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Background
Some of the most popular applications in bioinformatics, including multiple sequence 
alignment [1], sequence database search [2] and protein family profiling [3, 4], employ 
sequence weighting schemes as a way to mitigate the effects of non-independence of 
homologous sequences. For example, a database may contain many closely related 
sequences from one species (like humans) and its close relatives, while other more dis-
tantly related species might be under-represented. To address possible problems associ-
ated with these biases, several sequence weighting schemes have been proposed over the 
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years. These methods assign a score to each sequence considered, with the aim of assign-
ing reduced weights to sequences from over-represented clades and larger weights to 
sequences from under-represented clades. The purpose of sequence weighting schemes 
is therefore to improve the accuracy of many bioinformatic tasks in a computationally 
efficient way.

PSI-BLAST [2], for example, employs the Henikoff and Henikoff [5] weighting scheme 
(“HH94” [5]) where the score of a sequence is the average of the scores of each posi-
tion of the sequence, the score of a position being 1/rd, with r the number of different 
characters at the considered alignment column and d the number of times the character 
of the considered sequence and position appears in the considered alignment column. 
The idea of this weighting scheme is to give equal weight to all characters observed at 
one alignment column, dividing this weight equally among those sequences sharing that 
character at that position. This method has the advantage of being very fast to calculate, 
and of giving higher weights to sequences with more rare characters that are, therefore, 
likely more distantly related.

HMMER [6] and the CLUSTAL family of aligners [1, 7, 8] use the weighting scheme of 
Gerstein et al. (1994: “GSC94” [9]; similar to [10]), which defines sequence weights itera-
tively along a phylogeny from tips to root. At each step, the length of the considered tree 
branch is split proportionally to the current weights of its descendant sequences, and is 
then added to the weights of the descendant sequences. Here, the idea is that weights are 
determined by divergence between groups of sequences. The more diverged one group 
of sequences is from the others, the higher weights it will have. However, the weight of a 
group is shared among the sequences in the group, so that in a group with many similar 
sequences each of those sequences will have small individual weight.

Other sequence weighting schemes have also been proposed, although they have 
seen fewer applications. Maximum discrimination sequence weighting [11] is a com-
plex approach that aims to optimally distinguish homology from chance alignments in 
database searches. Henikoff and Henikoff [12] proposed a method that splits sequences 
into clusters based on sequence similarity, and assigns equal weights to sequences in the 
same cluster and a total weight of 1 to each cluster [12]. Vingron and Argos weighted 
sequences proportionally to their average distances from all other sequences [13]; Sib-
bald and Argos proposed an approach in which a sequence receives more weight if it is 
more isolated in sequence space [14]. Altschul et al. measured evolutionary correlations 
among sequences using branch lengths in the phylogeny, and then calculated sequence 
weights using the inverse of the variance-covariance matrix [15]; Gotoh developed a fast 
approximation of this method [16]. Similar ideas have also been explored within meth-
ods aimed at estimating character frequencies at a given position in a protein [17–19], 
defining tree or alignment informativeness [20–24], and quantifying diversity within a 
habitat and prioritising conservation efforts [25–31].

The many weighting schemes proposed have rarely been assessed and compared under 
different scenarios. We show that heuristic approaches can suffer from limitations: for 
example GSC94, while providing good performance on ultrametric trees, can lead to 
inaccurate results on non-ultrametric trees. Instead, here we propose a new weight-
ing scheme, the first to be derived from the idea of evolutionary ‘novelty’. We quantify 
the novelty of each sequence compared to the other sequences under consideration by 
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computing the probability that, at a given position, sequences are ‘phylogenetically iden-
tical by descent’ (PIBD): that is, that they descended from a common ancestor without 
any substitution occurring. Our terminology highlights the similarity with the concept 
of “identity by descent” in population genetics (see e.g. [32]), where it applies when 
two alleles are not only identical (“identity by state”), but also have had no mutation or 
recombination occurring in the lineages connecting them to their most recent com-
mon ancestor. This rigorous approach allows us to quantify the novelty of sequences in 
very general scenarios (without specific assumptions regarding the phylogeny relating 
the considered sequences) while being robust to uneven sampling and very elevated or 
reduced divergence levels, and generally conforming to guiding principles for an accept-
able weighting scheme [33]. We present algorithms and scripts to efficiently compute 
these weights from a phylogeny and from a multiple sequence alignment.

As shown by the examples above, this new weighting scheme has a number of possi-
ble applications, from gene family profiles and multiple sequence alignment evaluation 
to ecology and conservation biology. The aim of our work is to provide a new sequence 
weighting scheme that is robust to the choice of application and scenario, therefore giv-
ing the possibility of improving the accuracy of these bioinformatics tasks, while at the 
same time being sufficiently computationally efficient to be used on large datasets. As an 
example, we focus on the task of inferring character frequencies at an alignment column. 
Inference of character frequencies is not only important for gene family profiling, but 
also for modeling evolutionary fitness, calculating conservation scores, and visualizing 
sequence logos [34–38]. We show that our methods result in efficient and accurate infer-
ence of character frequencies, with clear advantages compared to previous sequence 
weighting schemes.

Methods
Phylogenetic novelty scores

We consider a phylogenetic tree φ describing the evolutionary relationships of its N tips 
s1, . . . , sN . We want to define weights ws representing how ‘novel’ tip s is compared to 
the other tips of φ . Throughout this paper we consider the tips to represent biomolecu-
lar sequences comprising amino acid or nucleotide characters, but other possible sets 
of characters could equally be accommodated. We assume that we have one sequence 
associated with each tip, conveniently sharing the same names s1, . . . , sN , and arranged 
as the rows of an alignment A. We start by defining weights that are a function of φ only, 
and so depend on the evolutionary history relating the considered sequences and not on 
the specific sequences themselves. In the next section we extend the definitions to also 
condition on the observed sequence characters.

As a motivating example, if φ consists of only extremely long branches, then we want 
w1 = · · · = wN = 1 . In fact, in this case, all sequences represent effectively independ-
ent observations, so no weighting correction is needed. This means that, unlike many 
sequence weighting schemes (e.g. [9, 14, 39, 40]), we want to account for the effect of 
saturation, so that doubling the length of a long tree branch has negligible effect on the 
weights.

If instead φ has branches all of length 0, we want w1 = · · · = wN = 1/N  , so that the 
total alignment score is 1, as in [9, 14, 39, 40]. This is because all the observed sequences 
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are now just perfectly dependent copies, and so in total they represent just one inde-
pendent observation of a sequence. At an intermediate level, if φ has two tips ( N = 2 ), 
and branch length such that half of the ancestral characters are expected not to have 
mutated in either branch (they are PIBD with probability 0.5), then we want the total 
alignment score to be 1.5, and both weights to be 0.75; this is because in this case only 
half of each sequence will be novel with respect to the other, so in total we observe 1.5 
novel sequences, and we want the two sequences to have the same weight.

