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Abstract 

Background:  It is important to understand the composition of cell type and its 
proportion in intact tissues, as changes in certain cell types are the underlying cause 
of disease in humans. Although compositions of cell type and ratios can be obtained 
by single-cell sequencing, single-cell sequencing is currently expensive and cannot be 
applied in clinical studies involving a large number of subjects. Therefore, it is useful to 
apply the bulk RNA-Seq dataset and the single-cell RNA dataset to deconvolute and 
obtain the cell type composition in the tissue.

Results:  By analyzing the existing cell population prediction methods, we found that 
most of the existing methods need the cell-type-specific gene expression profile as the 
input of the signature matrix. However, in real applications, it is not always possible to 
find an available signature matrix. To solve this problem, we proposed a novel method, 
named DCap, to predict cell abundance. DCap is a deconvolution method based on 
non-negative least squares. DCap considers the weight resulting from measurement 
noise of bulk RNA-seq and calculation error of single-cell RNA-seq data, during the 
calculation process of non-negative least squares and performs the weighted iterative 
calculation based on least squares. By weighting the bulk tissue gene expression matrix 
and single-cell gene expression matrix, DCap minimizes the measurement error of bulk 
RNA-Seq and also reduces errors resulting from differences in the number of expressed 
genes in the same type of cells in different samples. Evaluation test shows that DCap 
performs better in cell type abundance prediction than existing methods.

Conclusion:  DCap solves the deconvolution problem using weighted non-negative 
least squares to predict cell type abundance in tissues. DCap has better prediction 
results and does not need to prepare a signature matrix that gives the cell-type-specific 
gene expression profile in advance. By using DCap, we can better study the changes 
in cell proportion in diseased tissues and provide more information on the follow-up 
treatment of diseases.
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Background
Biological tissues are often complex and consist of many morphologically similar cells 
and intercellular substances. For example, blood contains various cell types such as gran-
ulocyte, erythroid, megakaryocytic, and mononuclear cells [1]. It is important to under-
stand the composition of cell types and their proportion in intact tissues, as changes in 
certain cell types in tissues might be the underlying causes of diseases in humans [2]. If 
we can describe the difference in the composition of cell type for different diseases or 
different subjects, we can understand the mechanism of the disease better and research 
the cell targets to treat the disease better [3, 4]. Based on the single-cell RNA sequenc-
ing data, the composition of cell types and their proportion in intact tissues can be esti-
mated. With the bulk RNA-seq data of a certain type of tissue and the corresponding 
composition of cell types, the composition of cell types for the tissue can be predicted by 
the deconvolution method.

Bulk RNA-seq is a widely used method in cell sequencing. It extracts DNA from all 
cells in the tissue and then breaks it down into fragments [5]. The data obtained by bulk 
RNA-seq represents the average expression of genes across all cells in the tissue. Com-
pared with bulk RNA-seq, single-cell sequencing uses single-cell separation technology 
to separate individual cells and uses optimized next-generation DNA sequencing tech-
nology (NGS) to detect the sequence of single cells and obtain gene expression profiles 
of individual cells [6]. Single-cell sequencing technology can obtain differences between 
cells in specific micro-environments to facilitate the study of their functional differences. 
It helps us to study different cell types, which is of great benefit to the study of develop-
mental biology. Although single-cell sequencing can obtain the composition and abun-
dance of cell type, it is expensive to be applied in clinical studies involving numerous 
subjects. Therefore, it is urgent to develop a method to infer the proportion of each cell 
type in the tissue, based on known cell type-specific gene expression profiles obtained 
from scRNA-seq data.

According to the implementation of the deconvolution method, existing methods can 
be broadly divided into two categories: non-negative least squares-based methods and 
Support Vector Regression (SVR)-based methods.

