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Introduction
One of the challenges of cancer treatment is how to identify tumor subtypes, which 
can help to provide patients with specific treatment. Meanwhile, with the continuous 
development of all kinds of sequencing technologies, a lot of high flux data have been 
produced [1]. For cancer subtypes identification, integration of different types of omics 
data to unravel the molecular mechanism of complex diseases becomes more and more 
important [2]. On the one hand, multiple omics data of different subtypes of cancer pro-
vided more detailed information. On the other hand, it made data analysis more com-
plicated. Different levels of multiple omics data often show different types, they have 
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different correlation structure statistical properties and expressions [3]. In addition, the 
same tumor specimens from different levels of data are also unlikely to be independ-
ent. Therefore, how to reasonably integrate the multiple omics data to accurately predict 
cancer subtypes becomes a challenging and interesting research [4].

Due to the high dimensionality of data, we usually need to take a series of dimen-
sionality reduction measures. However, some unsupervised approaches such as KCCA 
5, KPCA [6], ISOMAP [7], the projection is only optimal at preserving the variance of 
the data or preserving the direction of the search. The two processes of reduction and 
clustering are completely independent. Solving the optimization problem on Stiefel 
manifold, it can be found directly in the lower dimensional representation of the feasible 
solution. It is worth mentioning that the noise in the original data can be reduced effec-
tively by manifold methods. The literature [8] finds that when solving the optimization 
problem on Stiefel manifold, it can be more simple and quickly reach an almost medium 
precision.

Recently, many strategies for integrating multi-omics data have emerged. Their objec-
tives are to understand the inter-relationships between different omics, and explore 
the relationship between omics data and subtypes [9, 10] . For example, the methods 
of biclustering aim to find the internal similar structure of high-dimensional data, and 
can cluster samples and features simultaneously. They have good performances in many 
ways, but they have a high time complexity [11, 12]. Similarity Network Fusion (SNF) 
method [13] constructed the similarity network for each data type, and then used the 
iterative method to fuse them into a similar network. The final clusters are obtained 
by spectral clustering of fusion networks. Some multi-view clustering methods based 
on spectral clustering have also been proposed [9, 14, 15]. They used different integra-
tion methods to combine the spectral clustering results from a single view. The Affinity 
Aggregation for Spectral Clustering (AASC) algorithm [14] introduced weights in the 
spectral clustering of each view, and then added them together to optimize the weights 
in the calculation.

However, these methods were put forward based on a basic hypothesis that the under-
lying omics clusters are the same. In actual situation, there are inconsistent clusters [10]. 
In the process of integrated clustering, data clustering was carried out for each view and 
cluster alignment was carried out for different views, which could handle this situation 
[9, 15, 16]. However, the method [9] tended to obtain the local optimal as described 
above, and the methods [15, 16] relax excessively the original multi-view point specific 
tangent condition, so that the information of each viewpoint may be lost. In the paper 
[17], the authors proposed the Multi-View Clustering using Manifold Optimization 
(MVCMO) method considered the diversity of the cluster. Consistent clusters and dif-
ferent clusters can be identified in each group. This method can effectively identify the 
cluster of differences, and this theory is also used in our method.

In order to improve the algorithm stability of MVCMO [17], we introduce the "Heat 
Kernel" to measure similarity between patients. And we use Backtracking Line Search 
to find the optimal solution more accurately. In this study, we propose a Multi-view 
Clustering based on Stiefel Manifold (MCSM) method for multi-view clustering prob-
lems with potential clusters. Firstly, we introduce a "Heat Kernel" to measure similarity. 
The patient-patient similarity network is constructed using k-nearest neighbor (KNN) 
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method. Then we establish a binary optimization model for the simultaneous clustering 
problem. The solving process of the objective optimization problem is divided into three 
steps. First, we project our target function onto each of Stiefel manifold’s tangent vector 
Spaces. Second, we do Backtracking Line Search on Stiefel manifold for the objective 
problem. Third, we retract the found points to the manifold with singular value decom-
position. Finally, the KNN method is used for integrating the obtained clusters from 
three omics to get the final result. The proposed MCSM method has two highlights. One 
is that it combines the two processes of reduction and solution optimization,which pre-
serves as much data information of each sample as possible. The other is that it can iden-
tify the cluster effectively when the underlying clusters are different. We experiment on 
simulated datasets to see the algorithm’s performance when there are potential clusters. 
The experimental results on simulated datasets and several multiple omics datasets from 
TCGA show that our method has better performance than state-of-art methods.