A simple way to describe how novel s1 is with respect to s2 could be to count the 
number of mismatches between their sequences. However, even if s1 and s2 were very 
divergent from each other, their sequences would still be identical at some alignment 
column because of chance or of convergent evolution, instead of close relatedness. In 
our approach, s1 can be novel with respect to s2 at a column of A even if they share the 
same character, as long as they are not PIBD.

We usually cannot know for sure if sequences are PIBD and at which alignment col-
umn, so we define ps(i) as the probability that, at a generic alignment column, the num-
ber of tips of φ (including s) that are PIBD to s, iφ(s) , is exactly i. For example, ps(N ) is 
the probability that, at a generic alignment column, no substitution occurs along φ ; ps(1) 
is the probability that no tip (except s) in φ is PIBD to s at some arbitrary alignment col-
umn. We then define the weight ws of s within φ as:

In the simplest case of nucleotide sequences evolving under the JC69 substitution 
model ( [41]; all substitution rates are 1/3), the probability that two nodes in φ sepa-
rated by branch length t are PIBD is e−t . So, again in the simple case that N = 2 and 
that the two branches in φ have each length t/2, s1 and s2 each have weight ws1 = ws2 = 
ps1(1)+ ps1(2)/2 = (1− e−t)+ e−t/2 = 1− e−t/2 , and the sum of the weights is 
2− e−t . The same is true for any pair of branch lengths with sum t, of course.

We expect the definition of sequence weights given by Eq. 1 to be useful for charac-
ter frequency inference and many other applications. In fact, in addition to satisfying 
classical sequence weighting requirements [33], these ws can also be efficiently calcu-
lated from any φ and substitution model, as discussed later. We refer to weights ws as 
the ‘phylogenetic novelty scores’ (PNS). We call the sum of all weights in φ the ‘effective 
sequence number’ (ESN): T =

∑N
s=1 ws , representing the expected number of evolution-

arily distinct character observations at an alignment column. An example graphical rep-
resentation of the PNS is shown in Fig. 1

Conditioning on observed data

In this section we define weights that are a function not only of phylogeny φ , but also of 
a specific alignment column D of alignment A. These weights refer not to the novelty of a 
sequence s, but of its specific character Ds observed in row s of column D. The probability 
that two tips of φ are PIBD at a specific alignment column can be strongly affected by the 
observed characters at that column. Clearly, if the two tips differ at alignment column D 
then the probability that they are PIBD, conditional on D, is 0. The case that the two tips 

(1)ws =

N∑

i=1

ps(i)

i
= Eφ

[
1

iφ(s)

]
.
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have the same character in D is less trivial. If we assume that the two tips are separated 
by a total divergence time t, and for simplicity assuming a JC69 substitution model [41], 
then the probability that the two tips have the same nucleotide is (1+ 3e−4t/3)/4 and the 
probability that the two tips are PIBD is e−t ; therefore, the probability that the two tips 
are PIBD conditional on them having the same nucleotide is 4e−t/(1+ 3e−4t/3).

We denote by ps(i|D) the probability that exactly i sequences are PIBD to s at the 
given, observed alignment column D. The new positional PNSs conditional on D are 
then defined as:

Algorithms for calculating the phylogenetic novelty scores

We present several algorithms for calculating PNS. One of these methods (‘up-down 
pruning’) is the most computationally efficient, and so is described below, but may also 
be the most difficult to understand. For this reason, we also mention other approaches 
and include their full description in the Supplement. In the following we assume that 
the phylogeny φ is rooted; the case of an unrooted topology follows simply by placing 
an arbitrary root on the tree, as long as the substitution process is reversible and at 

(2)wD
s =

N∑

i=1

ps(i|D)

i
.

Fig. 1 Example of PNS for a 100‑vertebrates tree. Here we show graphically the values of the phylogenetic 
novelty scores ws from Eq. 1 for the tips of a tree of 100‑vertebrate species. The tree is taken from the UCSC 
genome browser 100‑way alignment of vertebrates to the human genome, downloaded from http:// hgdow 
nload. cse. ucsc. edu/ golde nPath/ hg38/ multi z100w ay/ hg38. 100way. commo nNames. nh. The scale bar indicates 
0.25 expected substitutions per site. This tree was also used for simulations in this work. a The tree has all tips 
spaced uniformly on the horizontal axis, representing the case of no weighting scheme being used. b Tips are 
spaced horizontally according to their ws weight. The weight of each tip can also be seen in the length of the 
colored bars. Notice how species in regions of the tree with many close relatives (e.g. mammal, primate and 
bird clades) have low PNSs, and so take up less space individually. This means the horizontal dimension of the 
plot now gives more equal representation of the novelty of each sequence and clade, instead of emphasising 
densely sampled clades. More divergent species with few close relatives (e.g. lamprey, coelacanth, frog and 
platypus) have higher PNSs and are given more horizontal space, representing the greater novelty of their 
sequences relative to other species in the tree. Cumulative ESN scores (clade‑wise sum of PNSs) are also 
shown for some clades

http://hgdownload.cse.ucsc.edu/goldenPath/hg38/multiz100way/hg38.100way.commonNames.nh
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/multiz100way/hg38.100way.commonNames.nh
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equilibrium (as in this case the scores are not affected by the position of the root). In the 
case of non-reversible or non-stationary character evolution, the position of the root can 
affect the scores, and so a rooted phylogeny (which could in principle be estimated from 
sequences in this scenario) is required.

Calculating PNS scores via simulation

We can calculate PNS by simulating sequence evolution along φ . If we are interested in 
weights ws , at each iteration we start by sampling a root character from the equilibrium 
distribution. We then sample its descendant characters and the mutation events along 
the branches of φ using standard methods (e.g. [42],  “method  2” of [43, 44]) until we 
reach all the tips, recording each substitution that occurs and hence which tip charac-
ters are PIBD. Note that it is not possible to achieve this using software such as evolver 
[45] or “method 1” of INDELible [43] that only simulate the start and end state of each 
branch, and do not distinguish between characters that are PIBD and those that hap-
pen to match following multiple substitutions. For each iteration we associate a score of 
1/i to a tip of φ if its observed character is PIBD to the characters of exactly i tips. The 
final weight of a tip is then obtained by averaging its scores over all iterations. Weights 
wD
s  can be similarly calculated employing a variant of the up-down approach [46] to 

sample characters at internal nodes of the phylogeny conditional on D. A straightfor-
ward but inefficient way to achieve the same result is to simulate characters without any 
conditioning, and discard those iterations that do not match D. These approaches are 
described in more detail in the Supplement.

Calculation of PNS scores via brute‑force

We can calculate PNS via brute-force, that is, by enumerating all possible mutational his-
tories on φ by considering all possible character assignments at each end of each branch, 
and for each branch considering whether there is at least one substitution on it or not. 
Each mutational history results in a score as in the previous method using simulation. 
By averaging the scores of all mutational histories, while accounting for different prob-
abilities of different histories, we can calculate the ws or wD

s  weights. The full methods are 
described in detail in the Supplement.