The least squares-based method is a mathematical optimization method. It finds 
the best function match for the data by minimizing the sum of the squares of the 
errors. The least-squares method can be used to obtain unknown data and minimize 
the sum of the squares of the errors between the obtained data and the actual data 
[7]. There are several deconvolution methods based on non-negative least squares, 
such as DeconRNASeq, MuSiC. DeconRNASeq [8] is an R package for deconvolu-
tion of heterogeneous tissues based on mRNA-seq data. It uses a globally optimized 
non-negative decomposition algorithm to estimate the mixing ratio of different cell 
types in next-generation sequencing data through quadratic programming. The 
input of DeconRNASeq is a cell-type-specific gene expression matrix and a mix-
ture gene expression matrix, and the output is a cell proportion matrix. MuSiC [9] 
is an R package that utilizes cell-type-specific gene expression from single-cell RNA 
sequencing data to characterize cell type compositions from bulk RNA-seq data in 
complex tissues. It uses weighted non-negative least squares (W-NNLS) to imple-
ment deconvolution. The input of MuSiC is a single-cell RNA-seq dataset and a tissue 
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gene expression matrix obtained by bulk RNA-seq, and the output is a cell occupancy 
matrix. MuSiC weights the non-negative least squares input matrix based on the vari-
ance of the expression of the same type of cells in different samples.

Support vector machine (SVM) is a supervised learning method used for classification 
and regression [10]. There are several deconvolution methods based on SVR, such as 
CIBERSORT, Bseq-SC, and CPM. CIBERDORT [11] is a web-based tool that uses gene 
expression data to estimates cell type abundance in mixed cell populations. CIBERDORT 
provides a signature gene file named LM22, which contains 22 different types of immune 
cells. If the bulk data only includes these cell types, users can use the LM22 directly and 
obtain the deconvolution result. If other cell types are involved in the input, users need 
to upload the signature gene file. Bseq-SC [12] is an R package that obtains cell type 
ratios based on the CIBERDORT deconvolution step and integrates the obtained ratio 
into cell type-specific differential analysis. CPM [13] is an R package that identifies cell 
abundance from a large number of gene expression data of heterogeneous samples using 
deconvolution based on cell population mapping. To improve the performance in the 
presence of a large number of reference profiles, CPM uses a consensus approach. It 
repeats the deconvolution method N times in N different subsets of the reference profile. 
The final predicted abundance result is the average of N calculation results.

There are also some cell abundance prediction methods that do not use deconvo-
lution for prediction, such as UNDO and TIMER. UNDO [14] is an R-package for 
unsupervised deconvolution of mixed expression matrices of tumor stromal cells. It 
automatically detects cell-specific marker genes located on the scatter radius of mixed 
gene expression, estimates the proportion of cells in each sample, and deconvolutes 
the mixed expression into cell-specific expression profiles. It does not require a signa-
ture matrix that provides the cell-type-specific gene expression profile. TIMER [15] is 
a web-based tool for systematically assessing the clinical impact of different immune 
cells in specific cancers. It can estimate the abundance of six types of immune cells in 
the tumor microenvironment through a new statistical method.

The major limitation of existing methods is that users need to provide the signature 
matrix of cell-type-specific gene expression profiles. However, the signature matrix is 
not always available. Among the aforementioned methods, MuSiC only needs single-
cell data to generate a signature matrix. Therefore, we improved the process of calcu-
lating the signature matrix and proposed a better method DCap (Deconvolution Cell 
abundance prediction).

Table 1  Experimental dataset

Dataset name Dataset sources Dataset type Organization type Sample size

E-MTAB-5061 Segerstolpe et al. Single-cell RNA sequencing Human pancreas 10 (6 normal + 4 T2D)

GSE50244 Fadista et al. Bulk RNA-seq Human pancreas 89

GSE81608 Xin et al. Single-cell RNA sequencing Human pancreas 18 (12 normal + 6 T2D)
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Result
Experimental dataset

We used three datasets as experimental datasets, including two single-cell RNA 
sequencing datasets and one bulk RNA-seq dataset. Details are shown in Table 1.

Evaluation metrics

Three metrics are used for evaluation: root-mean-square deviation (RMSD), mean 
absolute difference (mAD) and pearson product moment correlation coefficient (R).

Root‑mean‑square deviation

The root-mean-square is a measurement method used to estimate the difference 
between values. RMSD is applied to evaluate the error in the prediction. The smaller 
RMSD indicates that the predicted value is closer to the ground truth.

The calculation equation of RMSD is:

where α represents the true value and α̂ represents the predicted value.

Mean absolute difference

The mean absolute difference represents the average difference between the predicted 
value and ground truth. It is also used to express the quality of the predicted results. The 
smaller mAD represents the closer the predicted value to ground truth.
mAD is calculated as:

where α represents the true value and α̂ represents the predicted value.