Datasets and methods
The overall design of our method is illustrated in Fig. 1.

Datasets and preprocessing

In this paper, we selected four cancer datasets in the TCGA for experiment, including 
gene expression data, miRNA expression data and DNA methylation data from samples 
of cancer patients. The cancer datasets include glioblastoma multiforme (GBM) with 

Fig. 1  The process of MCSM method
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215 samples, breast invasive carcinoma (BIC) with 105 samples, Skim Cutaneous Mela-
noma (SKCM) with 439 samples and Acute Myeloid Leukemia (AML) with 96 samples.

Firstly, if the data of a patient loses more than 20% in any data type, the patient will be 
deleted. Secondly, if the missing value of a feature in all patients exceeds 20%, it will be 
filtered out. Thirdly, the K-nearest-neighbor method is adopted to fill in missing data. 
We need to determine k according to the size of the sample. In our experiment, we set 
k = 20.

Fourthly, we log transform the data set to make it more stable. Finally, each feature is 
normalized in the constructed network to make it have a standard normal distribution. 
We performed the following normalization for each data type:

where f is the characteristic of sample data, f̂  is the corresponding characteristic after 
normalization of f, E (f) and Var (f) represent the sample mean and sample variance 
respectively.

Construction of the patient‑to‑patient similarity graph

Denoted {Xm}Mm=1 as multi-view data from N patient samples, which has m data type in 
total. Each Xm is a matrix of pm ×N , then a similar network graph Gm is constructed to 
reflect the neighborhood relationship between the samples.

In the similar network of  the type m,Gm = (Vm, Em,Wm) , Vm is vertex set, Em is edge 
set, and Wm is adjacency matrix. The adjacency matrix of Wm in graph Gm is a symmet-
ric matrix.

In this paper, “Heat Kernel” is used to measure the similarity between samples [18]. The 
basic form is a Gaussian function with “t”. It has linear complexity and robustness that is not 
sensitive to small changes.

Next, we construct the K-nearest neighbor graph based on the similarity matrix Sm . If the 
vertex has an edge between vi and vj , then Wm

ij  represents the edge weight, otherwise 0.

here Ni is the neighborhood of vi (including vi ), Ni with size k, and the number of k usu-
ally depends on the size of the sample. Essentially, we assume that local similarity is 
more reliable than remote similarity. This is a modest assumption, and it is widely used 
by other manifold learning algorithms [18].

Construction of objective optimize problem

The objective optimize problem of the spectral clustering method is:

(1)f̂ =
f − E(f )√
Var(f )

.

(2)Smij = exp

(
−
�xmi − xmj �2

2t2

)
, i = 1 . . . , N, j = 1 . . . , N.

(3)Wm
ij =

{
Smij , vj ∈ Ni ,

0, otherwise.



Page 5 of 15Tian et al. BMC Bioinformatics          (2021) 22:268 	

Here, the Lm = (Dm − Am) . The Am is the corresponding adjacency matrix of similar 
network Gm , and Dm is the diagonal matrix constructed using the degree of all the nodes in 
the mth network.

Then, used Um for K-means  and find its minimum k eigenvectors in order to obtain the 
clustering labels.

Based on the spectral clustering, [15] proposed a multi-view network clustering method. 
Its objective optimize problem is:

The binary optimization problem cannot be solved in polynomial time. So, the objective 
function of multi-view spectral clustering can be constructed as follows:

where L =




L1 · · · 0
...

. . .
...

0 · · · Lm



− β




0 · · · In
...

. . .
...

In · · · 0



, U =





U1

U2

...
U3




.

β is used to balance the weight parameters between the network and within the net-
work. If we have abundant prior knowledge, we can set it according to prior information. 
Otherwise, when building a network, we can try to establish a connection at the same 
level (e.g. similar connection densities) and set it directly to 1. In our experiment, we set 
β = 1 directly.