Pruning method to calculate the ESN

The ESNs T =
∑N

s=1 ws or TD =
∑N

s=1 w
D
s  can be calculated very efficiently (computa-

tional cost O(N ) ) if one is not interested in the weights of the individual tips. The idea 
is to calculate T iteratively on each subtree of φ starting from the tips until we reach the 
root. We call this the ‘pruning ESN’ method, due to its similarity with Felsenstein’s prun-
ing algorithm [47]. See the Supplement for details.

Up–down pruning approach to calculate PNS

We now present the main, efficient algorithm that we use and recommend for calculating 
PNS. It can be used for calculating either ws or wD

s  weights and can be considered an adap-
tation of Felsenstein’s pruning algorithm [47]. The method visits all nodes in φ starting from 
the tips and toward the root (‘up’ phase) and then again a second time starting from the 
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root and moving downward to the tips (‘down’ phase), similar to the up-down approach of 
[46]. The computational cost of this algorithm is cubic in the number of tips N.

In the following we assume that the substitution rate matrix Q is given. We make no 
assumptions regarding the state space of the substitution process, which can comprise 
nucleotide, amino acid or codon states [48], and exclude or include gaps (see e.g. [49]). The 
probability of having character k at the end of a branch of length t, conditional on having 
character j at its start, is then Pj,k

t  , the entry in row j and column k of Pt = exp(tQ) . See 
[50] for a more detailed introduction to these concepts in molecular phylogenetics. Starting 
with character j at the top node of a branch of length t, we denote the probability that no 
substitution occurs along the branch, and therefore also that the top and bottom nodes of 
the branch are PIBD, as:

Note that I jt is different from Pj,j
t  , which is the probability that the character a the end 

of the branch is the same as j, the character at the start of the branch. This is because 
I
j
t requires not only the two characters to be the same, but also that no substitution 

occurred on the branch; when substitutions occurred but resulted cumulatively in no 
change in character at the two ends of a branch (as possible on long branches) we do 
not consider those two states PIBD, and the two characters are treated as independent 
observations.

Our objective is to calculate, for each tip s of φ , the probability distribution 
(ps(0) = 0, ps(1), . . . , ps(N )) of having each possible number of PIBD sequences (defined 
as in Eqs. 1 and 2). To address both the cases of wD

s  and ws , we present our description as 
conditioned on data D; for the case that one is interested in ws , the same equations can be 
used but setting D as non-informative. (For example, with DNA sequences a non-informa-
tive column D will have all entries equal to character “N”, representing an unknown nucleo-
tide, so that the partial likelihood for column D at each tip is 1.) As before, we denote the 
observed character at tip s by Ds ; we now represent the observed characters for the leaves in 
sub-phylogeny φ′ of φ as Dφ′ . In the particular case that φ′ = φ , we have Dφ = D , so we can 
represent the final values of interest for tip s also as ps(i|Dφ).

For most of the following, we condition probabilities on information from only part of φ . 
Given a node ν of φ , and given a sub-phylogeny φ′ of φ , we define pφ

′

ν (i) to be the probability 
that there are exactly i tips in φ′ that are PIBD to ν . We also define pφ

′

ν (i, j) as the probabil-
ity of having i tips in φ′ that are PIBD to ν and to have character j in ν . Similarly, we define 
p
φ′

ν (i|j) to be the probability of having i tips in φ′ that are PIBD to ν , conditional on having 
character j in ν . Finally, pφ

′

ν (i,Dφ′ |j) is the probability that i tips in φ′ are PIBD to ν and that 
the observed data in φ′ is Dφ′ , conditional on having character j in ν.

The first step of the up phase is to initialise pss(i,Ds|j) at every tip s of φ , for every charac-
ter j, and for 0 � i � N :

where δ(x, y) is the Kronecker delta function ( δ(x, y) = 1 if and only if x = y ; δ(x, y) = 0 
otherwise). In the case that Ds is uninformative, we have pss(i,Ds|j) = δ(i, 1).

(3)I
j
t = exp(tQjj) .

(4)pss(i,Ds|j) = δ(j,Ds) δ(i, 1)
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Next, starting from the tips, we move iteratively ‘upward’, toward the root of φ . If branch 
b with length t connects the two nodes ν1 (the parent or upper node) and ν2 (child or lower 
node), then b splits φ into two sub-phylogenies. We call these φ1 and φ2 , with φ2 the sub-
phylogeny of φ containing ν2 (but not b) and all its descendant nodes and branches, and 
φ1 the sub-phylogeny of φ containing all nodes and branches (except b) not in φ2 . Assum-
ing that we have already visited all branches and nodes below b, and therefore know 
p
φ2
ν2 (i,Dφ2 |j) for every character j and every 0 � i � N  , we can then calculate pφ2ν1 (i,Dφ2 |j) 

for every character j and every 0 � i � N :

For the first term pφ2ν1 (0,Dφ2 |j) , the first summand I jt p
φ2
ν2 (0,Dφ2 |j) relates to the case in 

which there are no mutations on the considered branch b, while the second summand 
relates to the case in which at least one mutation event happens on b. Graphical exam-
ples for Eqs. 4 and 5 are given in Additional file 1: Fig. S1. Many of the pφ2ν1 (i,Dφ2 |j) will 
be 0 (when i is larger than the number of tips in φ2 ). In practice, we have made use of this 
to speed up the implementation of the algorithm, but we ignore it here for brevity.

Thanks to Eq. 5 we can ‘move’ probabilities up along branches, starting from the initiali-
sations at the tips. Next, we show how to ‘merge’ probabilities when we reach an internal 
node ν . A given internal node ν splits φ into three sub-phylogenies (a parent one, φP , a left 
child one φL , and a right child one φR ), each associated with one of the three branches adja-
cent to ν (one parent and two child branches). If ν is the root, then for simplicity we con-
sider its parent sub-phylogeny to exist but be empty. Assuming that we have already visited 
all branches and nodes descendant of ν , and therefore know pφLν (i,DφL |j) and pφRν (i,DφR |j) 
for every character j and every 0 � i � N  , and denoting by φL ∪ φR the sub-phylogeny 
obtained by joining sub-phylogenies φL and φR , we can calculate pφL∪φRν (i,DφL∪φR |j) for 
every character j and every 0 � i � N :

Equation 6 is one of the most computationally demanding steps of the algorithm (jointly 
with Eq. 10 below) as it has up to quadratic cost in N. Equation 6 is used on each internal 
node of φ , and so causes the algorithm to have a total time complexity in the order of 
O(N 3).

(5)

pφ2ν1 (0,Dφ2 |j) = I
j
t p

φ2
ν2
(0,Dφ2 |j)+

∑

k

(P
j,k
t − δ(j, k)I

j
t )

N∑

i=0

pφ2ν2 (i,Dφ2 |k)

pφ2ν1 (1,Dφ2 |j) = I
j
t p

φ2
ν2
(1,Dφ2 |j)

...

pφ2ν1 (N ,Dφ2 |j) = I
j
t p

φ2
ν2
(N ,Dφ2 |j) .

