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Background
Many biological samples present heterogeneity; namely, their cellular composition varies 
phenotypically and functionally. The cell-type proportions can exhibit high variability 
cross samples from the same tissue type, potentially indicating the occurrence of various 

Abstract 

Background:  Biological tissues consist of heterogenous populations of cells. Because 
gene expression patterns from bulk tissue samples reflect the contributions from all 
cells in the tissue, understanding the contribution of individual cell types to the overall 
gene expression in the tissue is fundamentally important. We recently developed a 
computational method, CDSeq, that can simultaneously estimate both sample-specific 
cell-type proportions and cell-type-specific gene expression profiles using only bulk 
RNA-Seq counts from multiple samples. Here we present an R implementation of 
CDSeq (CDSeqR) with significant performance improvement over the original imple-
mentation in MATLAB and an added new function to aid cell type annotation. The R 
package would be of interest for the broader R community.

Result:  We developed a novel strategy to substantially improve computational effi-
ciency in both speed and memory usage. In addition, we designed and implemented 
a new function for annotating the CDSeq estimated cell types using single-cell RNA 
sequencing (scRNA-seq) data. This function allows users to readily interpret and visual-
ize the CDSeq estimated cell types. In addition, this new function further allows the 
users to annotate CDSeq-estimated cell types using marker genes. We carried out addi-
tional validations of the CDSeqR software using synthetic, real cell mixtures, and real 
bulk RNA-seq data from the Cancer Genome Atlas (TCGA) and the Genotype-Tissue 
Expression (GTEx) project.

Conclusions:  The existing bulk RNA-seq repositories, such as TCGA and GTEx, provide 
enormous resources for better understanding changes in transcriptomics and human 
diseases. They are also potentially useful for studying cell–cell interactions in the tissue 
microenvironment. Bulk level analyses neglect tissue heterogeneity, however, and 
hinder investigation of a cell-type-specific expression. The CDSeqR package may aid 
in silico dissection of bulk expression data, enabling researchers to recover cell-type-
specific information.

Keywords:  Deconvolution, Tissue heterogeneity, Gene expression, CDSeq

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Kang et al. BMC Bioinformatics          (2021) 22:262  
https://doi.org/10.1186/s12859-021-04186-5

*Correspondence:   
kangkai0714@gmail.com; 
li3@niehs.nih.gov 
†Kai Kang and Caizhi David 
Huang have contributed 
equally to this work
Biostatistics 
and Computational Biology 
Branch, National Institute 
of Environmental Health 
Sciences, Research Triangle 
Park, Durham, NC 27709, USA

http://orcid.org/0000-0002-4348-3941
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04186-5&domain=pdf


Page 2 of 12Kang et al. BMC Bioinformatics          (2021) 22:262 

physiological and pathological activities in the samples. Therefore, knowing the cellu-
lar composition of heterogeneous samples is important to better understand the roles 
of distinct cell populations. For example, dissection of tumor-infiltrating immune cells 
holds promise for gaining deeper insights into the underlying mechanisms of cancers, 
for discovering predictive biomarkers, as well as for the development of novel treatment 
strategies [1, 2]. Although single-cell RNA sequencing has become popular, in addition 
to its high cost and sparse read counts, isolating cells from solid tissues especially fro-
zen tissues remains challenging. Moreover, the inevitable sparsity of RNA molecules 
sequenced from frozen samples further challenges computational techniques. Therefore, 
bulk RNA-seq data are still routinely generated in many research projects. The hetero-
geneous nature of bulk RNA-seq, however, hampers efforts to study how individual cell 
types in the tissue microenvironment influence the underlying biology of interest. Com-
putational deconvolution methods [3–16] are complementary to single-cell analysis and 
are very useful tools for extracting cell-type-specific signals from bulk measurements.

This work describes an R package (CDSeqR) implementation of CDSeq (complete 
deconvolution using sequencing data) [5] that we recently developed in MATLAB. 
CDSeq was designed to simultaneously estimate the cell-type-specific gene expres-
sion profiles (GEPs) and the sample-specific cell-type proportions using bulk RNA-seq 
data without the need of reference GEPs (i.e. expression of pure cell lines or scRNA-
seq data). Here, we not only implemented a user-friendly R version for CDSeq but also 
substantially improved its computational efficiency in both speed and memory usage. 
Specially, we designed a dimension Reduction-Recover approach that is automatically 
parallelized to facilitate computation. In addition, we implemented a new functional-
ity for annotating the CDSeq-estimated cell types using scRNA-seq data. Moreover, we 
employed a recently published deconvolution benchmarking pipeline [17] to thoroughly 
test CDSeqR using both cell mixtures [5] and simulated data [18–20]. Throughout the 
manuscript, we refer to “CDSeqR” as the package and “CDSeq” as the deconvolution 
procedure.