Pearson correlation coefficient

Pearson product-moment correlation coefficient is applied to measure the degree of lin-
ear correlation between two variables, whose value is between −1 and 1. A higher cor-
relation between the predicted value and ground truth represents the better prediction 
result. The higher the Pearson product-moment correlation coefficient represents better 
prediction results.

Pearson correlation coefficient between two variables is the quotient of variance and 
standard deviation between two variables. The calculation equation of R is:

where α represents the true value and α̂ represents the predicted value.
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Performance evaluation on simulated dataset

To demonstrate and evaluate DCap, we first carried out simulation experiments. Two 
single-cell datasets E-MTAB-5061 [16] and GSE81608 [17] were used in the simulation 
experiment.

Simulation dataset generation

The method has two inputs: a bulk RNA-Seq dataset and a single-cell RNA-seq dataset. 
The single-cell RNA-seq dataset is E-MTAB-5061. We use another single-cell RNA-seq 
dataset, the GSE81608 dataset, to generate the bulk RNA-Seq dataset.

The GSE81608 dataset contains 18 samples (12 normal samples and 6 T2D diseases 
samples). If every sample is a bulk RNA-Seq data, we can obtain a dataset containing 
18 bulk RNA-Seq data. The gene expression matrix of all cells from the same sample is 
merged to obtain the gene expression matrix of the bulk RNA-Seq data. Then, we record 
the number of cells of each type in each bulk RNA-Seq data to provide ground truth for 
the subsequent evaluation method.

Experimental results

To perform benchmark tests systematically, we first applied DCap and four other meth-
ods (Nonnegative least squares (NNLS), MuSiC, CIBERSORT, and BSEQ-sc) to the 
simulated dataset to obtain the predicted cell abundance. We use three metrics (RMSD, 
mAD, R) to evaluate the results of different methods. Table 2 shows that DCap performs 
the best among the five methods on all three evaluation metrics. The RMSD and mAD 
values of DCap are the smallest, and the R-value of DCap is the highest among the five 
methods.

To compare with ground truth data, we visualize ground truth data and the prediction 
results of the three algorithms (DCap, MuSiC, and NNLS) in Fig. 1. The result show that 
DCAP performs the best among three methods. We made the heat map of the absolute 
difference between the predicted value and ground truth in Fig. 2.

Figure 2 shows that DCap is superior to the other two methods. To understand the 
comparison between DCap and other methods more clearly, we made the boxplot of 
the difference between the predicted value and ground truth of each cell type, shown in 
Fig. 3. A smaller difference between the predicted value and true value represents better 
results. Finally, we aggregate the absolute difference of the same method and made the 
boxplot of the absolute difference of each method in Fig. 4. Figure 4 shows that the total 

Table 2  Error analysis of prediction results

Method RMSD mAD R

DCap 0.08 0.05 0.96

NNLS 0.11 0.08 0.90

MuSiC 0.10 0.06 0.93

BSEQ-sc 0.21 0.15 0.79

CIBERSORTS 0.21 0.15 0.76
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a b c d
Fig. 1  Heat map of the real value and the estimated value obtained by different methods. A heat map of the 
real values and the estimated values obtained by different methods. The horizontal axis represents the cell 
type and the vertical axis represents the name of the simulated bulk tissue. The shade of color indicates the 
proportion of a cell type in bulk tissue. By the heat map, we can observe the comparison of the predicted 
results with the actual values for each bulk tissue and cell type. (a)real value. (b)The results of DCap prediction. 
(c)The results of MuSiC prediction (d)The results of NNLS prediction
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Fig. 2  Heat map of the absolute difference between predicted value and true value. A heat map of the 
absolute difference between the predicted value and the true values. The horizontal axis represents the cell 
type, and the vertical axis represents the name of the simulated bulk tissue. The shade of color indicates the 
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tissue. By the heat map, we can observe the predicted results of each bulk tissue and cell type. The lighter the 
color, the closer it is to the true value. a DCap, b MuSiC, c NNLS
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absolute difference between the predicted value and the true value of DCap is the small-
est. DCap performs better than other methods in general.