(6)

pφL∪φRν (0,DφL∪φR |j) = pφLν (0,DφL |j)p
φR
ν (0,DφR |j)

pφL∪φRν (1,DφL∪φR |j) = pφLν (0,DφL |j)p
φR
ν (1,DφR |j)

+ pφLν (1,DφL |j)p
φR
ν (0,DφR |j)

...

pφL∪φRν (N ,DφL∪φR |j) =

N∑

i=0

pφLν (i,DφL |j)p
φR
ν (N − i,DφR |j) .
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Using Eqs.  5 and  6 iteratively, we can calculate p
φL
ν (i,DφL |j) , p

φR
ν (i,DφR |j) and 

p
φL∪φR
ν (i,DφL∪φR |j) for each internal node ν , each 0 � i � N  , and any character j. We stop 

once we reach node ρ , the root of φ . At ρ we have pφρ(i,Dφ |j) = p
φL∪φR
ρ (i,DφL∪φR |j) for any 

character j and 0 � i � N  . If π are the character frequencies at ρ , we then have the joint 
probabilities:

This concludes the ‘up’ stage of the method, which is more succinctly described in Eq. 8:

The ‘down’ phase is the second and last stage of the algorithm. Starting from root ρ , we 
move toward the tips, visiting each node and branch in pre-order traversal. Given branch 
b of length t connecting nodes ν1 (parent) and ν2 (child), we assume, as in Eq. 5, that φ1 
and φ2 are the two sub-phylogenies induced by b. Assuming that we have already visited 
iteratively all ancestor branches of b, and therefore know pφ1ν1 (i,Dφ1 , j) for every charac-
ter j and 0 � i � N  , we can calculate pφ1ν2 (i,Dφ1 , j) for every character j and 0 � i � N :

Equation 9 allows us to ‘move’ probabilities downward along branches, starting from the 
root. Next, we show again how to ‘merge’ probabilities when we reach an internal node 
ν . Given one left child sub-phylogeny φL of ν , and given its parent sub-phylogeny φP , we 
can calculate pφP∪φLν (i,DφP∪φL , j) for every character j and 0 � i � N :

(7)pφρ(i,Dφ , j) = π(j)pφρ(i,Dφ |j) .

(8)

Algorithm stageUp

[initialise] compute Pt and I
j
t for every branch length t and character j

compute pss(i,Ds | j) for every tip s, character j and 0 � i � N
[iterate] visit every internal node ν in post-order traversal; for each ν, j, i calculate

p
φL
ν (i,DφL | j) and p

φR
ν (i,DφR | j) with Eq. 5

p
φL∪φR
ν (i,DφL∪φR | j)with Eq. 6

[finalise] at root ρ calculate p
φ
ρ(i,Dφ , j) for every j, i using Eq. 7

(9)

pφ1ν2 (0,Dφ1 , j) = (P
j,j
t − I

j
t )

N∑

i=0

pφ1ν1 (i,Dφ1 , j)+ I
j
t p

φ1
ν1
(0,Dφ1 , j)

+
∑

k �=j

P
k ,j
t

N∑

i=0

pφ1ν1 (i,Dφ1 , k)

pφ1ν2 (1,Dφ1 , j) = I
j
t p

φ1
ν1
(1,Dφ1 , j)

...

pφ1ν2 (N ,Dφ1 , j) = I
j
t p

φ1
ν1
(N ,Dφ1 , j) .

(10)

pφP∪φLν (0,DφP∪φL , j) = pφLν (0,DφL |j)p
φP
ν (0,DφP , j)

pφP∪φLν (1,DφP∪φL , j) = pφLν (0,DφL |j)p
φP
ν (1,DφP , j)

+ pφLν (1,DφL |j)p
φP
ν (0,DφP , j)

...

pφP∪φLν (N ,DφP∪φL , j) =

N∑

i=0

pφLν (i,DφL |j)p
φP
ν (N − i,DφP , j) .
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We use Eq.  10 twice for each internal node ν , once with the left child sub-phylogeny 
φL and once replacing φL with the right child sub-phylogeny φR . Using Eqs.  9 and  10 
iteratively, we calculate pφPν (i,DφP , j) , p

φP∪φL
ν (i,DφP∪φL , j) and pφP∪φRν (i,DφP∪φR , j) for 

each internal node ν , each 0 � i � N  and every character j. After we have visited every 
internal node of φ , we reach all tips s using Eq. 9 to obtain pφ\ss (i,Dφ\s, j) for all charac-
ters j and all 0 � i � N  , where φ \ s is the sub-phylogeny obtained by removing s (and 
itsparent branch) from φ . We then combine these probabilities at the tips with the ini-
tialisation probabilities pss(i,Ds|j) to obtain, at every tip s, for all characters j and each 
1 � i � N :

The final probabilities of interest, pφs (i|Dφ) , can be calculated for every 0 � i � N  and 
every tip s as:

where P(Dφ) is the probability of the data (the phylogenetic likelihood of φ and the sub-
stitution model for D). In the case D is empty, that is, if we want to calculate weights ws , 
then P(Dφ) = 1 . Otherwise, if we are interested in weights wD

s  , then P(Dφ) can be cal-
culated as a normalisation factor such that the probabilities pφs (i|Dφ) at any s sum over i 
to 1. In either case, the final PNS scores can be easily calculated substituting the results 
from Eq. 12 into Eqs. 1 or 2.

We summarise the ‘down’ stage of the algorithm in Eq. 13:

Fast approximation

The most efficient algorithm above has cubic cost in N. In some circumstances, for 
example when N > 105 , it becomes important to consider faster solutions. For this rea-
son, we also present an approximate PNS that can be calculated more efficiently. With 
iφ(s) the random variable representing the number of tips in φ that are PIBD to s, we 
have ws = 

∑N
i=1 ps(i)/i = E[1/iφ(s)] (Eq.  1). As an alternative fast approximation we 

consider:

(11)pφs (i,Dφ , j) = pφ\ss (i − 1,Dφ\s, j)p
s
s(1,Ds|j) .

(12)pφs (i|Dφ) =

∑
j p

φ
s (i,Dφ , j)

P(Dφ)
,

(13)

Algorithm stageDown

[initialise] run algorithm stage Up to calculate p
φ
ρ(i,Dφ , j) for root ρ, and

p
φL
ν (i,DφL | j) and p

φR
ν (i,DφR | j) at every internal node ν and every j, i

[iterate] visit every internal node ν in pre-order traversal; for each ν, j, i calculate

p
φ1
ν (i,Dφ1 | j)with Eq. 9

p
φP∪φL
ν (i,DφP∪φL | j) and p

φP∪φR
ν (i,DφP∪φR | j)with Eq. 10

[finalise] at each tip s calculate p
φ
s (i,Dφ , j) for every j, i using Eq. 12

at each tip s calculate p
φ
s (i | Dφ) for every i using Eq. 7

(14)ws =
1

E[iφ(s)]
=

1
∑N

i=1 ips(i)
.
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The weights ws can be computed very efficiently with an up-down pruning approach, 
requiring only O(N ) time, so we refer to them as ‘fast PNS’. The algorithm to calculate 
weights ws has many similarities to the one in the previous Section, and is described in 
detail in the Supplement.