Implementation
Statistical model

CDSeq employs a hierarchical Bayesian modeling strategy to account for the mixing 
process of observed RNA reads from different cell types. Specifically, the gene expres-
sion of any particular cell type, in the form of read counts, is modeled by a Dirichlet mul-
tinomial random variable and the bulk measure is therefore a weighted sum of all cell 
types (i.e., Dirichlet multinomial random variables) constituting the bulk tissue. Then, 
CDSeq uses a Gibbs sampler [5, 21] for parameter estimation. A detailed description of 
the model and solver can be found in [5].

A dimension reduce‑recover strategy for fast deconvolution

A practical challenge for our original MATLAB implementation of CDSeq was the high 
computational demand, especially for large datasets. The Gibbs sampler employed for 
parameter estimation requires storage of several large vectors whose sizes are data-
dependent; therefore, it can be computationally demanding especially for large datasets. 
We propose a novel strategy for alleviating this issue. Our strategy, named dimension 
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Reduce-Recover, consists of two steps: dimension reduction and dimension recovery. 
This approach was based on the following assumption: cell proportions in each sample 
are invariant with respect to the genes used in deconvolution. Specifically, for a bulk 
RNA-seq sample, the proportions of cell types can be estimated using multiple subsets 
of randomly selected genes. Therefore, for a bulk RNA-Seq dataset, we should be able 
to obtain the estimated cell-type proportions for each sample in the dataset regardless 
of the subset of genes considered. This idea allows us to calculate multiple independ-
ent estimates of cell-type proportions using many subsets of randomly selected genes 
processed in parallel. The final estimate of the cell-type proportions is the average of the 
independent estimates. We then estimate the cell-type specific gene expression profiles 
by post-multiplying the input data matrix by a generalized inverse of the matrix of final 
estimated cell-type proportions (Additional file 1: Methods). We have carried out thor-
ough testing and demonstrated that this approach substantially speeds up computation 
without sacrificing the performance (see Supplementary Note for details, and Additional 
file 1: Fig. S9). We further evaluated the effects of the size of the gene list and the block 
number on the performance when using the Reduce-Recovery strategy (Additional file 1: 
Fig. S9).

Cell type assignment function in CDSeqR

Bulk tissue RNA-seq samples usually present a great degree of heterogeneity. For exam-
ple, cancer cells in a tumor exhibit a spectrum of phenotypic and transcriptomic stages 
[22]. This spectrum makes the assignment of identified cell types to known cell types 
challenging. In our original MATLAB version, the cell-type assignment was based on 
correlation analysis using a user-provided pure cell line GEPs. While this option remains 
available, the increasing number of publicly available single cell data sets, e.g. [20, 23], 
provide alternative GEPs for cell-type assignment. Thus, in CDSeqR, we designed and 
implemented a new function to perform cell-type assignment for the downstream pro-
cessing of CDSeq estimated cell-type-specific GEPs. In addition, there may be cases 
where reliable reference datasets from either pure cell line or single cell RNA-seq may 
not be available. Annotation of CDSeq estimated cell types using cell type marker genes 
can also be performed in CDSeqR.

Specifically, this new function, cellTypeAssignSCRNA, embodies three approaches to 
annotate the CDSeq-estimated cell types. First, it employs correlation analysis to meas-
ure the similarity between the CDSeq-estimated cell-type-specific GEPs and the summa-
rized cell-type specific gene expression profiles from scRNA-seq data. When scRNA-seq 
reference data are provided, cellTypeAssignSCRNA first sums up the read counts of all 
cells from the same cell type to form the aggregated cell-type specific gene expression 
profiles for each cell type in the scRNA-seq data. Next, cellTypeAssignSCRNA performs 
pair-wise correlation analysis between the CDSeq estimated GEPs and the scRNA-seq 
GEPs and assign the CDSeq estimated cell type to the cell type in the scRNA-seq data 
with which it has the highest correlation. A threshold for the correlation can be set a 
priori. Any CDSeq estimated cell types that failed to achieve the correlation threshold 
would be considered unannotated. Note that it is possible that more than one CDSeq 
estimated cell types can match the same cell type.