However, the optimization problem (6) combines the information of all networks 
together and will loss the information in each network. The proposed MVSM method 
still follows the original objective function of multi-view spectral clustering and the con-
struction of Laplace matrix [17].

The objective optimization problems to be solved are as follows:

When we set Um = Sm

�Sm�2
 , the objective function UT

mUm = IK substitude as 
∑

sNi,j = 1 . 
It transforms the constraints for each network into one equation.

(4)
min

Um∈RN×k
trace

(
UT
mLmUm

)

s.t. UT
mUm = IK.

(5)

min

M∑

m=1

K∑

k=1

(
Sm,k

)T
(Dm − Am)

(
Sm,k

)

(
Sm,k

)T(
Sm,k

) − β
∑

l�=m

K∑

k=1

(
Sm,k

)T(
Sl,k

)

Sm,k2S
l
,k2

s.t. Sm,k ∈ {0, 1}, i = 1 . . . , N;m = 1 . . . ,M; k = 1 . . . , k;

K∑

k=1

Smi,k = 1, for m = 1 . . . ,M.

(6)
min

Um∈RN×k
trace

(
UTLU

)

s.t. UTU = IK

(7)
min

Um∈RN×k
trace

(
UTLU

)

s.t. UT
mUm = I
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The solution of objective optimize problem

To solve the objective function (7), we project it onto the Stiefel manifold and solve it by  
backtracking linear search. The process is roughly divided into three steps.

First, we project the target function trace
(
UTLU

)
 onto each of Stiefel manifold’s tan-

gent vector Spaces.
The tangent vector space of M is.

here each Stiefel manifold Mm = Um ∈ RN×k : s.t.UT
mUm = IK.

So, the negative gradient of the target function trace
(
UTLU

)
 can be expressed as:

where Zm represents the negative derivative of the objective function on the mth omic.
Then, we search the next point along the direction ηm on each tangent vector space of 

the manifold. Where,

Second, we do Backtracking Line Search on Stiefel manifold for problem (9–10).
The purpose of line search is to find the smallest point of the target function in the search 

direction. However, it is time-consuming to find the accurate minimum point. The search 
direction is already approximate, so we just to find the minimum point approximation at a 
lower cost. Backtracking Line Search (BLS) is such a Line Search algorithm. The idea of the 
BLS algorithm is to set an initial step size α0 in the search direction. Then, if the step size is 
too large, we reduce the step size until it is appropriate.

Backtracking Line Search in the negative gradient direction of the objective function is as 
follow:

where η is the current search direction, α is the step size, and c is the control parameter, 
which needs to be manually verified according to the situation.

If the current U does not satisfy inequation (11), then a parameter τ is required to adjust 
the step size:

where the parameter τ is controls the reduce search step size.
Third, we retract the found points to the manifold with singular value decomposition.

(8)TMm =

{
UmB+

(
I− UmU

T
m

)
C : B = −BT, C ∈ RN×k

}
.

(9)Z = −∇trace
(
UTLU

)
= −LU =

(
ZT
1 , Z

T
2 , . . . , Z

T
m

)T

(10)ηm = Zm −
1

2
Um

((
Um

)T
Um + ZT

mU
m
)
.

(11)
f(U+ αη) ≤ f(U)+ αcm

m = ηTZ

(12)
α = τα

(13)U = W�UT,U = WUT.
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After the manifold optimization process, we get the values of U. The whole process 

of our proposed method is summarized in Algorithm 1.

Step 1. The negative gradient direction of the objective function is projected onto Stiefel 

manifold. 

ηm = Zm −
1

2
Um ((Um )TUm + Zm

T Um );

η = (η1
T, η2

T, ⋯ ηm
T )T;

Step 2. Backtracking Linear search in tangent vector space:

U = U + αη, αϵ(0,1); 

f(U + αη) ≤ f(U) + αcm;

m = ηm
TZ;

Step 3. Retracted the points obtaining in 2 to the Stiefel manifold:

U = WΣVT, U = WVT;

Step 4. Repeat 1- 3 until the convergence condition is satisfied:

((r_err_f >  1 − 8) || ( _ _  >  1 − 4))&&(iters <  1000);

Where r_err_f represents the relative error of objective function f, r_err_grepresents the             

relative error of the negative gradient of the objective function Z, and iters represents the number 

of iterations.