Application to inference of character frequencies

Inference of character frequencies specifically for a single alignment column has broad 
applications such as modeling selection [34, 35], and creating profile HMMs [3, 4, 6] and 
sequence logos [36–38]. Here, we assume that the frequencies of interest are the equi-
librium frequencies at a given alignment column, i.e. the average character frequencies 
over long evolutionary times. Such frequencies are typically represented in molecular 
phylogenetics as π , with π(j) being the equilibrium distribution of character j [50]. This 
definition of frequencies fits well with the assumptions of profile HMMs, and is also rea-
sonable for sequence logos, although we acknowledge that different definitions might be 
also considered in different settings. In this work, we want to investigate and compare 
different methods for inferring π.

The simplest inference method is to use the observed frequency p(j) of character j 
within the given column as an estimate of the true frequency π(j) . This approach cor-
responds to assuming that all sequences are independent of each other. This approach 
might be ideal in some circumstances, for example when the considered sequences are 
not homologous but only evolutionary convergent, but might be inappropriate in oth-
ers. As an example, consider an alignment of 1000 homologous human sequences and 
two mouse sequences (1002 homologous sequences in total). Genetic variation within 
mice, and variation between mice and humans will have negligible effects on estimates 
p(j), which will be dominated by within-human genetic variation. However, human 
sequences are highly correlated, as they have very short divergence time between each 
other, so within-human allele frequencies will typically not represent evolutionary equi-
librium character distributions. The problem here is that using p(j) as an estimate of 
π(j) means treating homologous sequences as independent of each other, while they are 
often strongly correlated due to shared evolutionary histories.

A traditional way to address this problem is to use sequence weights, for example our 
ws , to reduce the contribution of groups of closely related sequences. We can in fact 
define pw(j) , a new estimate of π(j) , as:

where, as before, Ds is the observed character for sequence s at the alignment column D 
under consideration, and δ is again the Kronecker delta function.

We investigate and compare the performance, for character frequency inference, of the 
three weighting schemes introduced above: ws , wD

s  and ws . We also consider two popular 
sequence weights: those defined by [5], which we call HH94, and by [9], which we call 
GSC94. HH94 first calculates, for any s, the score of s at an alignment column D, which 
we will denote HHD

s  . This score HHD
s  is 1/rd, with r the number of different characters in 

D and d the number of times character Ds appears in D. The weight for sequence s, which 
we denote HHs , is then defined as the average of HHD

s  over all columns D of alignment A.

(15)pw(j) =

∑
s wsδ(j,Ds)∑

s ws
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GSC94 defines sequence weights iteratively along a phylogeny, by visiting branches in 
post-order traversal (from the tips to the root). First, all terminal branches (those con-
nected to the tips of φ ) are visited, and the length of a terminal branch connected to 
tip s is assigned as the initialisation value of the weight GSCs of s. Then, every time an 
internal branch b is visited, its length t is distributed among the weights of its descend-
ant sequences. More precisely, first t is split among the tips, with the part ts assigned to s 
being ts = t GSCs/

∑
s′∈Sb

GSCs′ , where Sb is the set of tips descendent from b. Secondly, 
each GSCs for s ∈ Sb is increased by ts . After the last branches connected to the root have 
been processed, the GSCs are the final GSC94 weights.

In addition to the character frequency inference p(j) based on the observed frequen-
cies, and pw(j) based on one of many weighting schemes studied, we also consider char-
acter frequency inference via phylogenetic maximum likelihood (ML). We perform this 
using PhyML v3.1 by fixing the phylogenetic tree (inferred from the whole alignment A 
using FastTree v2.1.10 [51]) and the substitution model exchangeabilities, and inferring, 
one alignment column D at a time, only the equilibrium character frequencies π.

Bayesian approaches to character frequency inference

Above, we introduced point estimate methods for character frequency inference. These 
methods do not measure inference uncertainty, and this can result in a very limited 
summary of the available data. For example, observing character j 100 times in an align-
ment column from 100 distantly related species leads all above methods to infer 100% 
frequency for j; however, so also does observing j two times within an alignment col-
umn of just two closely related sequences. While in the first scenario there should be 
little uncertainty regarding the inferred frequencies, in the second scenario uncertainty 
should be elevated. Using a Bayesian method is a natural way to address this issue, and 
also allows the inclusion of priors over characters frequencies. Here we present a Bayes-
ian variant of the weight-based character frequency inference of Eq. 15.

If A is composed of N independent (non-homologous) sequences, the likelihood of a 
column D is P(D|π) =

∏
s π(Ds) . It is simple to combine this likelihood with a charac-

ter frequency prior to obtain a Bayesian posterior distribution, and perform Bayesian 
character frequency inference. However, we are interested in the general case where the 
sequences in A are related by a phylogeny φ , and therefore are not independent. One 
possible way to perform Bayesian inference of π in this scenario would be using Bayes-
ian phylogenetic methods such as BEAST [52] or MRBAYES [53], but at often excessive 
computational cost. Instead, we propose an approximation of the likelihood function 
P(D|π) based on sequence weights ws:

Similarly, we can replace weights ws in Eq. 16 with any other weighting scheme. In the 
following, we assume a uniform prior P(π) on character frequencies, meaning that all 
possible π are similarly likely a priori. Alternative priors are possible, and some might be 
more realistic, but usually at the cost of introducing more parameters in the model. Our 
approximation of the posterior probability P(π |D) is then:

(16)P̂(D|π) =
∏

s

πws(Ds) =
∏

j

(
π(j)

)∑
s wsδ(j,Ds) .
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where the integral in the denominator is over all possible character frequencies ξ . Equa-
tion  17 is a Dirichlet distribution with parameters αj = 1+

∑
s wsδ(j,Ds) , so in the 

following we use the properties of Dirichlet distributions [54]. The (approximate) maxi-
mum a posteriori and ML π are both given by the weighted observed character frequen-
cies pw(j) in Eq. 15. The approximation of the expectation of π(j) , E(π(j)|D) is however:

where B is the number of possible characters in the considered alphabet, 
αj = 1+

∑
s wsδ(j,Ds) and α0 = B+

∑
s ws . This can be seen as the ML estimate of π 

in the presence of 1 pseudo-count per character. The posterior variance is then approxi-
mated as:

which can be used as a measure of the uncertainty over character frequen-
cies. However, considering that Eq.  17 has beta-distributed univariate marginals 
P̂(π(j)|D) ∼ Beta(αj ,α0 − αj) , in the following we derive approximate 95% posterior 
probability intervals using the stats.beta.ppf function in scipy [55].