Page 4 of 12Kang et al. BMC Bioinformatics          (2021) 22:262 

Second, cell annotation can also be achieved by clustering both the user-provided 
scRNA-seq reference data with the pseudo scRNA-seq data generated from the CDSeq 
estimated cell-type specific gene expression profiles. Under the assumption that the 
total read count of each CDSeq estimated cell type follows a negative binomial distri-
bution, cellTypeAssignSCRNA generates the total synthetic read count for each CDSeq 
cell type using the CDSeq estimated GEPs for the cell using the R function rnbinom (n, 
size, mu) where n can be any integer greater than or equal to 1 (See Additional file 1: 
Figs. S11–S16) and, by default, mu (mean) and size (dispersion) are estimated from the 
reference scRNA-seq. These default parameters in rnbinom can be replaced by user-pro-
vided parameters. Next, cellTypeAssignSCRNA generates the synthetic single-cell read 
counts for each CDSeq cell type using the CDSeq-estimated GEPs and the R function 
rmultinom(n, size, prob), with n being the number of pseudo cells per CDSeq estimated 
cell type (same as the n in rnbinom), size set equal to the total read count for the cell type 
as generated by the preceding call to rnbinom, and prob provided by CDSeq-estimated 
cell-type-specific gene expression profile expressed as a multinomial parameter vector 
(i.e., expression levels expressed as proportions that sum to one). The resulting synthetic 
scRNA-seq data can then subsequently be combined with user provided scRNA-seq 
data for clustering analysis and cell type annotation using the Seurat package [24, 25]. 
The clustering algorithm implemented in Seurat is a graph-based approach based on 
the outcomes of principal components analysis. The number of clusters cannot be set 
explicitly but is affected by a resolution parameter; the larger the resolution parameter is 
the more clusters will be returned. The cell types identified by CDSeq from bulk RNA-
seq data were clustered with the individual cells from the scRNA-seq data. We then 
assigned CDSeq-identified cell types to the cell type from the scRNA-seq data to which 
the majority of the cells in the cluster belong (Fig. 1).
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Fig. 1  Schematic illustration of our cell-type assignment approach. It consists of five steps: (1) generating 
synthetic single-cell read counts (gray rectangles) for the CDSeq-estimated cell-type-specific GEPs (white 
rectangles); (2) combining the pseudo scRNA-seq data with user-provided scRNA-seq data (colored 
rectangles), then performing clustering using Seurat; (3) visualizing the result using tSNE plot to show the 2D 
embedding of the clustering outcomes with differently colored circles denoting distinctive cell types in the 
single-cell data and gray squares denoting the CDSeq-identified cell types; (4) annotating each cluster to the 
cell type to which the majority of the cells in the cluster belong; (5) assigning the CDSeq-identified cell types 
accordingly as in step 4
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Lastly, in the case where the reference data are not available, cellTypeAssignSCRNA 
carried out clustering analysis of the pseudo single-cell data generated from the CDSeq-
estimated GEPs using Seurat [24, 25] and identifies the marker genes in each cluster 
for cell type annotation. The marker genes for each cluster are identified by comparing 
their expression levels in the cluster with those in all other clusters. We show that this 
approach works reasonably well (Fig. 4 and Additional file 1: Fig. S17, S18, S19 and S21) 
using synthetic mixtures of human brain cells [20].