Cell proportion prediction on real dataset

We applied the model to real bulk RNA-seq dataset to analyze the proportion of various 
types of cells in real tissues.

We used GSE50244 [18], which is the bulk RNA-Seq dataset, and E-MTAB-5061, 
which is the single-cell RNA dataset, as input. The GSE50244 dataset contains gene 
expression data of 89 islet samples.
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Fig. 3  Boxplot of the absolute difference between predicted value and true value. A boxplot of the absolute 
difference between the predicted value and the true value. The horizontal axis represents the cell type, and 
the vertical axis represents the absolute difference between the predicted value and the true value. Each 
color represents a method
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Fig. 4  Boxplot of the total absolute difference between predicted value and true value. A boxplot of the 
total absolute difference between the predicted value and the true value. The horizontal axis represents the 
method type, and the vertical axis represents the absolute difference between the predicted true and the 
real value. Each color represents a method
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By applying DCap and three other methods, we estimate the proportion of the 6 main 
cell types in the islet: alpha, beta, delta, gamma, acinar and ductal, which account for 
more than 90 % of the whole islet’s cells. The relative abundance of cell types is shown in 
Fig. 5.

The results show that the proportion of beta cells is the largest, which is also in line 
with the the known biomedical knowledge. The results of all the four methods show 
that the proportion of gamma cells is the least.

Discussion
The prevalence of type 2 diabetes mellitus (T2D) is generally determined by the level 
of HbA1c. When the patient’s HbA1c level was greater than 6.5% , the patient was 
diagnosed with T2D. With the progression of T2D, the number of beta cells decreases 
gradually. As the HbA1c level increases, the number of beta cells decreased gradually.

We evaluated the performance of DCap from the cell changes caused by T2D disease. 
Based on the proportion of beta cells in all islet tissues and the corresponding HbA1c 
level, a regression curve can be obtained by linear regression. The linear regression 
method can be measured by r2 and p values. In detail, r2 ranges from 0 to 1. The closer r2 
gets to 1, the better performance it represents. The smaller p-value represents the more 
reliability of the linear regression model. Therefore, we performed regression modeling 
in Fig. 6.

Figure  6 indicates that the proportion of beta cells predicted by DCap is correlated 
with the HbA1C level. DCap has a better r2 and smaller P-value, which shows that 
DCap’s prediction results are generally better than the other three methods.
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Fig. 5  Dithering plot of predicted cell abundance. The predicted dithering plot of cell proportion. Each one 
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results, d gamma cell prediction results, e acinar cell prediction results, f ductal cell prediction results



Page 9 of 15Peng et al. BMC Bioinformatics  2021, 22(Suppl 9):281	

Conclusion
We proposed a novel method, named Dcap, to predict cell abundance. Compared with 
most other methods, DCap does not need a single-cell reference matrix in advance. It 
reduces the difficulty of cell abundance prediction. It only needs bulk RNA-seq datasets 
of tissue gene expression and corresponding single-cell RNA-seq datasets to predict cell 
abundance. The result shows that DCap performs better than other methods. We can 
study the changes of cell abundance in diseased tissues better and provide more infor-
mation for the following treatment of diseases. Inspired by the success of deep learning 
methods in biomedical data analysis [19–22], we will apply deep learning methods to 
predict cell abundance in the future.

Method
The flow chart of DCap is shown in Fig. 7.

The inputs of DCap are bulk RNA-seq datasets and single-cell RNA-seq datasets. First, 
the single-cell dataset is used to obtain the single-cell gene expression matrix and the 
cross-cellular variance matrix of the gene for the deconvolution. Then, the bulk tissue 
gene expression matrix and the single-cell gene expression matrix are deconvolved. The 
weighted matrix is calculated by these two matrices. Finally, the weighted matrix is used 
for deconvolution, and the aforementioned steps are repeated until the result converges.

Single‑cell RNA‑seq dataset processing

The single-cell RNA-seq technology can measure gene expression profiles at the cell 
level. A single-cell RNA-seq dataset often contains cells of multiple types from multiple 
samples (subjects). For example, mouse kidney cell data from Park et al. [23] was derived 
from seven healthy mouse kidneys containing 16 types of 43,745 cells. Each cell con-
tains the expression value of 16,273 genes. Therefore, it is necessary to select cell types 
according to the input data to be deconvoluted. Then we generated a single-cell gene 
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expression matrix based on single-cell RNA-seq datasets. The generated matrix includes 
the expression profile of each gene at different types of cell types. Each row in the matrix 
represents a gene. Each column in the matrix represents a cell type. Therefore, the qual-
ity of the single-cell RNA-seq dataset process is important for predicting cell abundance.