Here, we get the solution of the objective function, and then we perform k-means 
to cluster U and obtain the cluster labels C1, C2, . . . , Ck . Finally, we integrate the clus-
tering results obtained from three omics by using k-nearest neighbor method.

Remark: we set c = 6, τ = 0.1 in our experiment. We will set out the reasons in 
Sect. 3.1.2.

Results
In this section, we selected some methods from different perspectives to compare 
with MVSC methods. For the methods were proposed using network structure, we 
chose AASC algorithm [14], SNF method [13] and MVSC [15]. In particular, AASC 
and MVSC method can effectively identify different clusters. For the methods based 
on manifold, we chose MOCMO [17] and Grassmann manifold clustering method 
[18]. For the state-of-the-art methods, we chose MvNE algorithm [19].
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The selection of parameter

The number of clustering

When the clusters k is not known, we can select it according the value of silhouette 
[20] and RI coefficient. From the perspective of computational efficiency, Calin-
ski  Harabaz score [21] is the highest. So Calinski  Harabaz score is more commonly 
used. Firstly, we did experiments with k equals 2–10. Then, we choose the  clustering 
number corresponding to the maximum Calinski Harabaz score. To compare MVSM 
to other methods, we set k as a known value.

The Backtracking Line Search parameters

There are three parameters in the Backtracking Line Search parameters, η,α and c. 
Where, η is the current search direction, α is the step size, and c is the control param-
eter, which needs to be manually verified according to the situation. Firstly, we initial-
ize α = 0.01 . During the experiment, it was found that if the value of c was too small, 
the step size would not be adjusted during the search process. However, if we want to 
adjust appropriately, then we need to set the parameter c according to the objective 
function value and gradient value of the initial point. Therefore, according to several 
data sets used in the experiment, we set c = 6, τ = 0.1.

Experimental results on simulated datasets

Here, we use the simulated datasets to verify that MVSM method is suitable for data-
sets with uneven distribution of underlying clusters.

Since these methods (AASC, SNF and MVSC) were proposed using network tools, 
we simulate the network structure firstly. Then, we generate the connections within 
the same cluster and different clusters. The probability of connections within a given 
cluster is greater than the probability of connections between clusters. For M omics 
networks, given the number of nodes N, these nodes are assigned to K clusters with 
different probabilities.

In order to see the influence of the connections between clusters change, we set the 
following four connection probability matrices:

The term (i,j) of the four matrices represents the connection probability between 
cluster i and cluster j. Each term (i, i) and each term 

(
i, j
)
, i  = j represent the connec-

tions within and between clusters, the larger the value the term correspond to, the 
tighter the connection. N represents the number of nodes.

In order to see the performance of the method, we tested two settings. For each set-
ting, we consider that the M omics of distribution is different.

P1 =
1

N




16 0 0
0 18 0
0 0 17



, P2 =
1

N




16 0.4 0.6
0.4 18 0.55
0.6 0.55 17



,

P3 =
1

N




16 0.8 1.2
0.8 18 1.1
1.2 1.1 17



, P4 =
1

N




16 1.2 1.8
1.2 18 1.65
1.8 1.65 17



.
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Setting 1: M = 3, N = 150, cluster distribution: (50, 50, 50); (30, 90, 30); (40, 60, 50);
Setting 2: M = 6, N = 1000, cluster distribution: (300, 300, 400); (300, 300, 400); 

(400, 300, 300); (300, 350, 350); (300, 400, 300); (450, 250, 300).
We use the Rand index to evaluate the clustering performance, which is defined as:

’TP’ is defined as the number of intersection nodes in the same cluster, which are 
also clustered in the same cluster, and other nodes are defined similarly.