Results
We validated CDSeqR using both synthetic and cell mixtures [5] with known cell-type 
composition and cell-type-specific GEPs. For cell mixtures, the CDSeqR estimates using 
the Reduce and Recovery strategy matched the known cell-type-specific GEPs and sam-
ple-specific cell-type proportions (Fig. 2) while reducing computational time by about 
96% (from about 120 to 5 min) compared to the original implementation. In our pre-
vious work, we compared CDSeqR with seven other deconvolution methods [5]. Here, 
we employed a recently published benchmark pipeline [17] to simulate data for exten-
sive comparisons with additional existing deconvolution methods. In total, we com-
pared CDSeqR with 14 competing deconvolution algorithms [6, 16, 26–34] (Fig. 3 and 
Additional file 1: Figs. S6–S8) including linseed [6]. CDSeqR software and linseed both 
provided accurate cell-type proportion using similar amounts of computer time (Addi-
tional file 1: Figs. S1–S5). We further evaluated CDSeq and our new cell type annotation 
function by examining the results of using different number of cell types in the synthetic 

Fig. 2  Results of CDSeqR analysis of the in vitro cell mixtures. The mixtures comprise 4 four cell types: 
cancer-associated fibroblast, lymphocytes, normal breast cells, tumor cells (see Additional file 1: Methods 
for details). We ran CDSeqR on 32 bulk RNA-seq samples with known cell proportions in each sample [5] 
using 7 randomly sampled gene subsets of size 500 (7 data blocks, each of 500 genes). In the first row, each 
point represents a sample (n = 32); in the second row, each point represents a gene (n =  ~ 19,000). True and 
estimated GEPs are normalized as RPKM. The line in each panel is the x = y line
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mixtures generated from scRNA-seq data (Additional file 1: Figs. S10–S16). In addition, 
we examined CDSeqR’s ability to detect immune cell subtypes in PBMC mixtures, a 
challenging problem referred to as deep deconvolution [5, 27]. Specifically, we generated 
synthetic mixtures from 8 immune subtypes: B cells, Cytotoxic T cells, Helper T cells, 
Memory T cells, Monocytes, Naïve Cytotoxic T cells, Naïve T cells, and Natural killer T 
cells using scRNA-seq [18] and demonstrated that CDSeqR was able to identify all the 
immune cell subtypes and provided accurate estimates of cell type proportions (Addi-
tional file 1: Fig. S21 and S22). We further tested CDSeqR using GTEx [35] and TCGA 
[36] datasets and showed that the CDSeq identified cell types were consistent with the 
published single-cell RNA-Seq results [19, 20] (Additional file 1: Figs. S23 and S24).

One input parameter for CDSeq function is the number of cell types to be decon-
volved. The choice for the input is data dependent. For example, for a large dataset (e.g., 
> 50), specifying a large number of cell type may help CDSeqR to detect all the major 
cell types due to the GEP heterogeneity even for a same cell type. Fortunately, CDSeqR 
allows the user to specify a range of possible cell type numbers as an input vector. For 
each choice in the vector, CDSeqR will perform computation in parallel and estimate 
the number of cell types based on the posterior distribution of the underlying model. In 
all in silico mixtures tested, CDSeqR provided accurate estimates for the number of cell 
types in the synthetic data.

In addition, one may use the cell type information in scRNA-seq data from the same 
tissue type as a guide. Here we showed that using synthetic mixture datasets generated 
from scRNA-seq data, the newly implemented cell type annotation function can success-
fully uncover the cell types (Fig. 4 and Additional file 1: Figs. S10–24). Our simulation 