Simulations

We use simulations to test and compare computational demands of calculating PNS val-
ues as well as for assessing the accuracy of different approaches to infer position-specific 
character frequencies. In the base simulation scenario, we simulate nucleotide sequence 
evolution along a 100 vertebrate taxa phylogeny (Fig. 1) using Dendropy [56]. We use a 
HKY85 substitution model [57] with transition:transversion ratio κ = 3 both for simula-
tion and inference. We simulate 10 replicates, each replicate consisting of an alignment 
of 1000 columns. Alignment columns are evolved independently of each other (condi-
tional on the tree and the substitution model). As we do not simulate indel events, so we 
do not consider gap characters in our inference; when used on real data we would treat 
gap characters as missing data, as typically done in phylogenetics, but it would also be 
possible to include the gap character in the substitution model state space (see e.g. [49]).

Specific equilibrium character frequencies π are assigned to each alignment col-
umn. For each alignment, 800 columns ( 80% ) are simulated as evolving under the 
same background equilibrium character frequency distribution, which we set to 
π(A) = π(T ) = 0.3 and π(C) = π(G) = 0.2 . The background character frequency 
distribution represents, in our simulations, the evolutionary dynamics of positions 
not strongly affected by selective forces; at these positions, the equilibrium character 
frequency distribution is constant because it is mostly determined by neutral muta-
tional biases, which we assume constant across all alignment columns. The remain-
ing 20% of alignment columns are simulated under position-specific selection, with 

(17)P̂(π |D) =
P(π)P̂(D|π)

P(D)
=

∏
j

(
π(j)

)∑
s wsδ(j,Ds)

∫
ξ

∏
j ξ

∑
s wsδ(j,Ds)

j

(18)Ê(π(j)|D) =
1+

∑
s wsδ(j,Ds)

B+
∑

s ws
=

αj

α0
,

(19)Var(π(j)|D) ≈
αj(α0 − αj)

α2
0(α0 + 1)

,
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position-specific equilibrium character frequency π sampled from a Dirichlet distri-
bution prior with α = 0.1 (Additional file 1: Fig. S2A).

Our aim is, for each replicate and each alignment column, to infer π from the simu-
lated sequences alone. For each replicate/alignment, we first infer a phylogenetic tree 
and alignment-wide HKY85 substitution model parameters using FastTree v2.1.10 
[51]. We then consider this tree and the HKY85 κ parameter to be fixed and infer 
column-specific character equilibrium frequencies. While π is inferred separately at 
each column, the HKY85 alignment-wide parameters (including nucleotide frequen-
cies) inferred with FastTree are used in some sequence weighting schemes (for exam-
ple, in Eq. 3). The methods we used to infer equilibrium frequencies are:

• the observed character frequencies in the alignment column (the p(j) described 
above),

• observed frequencies corrected using the HH94 [5] weights and Eq. 15,
• observed frequencies corrected using the GSC94 [9] weights and Eq. 15,
• observed frequencies corrected using the PNS weights ws from Eq.  1 combined 

with Eq. 15,
• observed frequencies corrected using our PNS weights conditional on data, wD

s  
from Eq. 2, combined with Eq. 15,

• observed frequencies corrected using our fast approximate PNS ws weights 
(Eq. 14) combined with Eq. 15,

• Bayesian variants of the methods above, and
• ML phylogenetic inference (only of equilibrium character frequencies) with 

PhyML v3.1 [58].

All the methods above, except FastTree and PhyML, were implemented in custom 
Python scripts available from https:// bitbu cket. org/ nicof may/ novel tysco res.

In addition to the basic simulation scenario, we also consider variant scenarios in 
order to investigate how certain parameters can affect the results:

• We consider alternative tree lengths, which we obtain by multiplying all branch 
lengths in the tree in Fig. 1 by a constant coefficient, either 0.2 or 5.

• We consider the case of amino acid characters instead of nucleotides. In this case, 
we simulate under an LG substitution model [59], and when we do inference we 
assume that the substitution model (including character frequencies) is known. 
Column-specific character frequencies are inferred as usual. In this case, equilib-
rium character frequencies for columns under selection are sampled from a Dir-
ichlet distribution prior with α = 0.02 (Additional file 1: Fig. S2B).

• To test the effect of very biased taxon sampling in an alignment, we added mul-
tiple (either 100 or 1000) human tips to the tree in Fig.  1. The short phylogeny 
relating the human sequences was randomly sampled at each replicate under a 
standard coalescent prior [60] with mean coalescent time 0.001 between human 
sequences. This short human phylogeny was then appended to the human tip of 
the tree in Fig. 1.

https://bitbucket.org/nicofmay/noveltyscores
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• To test the robustness of methods to the assumption of an ultrametric tree (a tree 
where all tips have equal distance from the root), we consider the case of a strongly 
non-ultrametric trees, as is common for some viruses such as influenza.

Results
Sequence weights

We implemented all the considered weighting schemes and all simulations within cus-
tom Python scripts (https:// bitbu cket. org/ nicof may/ novel tysco res), making use of the 
phylogenetic python package dendropy [56]. We implemented all the algorithms pre-
sented in the Methods section for calculating weights ws and wD

s  , and used comparisons 
of weights from different algorithms to assess the correctness of the implementations.

PNS shows similar trends to previous weighting schemes HH94 and GSC94, assign-
ing higher weights to phylogenetically isolated taxa and smaller weights to taxa within 
clades with many other closely related taxa (Fig. 2). In particular, PNS seems to show 
an intermediate ‘intensity’ compared to the two other schemes. GSC94 weights are the 
most extreme, assigning the highest weights of any scheme to the most evolutionarily 
isolated taxa in the tree of Fig. 1, such as Lamprey, Coelacanth and frog Xenopus tropica-
lis. For example, for Lamprey, the GSC94 normalized weight is about 3 times larger than 
HH94, while PNS is about 2 times larger than HH94. Conversely, for taxa in over-rep-
resented clades, such as Human, GSC94 gives the smallest weight, HH94’s weight being 
many times larger, and PNS being intermediate. Rescaling the branch lengths of the tree 
does not change this overall trend (Additional file 1: Fig. S3).