On this basis, we obtain the rand index comparison of several methods:
For each setting, we run it 50 times and take the average of the results. Tables 1 and 

2 show the mean RI when the underlying clusters are different for the two settings.We 
can see that all four methods with an average RI is close to 1 when the cluster sizes 
of different groups are the same. On the one hand, because both SNF and AASC set 
the underlying cluster to be the same, they cannot detect the difference between the 
different views. So the MVSC and our method have better performance, when the 
size of the underlying cluster is different. On the other hand, more information of the 
clusters can be kept in our method by using more strict relaxation of the binary vari-
ables. Form Tables 1 and 2, when the nodes of networks are different, our method has 
a  better performance than MVSC in both setups.

To further show the effective of our method, we also calculate the NMI coefficient 
on different omics. It is defined as follows:

where U and V represent the clusters according to clustering and real clusters, respec-
tively. H(U), H(V) and MI(U, V) are defined as:

RI =
TP+ FN

TP+ FP+ TN + FN
,

NMI(U,V) =
2MI(U,V)

H(U)+H(V)

Table 1  Comparison of RI in different methods based on Setting 1

Method P1 P2 P3 P4

AASC 0.73 0.73 0.73 0.73

SNF 0.68 0.67 0.67 0.67

MVSC 0.99 0.98 0.94 0.87

MCSM 1 0.99 0.94 0.97

Table 2  Comparison of RI in different methods based on Setting 2

Method P1 P2 P3 P4

AASC 0.75 0.75 0.75 0.75

SNF 0.75 0.75 0.75 0.75

MVSC 0.93 0.93 0.93 0.93

MCSM 0.96 0.95 0.95 0.95
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pi is the proportion of the number of cluster i to the total amount of sample.
For setting 2, we calculate NMI coefficients on each omics and show their contrast 

results in Table 3. It can be seen that the NMI coefficient of the MVSM method is higher 
than the contrast methods in all three omics.

Experimental results on real datasets

In order to prove the effectiveness of our method on the real datasets. We apply our 
method on multiple omics datasets [22], analyze and compare our results with other 
advanced methods. Shown are final Cox survival P values for Glioblastoma Multiforme 
(GBM), breast Invasive carcinoma (BIC), Skim Cutaneous Melanoma (SKCM) and 
Acute Myeloid Leukemia (AML) in Table 4.

Shown are Kaplan Meier plots of the overall survival of integrative clusters for GBM 
(a), BIC (b), SKCM (c) and AML) (d) in Fig. 2.

It can be seen from the Table  4, in three of the four cancers datasets (GBM, BIC, 
SKCM and AML), our method obtains more significant differences than comparison 
methods in survival time. For BIC dataset, the insignificant difference may be due to the 
small cluster difference of the data itself. Survival plots for GBM, BIC, SKCM, and AML 

MI(U,V) =

C∑

i=1

C∑

j=1

pi,jlog

(
pi,j

pi × pj

)

H(U) = −

C∑

i=1

pilogpi

H(V) = −

C∑

j=1

pjlogpj

Table 3  Comparison of NMI in different methods based on Setting 2

Method M1 M2 M3

AASC 0.84 0.64 0.90

SNF 0.74 0.49 0.88

MVSC 0.83 0.93 0.97

MCSM 0.84 0.97 0.97

Table 4  Comparison of Cox survival p-values

Bold values indicate the smallest Cox survival p-values on the different datasets

Cancer type SNF Grassmann 
Cluster

MOCMO AASC MVSC MvNE MCSM

GBM(3) 0.0002 0.0043 0.0019 0.0022 0.00072 0.01113 0.0001
BIC(5) 0.0011 0.0002 0.00016 0.00015 0.0007 0.0061 0.0025

SKCM(4) 0.0001 0.19 0.00045 0.00016 0.00045 0.0098 0.0001
AML(5) 0.037 0.12 0.03 0.045 0.058 0.062 0.019



Page 11 of 15Tian et al. BMC Bioinformatics          (2021) 22:268 	

tumors are shown in Fig. 2. We can predict survival rate in a sample according plots in 
Fig. 2. In the prediction task, our method performed better than other methods.

Convergence analysis

The proposed methodology can be divided into three parts, construction of Laplace 
matrix, process for solving optimization problems and iteration. The time complexity of 
each part of the algorithm is as follows:

Construction of Laplace matrix It has linear complexity.