Fig. 3  Comparisons with existing deconvolution methods using data generated from benchmark pipeline 
[17]. We compared CDSeqR with 14 other deconvolution methods using synthetic mixtures generated 
from three scRNA-seq datasets [19, 20, 40]. The results for the PBMC dataset [40] are shown here. The X-axis 
represents different deconvolution methods whereas the Y-axis denotes the correlation between the 
estimated cell type proportions by each method and the true cell type proportions. We generated 10 sets of 
100 mixtures. Each dot in the box plots represents a deconvolution result from one of the 10 sets. CDSeqRR 
refers to deconvolution with the Reduce-Recover strategy whereas CDSeq denotes deconvolution without 
using Reduce-Recover option Additional results of the comparisons are available in Additional file 1: Figs. 
S6–S8
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Fig. 4  Annotation of CDSeq-identified cell types. CDSeqR was run with the Reduce-Recover option using 
800 genes per block and 10 blocks. A reference scRNA-seq dataset was provided for cell type annotation 
using clustering analysis (a and b) and correlation analysis (c and d). a UMAP embeddings of reference 
scRNA-seq data (color dots) and pseudo single-cell data generated from the CDSeq-estimated cell-type 
specific gene expression profiles (color squares). Each distinct color in the UMAP plot denotes a cell type 
provided with the scRNA-seq annotation given in [20]. There are 7 major cell types provided with the 
scRNA-seq: excitatory neuron (Ex), inhibitory neuron (In), oligodendrocyte (Oli), microglia (Mic), endothelial 
(Endo), astrocyte (Ast) and oligodendrocyte progenitor cell (OPC). The deconvolution result used 7 as 
the number of cell types and for each CDSeq-estimated cell type, it generated 10 pseudo cells which 
correspond to a color square in the UMAP plot. The colors of the squares (i.e. CDSeq estimated cell types) 
were determined based on its annotation result. b Correlations between the resulting CDSeqR estimated cell 
type proportions and true proportions; c correlations between the CDSeqR estimated cell-type-specific GEPs 
and scRNA-seq GEPs; b correlation of CDSeq-estimated cell type proportions with true proportions using 
correlation analysis (see Methods for details). When reference for cell annotation is not provided, CDSeq will 
perform clustering analysis on the pseudo single-cell data generated from the CDSeq-estimated cell-type 
specific gene expression profiles and perform differential gene expression analysis to identify the marker 
genes in each cluster using the Seurat software [24, 25]. e Expression level of PLP1 (Oligodendrocyte marker 
[41]) in the clusters of CDSeq-estimated cell types (cell type number is 7); f Expression level of PLP1 in human 
brain prefrontal cortex scRNA-seq clusters [20]. See Additional file 1: Figs. S10–S20 for more details



Page 8 of 12Kang et al. BMC Bioinformatics          (2021) 22:262 

studies suggested that when the specified cell type number is larger than the true value, 
the cell type annotation function is able to identify and combine those cell types that are 
similar into one (Additional file 1: Figs. 10–16).

Another challenge for deconvolution is deep deconvolution [27], namely, to infer 
component subtypes from bulk tissues. For example, researchers are often interested in 
uncovering immune cell subtypes among major immune cell populations. In our pre-
vious work [5], we demonstrated that CDSeq was able to estimate immune cell sub-
types from PBMC (peripheral blood mononuclear cell) data using microarray data. In 
this work, we further investigated CDSeq’s ability to infer immune cell subtypes using 
synthetic mixtures generated from scRNA-seq data [18]. Using a deconvolution bench-
marking pipeline [17], we created 100 synthetic mixtures of various proportions of the 
8 immune cell subtypes: B cells, Monocytes, Helper T cells, Natural killer cells, Cyto-
toxic T cells, Memory T cells, Naïve Cytotoxic T cells, and Naïve T cells. The highly-
correlated GEPs of several of the cell types present major challenge for deconvolution 
methods. To test and validate the performance of CDSeqR, we ran CDSeqR by specify-
ing a range of varying numbers of cell types from 2 to 40. CDSeqR can automatically 
identify similar cell types and merge them into one. CDSeqR was able to identify all 8 
immune cell subtypes when the input number of the cell types was set to be greater than 
10 (Fig. 5; Additional file 1: Figs. S21 and S22).

Besides the synthetic data, to further showcase the utility of CDSeqR and the newly 
implemented cell annotation function, we carried out deconvolution analysis of the 
RNA-seq data from human frontal cortex (209 samples) from the GTEx V8 [35]. We 
used publicly available brain single-cell RNA-seq data [20] as the reference for cell anno-
tation. We set the number of cell types from 50 to 100 and ran CDSeqR with a dilution 
factor of 100 to facilitate computation. The result demonstrates that setting the number 
of cell types to 100 enabled detection of the major cell types in heterogenous brain sam-
ples whereas a smaller number (e.g., 50) failed to identify oligodendrocyte progenitor 
cell, a known major cell type (Additional file 1: Fig. S23). Setting the cell types to be 100 

Fig. 5  Results of deconvolution of PBMC immune cell subtype mixtures using Reduce-Recover strategy. 
The number of cell types was set to be 20. a Correlation between the CDSeq estimated cell-type-specific 
GEPs and true cell-type-specific GEPs; b Correlation between CDSeq estimated sample-specific cell-type 
proportions and true cell type proportions. Additional results for different specifications of the cell types are 
provided in Additional file 1: Figs. S21 and S22
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is reasonable as the brain is heterogenous and cell states are known to represent a con-
tinuum. This notion is consistent with the finding that, in brain prefrontal cortex [20, 
37], many of the major cell types consist of multiple subtypes. For example, excitatory 
neurons have more than ten subtypes [20, 37]. In a second example, we deconvolved 
TCGA tumor samples without using any references. See Additional file 1: Fig. S24 for 
details.