Fig. 2 Comparison of different weighting schemes. Bars show weights assigned to the tips of tree in Fig. 1 
(species names on x‑axis labels) in the scenario of nucleotide data (1 locus of 1kb) by different weighting 
schemes: PNS (weights ws ), HH94 [5] and GSC94 [9]. Weights from each scheme are normalized so that the 
sum over taxa is 1

https://bitbucket.org/nicofmay/noveltyscores
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Computational demand

Computational efficiency is one of the main requirements for applicability of weighting 
schemes, in particular when considering large datasets; for this reason, here we compare 
the computational demand of different approaches. Calculating sequence weights based 
on a phylogeny (PNS and GSC94) usually requires limited computational demand, with 
the dominant cost being the estimation of the phylogeny itself (Fig.  3 and Additional 
file 1: Fig. S4). One exception to this are the wD

s  weights of Eq. 2: these, being conditional 
on the data observed at a specific alignment column, need to be re-computed for each 
position. Calculation of these weights requires time cubic in N, and so it is not surprising 
that these weights are slower than phylogenetic inference. The other slowest method for 
character frequency is phylogenetic ML (PhyML), which also needs to be run once for 
each alignment column. All other approaches are at least one order of magnitude faster 
than PhyML and wD

s  in estimating character frequencies, and are practical also for larger 
trees (see e.g. Fig. S4 where we included 1000 closely related taxa). Calculating weights 
wD
s  and estimating frequencies by ML, instead, becomes infeasible on such larger trees. 

Estimating frequencies using HH94 weights is the fastest of the methods considered, 
as it does not require prior estimation of a phylogenetic tree, and it might therefore be 
one of the few possible choices available for extremely large datasets. The second fastest 
approach is GSC94, followed by the ws weights, and finally by the ws weights, although 

Fig. 3 Computational demand of different approaches to character frequency estimation. Violin plots 
summarise the running times, in seconds, of different methods. All analyses were run on a MacBook Pro 2017. 
Each plot contains values for 10 replicates of the scenario of the unscaled tree in Fig. 1 and nucleotide data. 
Time cost for computing frequencies from un‑weigthed observed characters is not shown as it is negligible. 
Time demand of Bayesian variants of PNS weights is also not shown, as it is the same as for their non‑Bayesian 
variants (Bayesian variants only require the addition of pseudocounts compared to non‑Bayesian variants). 
‘FastTree’ represents the cost of running phylogenetic inference with FastTree prior to weight calculation. 
Orange violin plots show the total cost (including computational cost of phylogenetic inference for methods 
requiring a phylogeny). Blue violin plots show the cost of calculating the scores without taking into account 
the cost of phylogenetic tree inference. For wD

s  and ‘PhyML’, blue and orange plots overlap. Calculating HH94 
weights is, overall, the fastest approach among those considered here, as it does not require phylogenetic 
inference
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these methods have very similar computational demand once the cost of inferring a phy-
logenetic tree is taken into account.

Accuracy of character frequency inference

Here we assess the ability of different weighting schemes, including those derived from 
our new PNS methods, to facilitate inference of column-specific character frequencies. 
We measure the accuracy of an approach by calculating, at each alignment column, the 
Euclidean distance between simulated and inferred character frequencies. ML phyloge-
netic inference with PhyML is almost always the most accurate method (Figs. 4 and 5). 
This is perhaps not surprising, given that this approach fully models the effects of vary-
ing equilibrium character distributions on character evolution along the phylogeny. 
However, this approach is also the most computationally demanding, and the advantage 
of schemes based on sequence weights is that they can be much faster, in particular on 
datasets with many sequences or many alignment columns. The only case where PhyML 
seems marginally less accurate than weights-based methods is at high divergence and 
strong selection (Fig.  5f ). This is probably due to the particular implementation in 
PhyML, which does not allow character frequencies below 1%.

All the weighting schemes considered improve character frequency inference com-
pared to the simplest approach of counting the observed characters at an alignment 

Fig. 4 Equilibrium frequency inference error. Comparison of the accuracy of different methods for 
reconstructing equilibrium frequencies in the basic simulation scenario (nucleotide characters and tree as 
in Fig. 1). Violin plots summarise the nucleotide frequency inference error (on the y‑axis), measured as the 
Euclidean distance between the vectors of column‑specific simulated nucleotide frequencies and inferred 
ones. Each plot contains 10 replicates, and each replicate contains 800 alignment columns evolved under 
the background nucleotide frequencies (a, c and e), or 200 alignment columns evolved under equilibrium 
nucleotide frequencies sampled from a Dirichlet distribution with α = 0.1 (b, d and f). Horizontal black 
dashed lines aid comparison by showing the median error of the first method (frequencies extracted from 
character counts). In a and b the tree branch lengths were scaled by a factor of 0.2; in c and d by a factor of 
1.0; and in e and f by a factor of 5.0. Each plot shows results for a particular character frequency inference 
method, indicated on the x‑axis. Results from additional methods (e.g. Bayesian approaches) are shown in 
Additional file 1: Fig. S5
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column (Figs. 4 and 5). GSC94 and ws weights seem to give more accurate results than 
HH94 and ws weights, in particular within very biased datasets (Fig. 5c–f). The latter is 
not too surprising, given that weights ws are an approximation of weights ws.

We note that in Figs. 4 and 5 the weights ws and GSC94 give very similar accuracy, with 
GSC94 sometimes marginally outperforming ws . In theory, we expect the weights ws , 
compared to GSC94, to benefit from the advantages of being based on intuitive math-
ematical principles and accounting for the effects of saturation. However, saturation 
probably has very little impact in this scenario (and in many real life scenarios); another 
important factor at play here might be that PNS gives more uniform weights compared 
to the more ‘extreme’ GSC94 weights. The latter might perform better in this case, pos-
sibly because PNS counts character observations as independent after one mutation 
event, when in reality more mutation events might be needed to approach near-inde-
pendence of character observations. While our weights ws (and also wD

s  ) are calculated 
exactly (aside from rounding errors), this does not mean that an estimate of character 
frequencies based on these weights will be exact with respect to phylogenetic maximum 
likelihood optimization. Rather, they give an approximation, and our weights were not 
defined specifically in order to optimise character frequency estimation.

A limitation of GSC94 is that it does not work well with trees in which tips have very 
different distances from root (non-ultrametric trees). This effect has limited impact in 
our basic simulation scenario, as the tree in Fig. 1 is not far from ultrametric. However, 

Fig. 5 Equilibrium frequency inference error under different scenarios. Similarly to Fig. 4, we compare 
the accuracy of different methods for reconstructing equilibrium frequencies. However, here we consider 
the simulation scenarios of amino acid sequences and modified trees with increased over‑representation 
of human sequences. Values shown are as in Fig. 4. Each plot contains 10 replicates, and each replicate 
contains 800 alignment columns evolved under the background character frequencies (a, c and e), or 200 
alignment columns evolved under equilibrium character frequencies sampled from a Dirichlet distribution 
with α = 0.1 for d and f and α = 0.02 for b. In a and b simulations are under the tree in Fig. 1 and with 
amino acid sequences. In c and d we consider nucleotide sequences and the tree in Fig. 1 with 100 added 
human sequences (see Methods). In e and f we instead add 1000 human sequences. Results from additional 
methods (e.g. Bayesian approaches) are shown in Additional file 1: Fig. S5. Results from PhyML are not 
available, due to excessive computational demand
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when we consider a strongly non-ultrametric tree (Fig. 6a), as is often observed for some 
viruses such as influenza [61, 62], we see that the GSC94 weights are strongly impacted, 
resulting in considerably worse inference than any of the other weighting schemes stud-
ied, and worse even than observed character frequencies (Fig. 6b). The reason is that, in 
such strongly non-ultrametric trees, GSC94 weights at terminal, younger tips tend to be 
considerably larger than GSC94 weights at older tips closer to internal nodes and in par-
ticular those closer to the root. Even in cases when observed characters close to internal 
nodes can provide useful information regarding equilibrium frequencies, for example 
when branches are sufficiently long in Fig. 6a, GSC94 weights are still almost exclusively 
distributed on the latest two phylogenetic tips in this scenario. All other approaches 
seem to perform similarly well in the scenario of Fig.  6, including simple base count-
ing, and the likely reason is that here no clade is over-represented, and so a weighting 
scheme is not needed in the first place for the considered application.