In the process of solving the optimization problem The time complexity of matrix multi-
plication is O(2Nk2).

Iteration Since we need to use SVD to retract the found solution back to the Stiefel man-
ifold, then the matrix operation complexity is O(N3).

Overall, the time complexity of MVSM method is much lower than that of MvNE 
method (O(nt(ij + jk + kl + lm))). From Fig. 3, it can be observed that for 20 iterations, 
there is a stable objective function value for all the datasets. It shows that our algorithm 
can find an appropriate solution with fewer iterations.

Fig. 2  Survival plots for GBM, BIC, SKCM, and AML tumors
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A case study: comparison of established subtypes

In order to compare the results of our clustering with the established biological sub-
types, we downloaded the clinical data of 215 GBMs from the cBio Cancer Genomis 
Portal (http://​www.​cbiop​ortal.​org/) at the Memorial Sloan-Kettering Cancer Center. 
For the GBM, there are four established subtypes defined by patients’ gene expression 
profiles, which are Classical, Mesenchymal, Neural and Proneural [23]. According to 
DNA methylation clustering, they [24] divided the subtypes into Glioma-CpG island 
methylator phenotype (G-CIMP) and Non-G-CIMP. The results of our method are 
compared with the established subtypes in Table 5. It shows that the clustering of our 
method is not just based on one data type, it takes into account both gene expression 
and DNA methylation information.

For gene expression subtypes, it can be seen that cluster 1 mainly contains Proneu-
ral subtype, cluster 2 mainly contains Proneural subtype, and they have strong 
enrichment. However, for DNA methylation subtypes, G-CIMP subtypes are mainly 
distributed in cluster 1. If only the DNA methylation information is considered, clus-
ter2 and cluster3 are likely to merge. So, we can conclude that it’s important to con-
sider both gene expression and DNA methylation information.

Fig. 3  Convergence of the MVSM algorithm

Table 5  Comparison of clusterings to established subtypes

Clusters Gene expression subtypes DNA methylation 
subtypes

Classical Mesenchymal Neural Proneural G-CIMP Non-G-CIMP

Cluster1 0 0 1 13 16 14

Cluster2 2 25 2 2 0 31

Cluster3 55 41 31 24 2 152

http://www.cbioportal.org/
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In order to further understand the biological significance of clusters, we inves-
tigated the response to temozolomide (TMZ) treatment of the GBMs. TMZ is an 
alkylation agent that causes incorrect pairing of thymine during DNA replication. In 
the GBM dataset, 105 patients were treated with TMZ. Figure  4 indicated that the 
TMZ-treated samples had different drug responses compared to the samples not 
treated with the drug. For different clusters, the degree of drug response of TMZ was 
also different. Compared with Cluster 1 and Cluster 2, patients in Cluster 3 had sig-
nificantly increased survival time after treatment with TMZ (P value using Cox log-
rank test = 0.0001), and this medication was also more meaningful. The results show 
that the clusters we obtained can be used as a reference for identifying the effective-
ness of drugs.

Conclusion
Multi-view data clustering is a hot topic in recent years. Recent work has focused on 
cases where the underlying clusters are consistent, and as we reviewed in the first sec-
tion, several approaches have been proposed. When the underlying cluster is differ-
ent, some methods are proposed to find different clusters. However, as we know, both 
consistent and differentiated clusters can exist at the same time. This leads us to study 
multi-view simultaneous clustering to find both consistent and different cluster data. 
In this paper, we propose a multi-view clustering model. On the basis of manifold 
optimization, the algorithm for formula optimization is proposed. Simulation results 
show that the performance of the proposed method is better than that of the exist-
ing algorithm under the same underlying cluster condition. We download the gene 
expression, miRNA expression and DNA methylation datasets of GBM, BIC, SKCM 
and AML from TCGA, and also carry out numerical experiments, showing that our 

Fig. 4  Survival analysis of GBM patients for treatment with TMZ
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method is superior to several comparison methods. In the future work, the cluster 
difference problem is still worth researching, and we will integrate other omics infor-
mation such as gene mutation data.
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