Calculating average abundance matrix of genes

Each row of the average abundance matrix represents a gene. Each column represents 
a cell type. The value in the matrix represents the average abundance of a certain gene 
in a certain type of cell.

In tissue j, the relative abundance of gene g in cells of type k is θKjg  . Yjgc is the number 
of mRNA molecules of gene g in cell c. Ck

j  is the set of cell index for cell type k. θkjg is 
calculated as:

The single-cell RNA-seq dataset contains multiple tissues from different subjects, and θkjg 
is different for different subjects. Therefore, we first calculate θkjg for tissue cells of each 

(4)θkjg =

∑

c∈Ck
j
Yjgc

∑

c∈Ck
j

∑G
g ′=1 Yjg ′c

Fig. 7  DCap workflow. The workflow of DCap. There are two conditions for stopping the iteration. If any 
one of the conditions is met, the iteration stops. (1) The difference between the predicted cell abundance 
matrix and the previously predicted cell abundance matrix is less than the given threshold. (2) The number of 
iterations is equal to the given threshold
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subject. The final gene relative abundance θk ′g  is the average of θkjg across different sub-
jects. Considering the existence of abnormal values, we firstly determine the abnormal 
values before calculating the final gene relative abundance.

As shown in Fig. 8a, all values of θ are placed on a number axis. The K-means clus-
tering method is used to group all the values into different clusters to find the center 
point θc . Then, the outliers are removed based on the distance from the center point. 
Let the set distance threshold be ρθ , then

where, 
∣

∣

∣
θkjg − θc

∣

∣

∣
< ρθ , Jθ is the number of θ after excluding outliers. Generally, ρθ is 

selected as the most suitable value by means of grid searching technique.

Calculating cross‑sample variance matrix of genes in different cell types

Rows of the cross-sample variance matrix of genes represent genes. Columns repre-
sent different cell types. The values in the matrix represent the variance of the expres-
sion of a gene in different samples in a certain cell type.

In tissue j, the variance of gene g expression in different samples in cells of type k is 
VK
jg  . V k

jg is calculated as:

Calculating cell size for each cell type

The value in the cell size vector of each tissue represents the average number of RNA 
molecules for each cell type.

For tissue j, let mk
j = |Ck

j | be the total number of cells of type k and Skj  be the average 
of the total number of RNA molecules for cells of type k. Skj  is calculated as:

For different subjects, Skj  are different. Therefore, we first calculate Skj  for each subject. 
The final gene relative abundance SK

′
j  is the average Skj  across different subjects. As 

shown in Fig. 8b, all values of S are placed on a number axis. The K-means clustering 

(5)θk
′

jg =
∑J

j=1 θ
k
jg

Jθ

(6)V k
jg = Var

[

θkjg

]

(7)Skj =

∑

c∈Ck
j

∑G
g ′=1 Yjg ′c

mk
j

a

b
Fig. 8  Clustering diagram. a θ clustering example diagram. b S clustering example diagram
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method is used to group all the values into different clusters to find the center point Sc . 
Outliers are removed by the method introduced in the previous subsection.

Let the set distance threshold be ρs , then

where, 
∣

∣

∣
Skjg − Sc

∣

∣

∣
< ρs , JS is the number of S without outliers. Generally, ρs is selected as 

the most suitable value by means of grid searching technique.

Calculating single‑cell gene expression matrix

Rows of the single-cell gene expression matrix represent different genes. Columns 
represent different cell types. The values in the matrix represent the expression level 
of genes in a certain type of cell.