Using sequence weights conditional on the data at the specific column, i.e. wD
s  from 

Eq.  2, unexpectedly does not seem to improve accuracy (Additional file  1: Fig.  S5) 
while, as shown in Fig.  3, it does significantly impact computational demand. For 
these reasons, we do not generally recommend the use of weights wD

s .
Using a Bayesian approach to character frequency inference means that the prior on 

character frequencies can affect the result of the inference. This can have a positive 
effect if the prior distribution is based on reliable evidence from sources other than 
the currently considered dataset. However, in our simulations we consider a com-
pletely arbitrary prior (corresponding to observing one character of each type at the 
considered alignment column) and this has the effect of slightly shifting the inferred 
frequencies closer to a uniform distribution (Additional file  1: Fig.  S5). Expectedly, 
this overall improves character inference at sites evolving under the background fre-
quencies, while it worsens inference at sites evolving under strong selection.

Discussion
We have proposed a new approach for assigning weights to the sequences in an align-
ment, or, equivalently, to the tips of a phylogenetic tree. First, we define phylogenetic 
novelty scores (PNS) based on rigorous mathematical principles. These scores sum-
marise how novel is a sequence (respectively, tip), in evolutionary terms, with respect 
to the rest of the alignment (respectively, tree) and have a number of desirable prop-
erties, including meeting the objective criteria of [33].

Fig. 6 Equilibrium frequency inference error with a strongly non‑ultrametric tree. a: The strongly 
non‑ultrametric phylogenetic tree under which simulations for this figure are performed. Some tips of the 
tree (e.g. T10, T20) are close to the root while others (T1, T11) are considerably more evolutionarily distant; 
in an ultrametric tree, all tips would instead have the same distance from the root. b and c: Violin plots 
summarising nucleotide frequency inference error (y‑axis), measured as the Euclidean distance between 
the vectors of column‑specific simulated nucleotide frequencies and inferred ones. Each plot contains 10 
replicates, and each replicate contains (b) 800 alignment columns evolved under the background nucleotide 
frequencies, or (c) 200 alignment columns evolved under equilibrium nucleotide frequencies sampled from 
a Dirichlet distribution with α = 0.1 . Each plot refers to a particular character frequency inference method, 
indicated on the x‑axis

(See figure on next page.)
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We have showcased our scores’ potential use by considering, as an example applica-
tion, the inference of position-specific character frequencies. We demonstrate, using 
simulations, that our scores can improve accuracy of character frequency estimation 
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compared to some popular sequence weighting schemes, in particular HH94 [5] (see 
for example Figs. 4E and 5C, E). This however usually comes at the cost of additional 
computational demand, especially considering that our scores require the availability 
of an inferred phylogenetic tree, and considering that this might not be feasible for 
extremely large datasets. PNS and GSC94 [9] weights both require a phylogenetic tree 
estimate, and both show very similar performance in our main simulation scenario, 
with GSC94 marginally outperforming PNS. However, we demonstrate that, unlike 
GSC94 weights, PNS are not affected when the assumption of tree ultrametricity is 
violated (Fig. 6), and similar patterns are expected with respect to the robustness to 
the position of the tree. This shows that PNS are particularly versatile in applicability, 
as one would expect from their formal phylogenetic derivation. Over most scenarios, 
the most accurate method for position-specific character frequency inference seems 
to be standard phylogenetic ML inference; however, this approach is also very compu-
tationally demanding, and is not suitable for large datasets.

Character frequency inference, our example use-case for PNS, has a number of 
important applications. Character frequencies are fundamental parameters used 
in HMM profiling of protein families [3, 6], and our scores could therefore improve 
approaches to this task. Our scores could also be used to improve character fre-
quency estimates used within alignment column-wise conservation scores [36–38], 
frequently defined as

where p(j) is the frequency of character j at a given alignment column, and B is the 
number of characters ( B = 4 for nucleotides and B = 20 for amino acids). ( Smax is the 
maximum possible entropy at the considered position, equal to log2 B , while Sobs is the 
observed value.) Typically, the p(j) are inferred from the observed character frequencies 
at an alignment column; however, as we have shown, our PNS can significantly improve 
the inference of these frequencies, and therefore of conservation scores. Our simulations 
suggest that this is in fact the case (Additional file 1: Fig. S6).

Sequence weights, like our PNS, also have many other applications, for example to 
aid alignment inference. They have been shown to improve sequence alignment [1] 
and profile searches [5, 10], and examples of their use include PSI-BLAST [2] (which 
uses HH94 weights) and the CLUSTAL family of aligners (e.g. [1, 10] use GSC94 
weights). Our scores could therefore result in improved alignments.

Sequence weights are also used to measure alignment quality, and our scores could 
be used for example in the context of the information content score (ICS) [63] or the 
norMD approaches [64]. Furthermore, our scores could be used in measures of con-
servation priority in conservation biology, such as phylogenetic diversity PD [25], 
quadratic diversity Q [30] and the phylogenetic entropy index HP [31].

Lastly, we note that our scores could be used to improve the definition of phylo-
genetic effective sample size to be used for AICc [65] and BIC [66]. This is usually 
defined as the number of alignment columns, but this is not the only reasonable 
choice [67, 68].

(20)R = Smax − Sobs = log2 B−



−

B�

j=1

p(j) log2 p(j)
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Conclusions
We have proposed new sequence weights that benefit from a number of favourable 
properties and are derived from rigorous mathematical evolutionary principles. These 
weights do not enjoy the same level of computational efficiency and simplicity of some 
other methods, in particular due to the requirement of an input phylogenetic tree relat-
ing the considered sequences. However, when applied to the inference of character 
frequencies, we showed that these sequence weights can be used effectively in a broad 
range of scenarios, offering considerable computational advantage over full phyloge-
netic ML estimation, and often leading to more accurate estimates than other sequence 
weighting schemes. Thanks to their computational efficiency and robustness to phylo-
genetic assumptions, our phylogenetic novelty scores could have a positive impact in a 
number of fields, from sequence alignment and protein family profiling to phylogenetics 
and conservation biology.
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