-trait pair by taking the maximum 
probability across tissues and genes. For each gene-trait pair assessed for colocaliza-
tion, we determined whether or not it matched an approved drug mechanism. eQTL 
evidence classes were determined strong evidence for colocalization ( P(H4) ≥ 0.9 ) evi-
dence against colocalization ( P(H4) ≤ 0.5 ) and significant eQTL for the GWAS top SNP 
( p < 10−6 ), and combinations thereof. We computed the odds ratio of such a match for 
different positive classes of eQTL evidence relative to candidate pairs with no evidence 
of an eQTL via colocalization or eQTL p-value. It was determined that different evi-
dence classes differed systematically in the proportion of coding genes and observed 
drug targets, so we conditioned this analysis on the candidate gene being an approved 
drug target. Significance was assessed via permutation of GWAS trait labels, which fur-
ther helps separate ubiquitous target-level variation in colocalization and eQTL prob-
ability from the effect of the match between the target and the indication.

PubMed odds ratio similarity

In order to identify drug mechanisms supported by colocalizations and to have a quan-
titative assessment of tissue-trait similarity, we used similarity in the MeSH vocabulary. 
Similarity is determined through odds ratio of cooccurance in article MeSH terms in the 
PubMed corpus (accessed October 10, 2018), an approach based on [26]. For identifying 
similar drug mechanisms, we used an odds ratio cutoff of 20 as this corresponded on 
average to the similarity cutoff used in the previous work. Drug indications are provided 
as MeSH terms in the supplementary materials of [16] and GWAS traits and tissues 
were mapped to the MeSH vocabulary using a similar procedure. Because of concerns 
about circularity from, for example, an approved drug leading to occurrence of its tar-
get and indication in publication, we exclude MeSH terms under the headings Amino 
Acids, Peptides, Proteins, Enzymes and Coenzymes, and Genetic Phenomena as well as 
all studies related to drug response or adverse reactions from the set of GWAS traits 
analyzed.
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