Let Yjg be the total number of mRNA molecules of gene g in a given tissue j, consist-
ing of K types of cells. Yjg are calculated as:

Based on Eqs. (1)–(6), Yjg can be represented as:

Let mj =
K
∑

k=1

mk
j  be the total number of cells in tissue j. Let pkj = mk

j

mj
 be the proportion of 

cells of type k in tissue j. Yjgmj
 is calculated as:

The gene expression level of the gene g in the cells of type k is Xk
g  . Xk

g  is calculated as:

Weighted matrix equation derivation

Considering Eq. (6), in the absence of error, we can directly use Y k
g  and Xk

g  to find pkj  . 
However, in actual cases, when we use the bulk RNA-seq to obtain Y k

g  , there is meas-
urement noise. Therefore, we need to modify Eq. (6). In order to guarantee the condi-
tion of 

∑K
k=1 p

k
j = 1 , the adjustment parameter C is added to the equation.

(8)Sk
′

j =
∑J

j=1 S
k
jg

JS

(9)Yjg =
K
∑

k=1

∑

c∈Ck
j

Yjgc

(10)Yjg =
K
∑

k=1

mk
j S

k ′
j θk

′
jg

(11)
Yjg

mj
=

K
∑

k=1

pkj S
k ′
j θk

′
jg

(12)Xk
jg = Sk

′
θk

′
jg

(13)Yjg = Cj(

K
∑

k=1

pkj X
k
jg + ǫjg )
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where, ǫjg ∼ N
(

0, δ2jg

)

 represents the measurement error of bulk RNA-seq.

After Xjg and pj are calculated, the variance between the actual value of Yjg and the 
estimated value is:

In addition to the measurement error that occurs during the bulk RNA-seq process, 
there is also an error in generating the single-cell reference matrix Xk

g  . In different sam-
ples (eg, unified tissues derived from different subjects), the same type of cells have dif-
ferent gene expression levels.

We define a gene with a small variance of expression in the same cell type between 
different samples as an information gene. The expression of the information gene is 
stable in this cell type. Genes with a large variance of expression in the same cell type 
between different samples are defined as non-information genes. Therefore, the rela-
tive abundance of gene g in cells of type k may not be a unique value in the calculation 
of a single-cell reference matrix across different samples.

Both types of errors are important. Both types of errors may happen during the 
process of obtaining data. The importance of different types of errors may be differ-
ent for different datasets. In DCap, the weight of these two types of errors is consid-
ered the same. We use the sum of these two types of errors as weight information to 
improve prediction accuracy. So we can calculate the variance of the actual value of 
Yjg and the estimated value pj is:

where Vgk is the variance of the expression of gene g in different samples for type k cells.
Therefore, for the tissue j, wjg is calculated as:

Considering the case of Var
[

Yjg |pj
]

= 0 , the adjustment parameter n is added to the 
equation 11 to calculate the final weight:

Weighting the two matrices during the deconvolution process can reduce errors and 
improve the accuracy of the estimates. However, in the actual case, δ2jg is unknown. 

(14)Var
[

Yjg |pj ,Xjg

]

= Cj
2δ2jg

(15)

Var
[

Yjg |pj
]

= Cj
2δ2jg + Var

[

Cj ·
K
∑

k=1

pkj X
k
jg

]

= Cj
2δ2jg + Cj

2 ·
K
∑

k=1

p2jkS
k ′2
j Var

[

θkjg

]

= Cj
2δ2jg + Cj

2 ·
K
∑

k=1

p2jkS
k ′2
j v2gk

(16)
1

wjg
= Var

[

Yjg |pj
]

= Cj
2δ2jg + Cj

2 ·
K
∑

k=1

p2jkS
′2
k v

2
gk

(17)
1

wjg
= n+ Cj

2δ2jg + Cj
2 ·

K
∑

k=1

p2jkS
′2
k v

2
gk
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Therefore, we start from non-negative least squares and use iteration to estimate the 
weight until convergence.

Deconvolution equation derivation

Based on Eqs. (6) and (7), Yjg is calculated as:

Then we multiplied the weights to both sides of Eq. (15):

Let A, B, and C be three matrices, where A =
√
wjgYj
mj

 , B = pj , C = √
wjgX . The problem 

can be defined as calculating the B matrix when minA
(

BC − A2
)

 , which is also the prob-
lem of least squares solution.

After inputting the single-cell dataset, we use Eq. (10) to calculate the single-cell refer-
ence matrix.

The gene expression matrix Y usually contains gene expression of multiple tissues. We 
predict each tissue separately and integrate the results into one matrix.
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