Discussion
CDSeq is a complete deconvolution method that uses gene expression data alone to esti-
mate both sample-specific cell-type proportions and cell-type-specific gene expression 
profiles from RNA-seq data [5]. CDSeq was originally developed in MATLAB. In this 
work, we developed an R package, CDSeqR, for a broader group of users. Moreover, in 
the R implementation, we substantially improved CDSeq’s computational efficiency in 
both speed and memory usage. Specifically, we proposed a novel strategy—Reduce and 
Recover—to allow CDSeq to run on multiple processors simultaneously (parallelization). 
We further validated our CDSeqR package using data from both in silico and in vitro 
cell mixtures. We compared the performance of CDSeqR with that of 14 competing 
deconvolution method and showed that cell-type proportions estimated by CDSeqR are 
as or more accurate than those estimated by the competing methods. However, unlike 
many competing methods CDSeqR does not require reference GEPs for deconvolu-
tion and also provides cell-type-specific GEP estimates. We provided recommendations 
for parameter settings in Additional file 1: Table S1 and the parameters we used in our 
results in Additional file 1: Table S2.

In the R package, we also implemented a new cell-type assignment function. This new 
function takes advantage of the publicly available scRNA-seq datasets and use them as 
a reference to aid the annotation and visualization of the CDSeq estimated cell types. 
Specifically, CDSeqR transforms its estimated cell-type-specific GEPs into pseudo sin-
gle-cell read counts (see Methods). Next, the two single-cell datasets (i.e. the external 
experimental scRNA-seq and the pseudo-scRNA-seq generated from CDSeq estimates) 
are combined and clustered using existing software such as Seurat [24, 25]. Lastly, 
CDSeqR annotates the CDSeq cell types using either clustering analysis or correlation 
analysis (See Methods). In the case where no reference scRNA-seq dataset is available, 
CDSeqR identifies marker genes and uses them to aid cell type annotation.

The ongoing discovery of new cell subtypes [20, 22, 38] suggest that cell types may be 
better described as a continuum rather than as a sequence of discrete states. This recog-
nition, consequently, brings challenges to deconvolution algorithms, especially for those 
that rely reference gene expression profiles [4, 16, 27, 39]. The references will not fully 
capture the heterogeneity and the continuum of states exhibited by cell types in bulk tis-
sues. Compared to existing deconvolution methods, CDSeq employs an unsupervised 
framework (does not require a reference panel) and can discover cell types in the data. 
Nonetheless, CDSeqR can only predict discrete cell types, not cell continuum. However, 
we showed that CDSeqR can do more than detect only major cell types but also can help 
users identify immune subtypes.
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Since cell types represent a continuum, it is difficult to assign a value to the number 
of cell types present. This issue is analogous to determining the number of clusters from 
a clustering analysis. Nonetheless, we suggest that, in practice, one may set the num-
ber of cell types to be a vector that covers a range of plausible values. For example, set 
parameter cell_type_number = seq(20,100,10)) will allow CDSeq to try the number of 
cell types from 20 to 100 with an increment of 10. One can then visualize the clustering 
results with experimental scRNA-seq data using the cell-type annotation function and 
also consider the values of log posterior reported by CDSeq as a reference to determine 
the appropriate number of cell types. Importantly, the underlying biology would need to 
be considered when determining the number cell types in the data.

Conclusion
We developed an R package for our complete deconvolution method [5] and imple-
mented new functions to improve computational efficiency. Our method employs an 
unsupervised learning framework and requires no reference profile for the deconvolu-
tion procedure. We provided multiple ways to help identify CDSeq-estimated cell types 
after deconvolution. When a reliable single cell reference dataset is available, one can 
annotate deconvolved cell types using correlation analysis or clustering analysis. In the 
case where a single cell reference is not available, CDSeqR will identify marker genes for 
each deconvolved cell type to help users annotate the identities of those cell types. Our 
method is also able to infer the number of cell types from bulk RNA-seq measurements. 
In summary, we believe that our CDSeqR package will be a valuable tool for computa-
tionally deciphering sample heterogeneity using bulk RNA-Seq data.
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