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Abstract 

Background:  Biomedical named entity recognition is one of the most essential tasks 
in biomedical information extraction. Previous studies suffer from inadequate anno-
tated datasets, especially the limited knowledge contained in them.

Methods:  To remedy the above issue, we propose a novel Biomedical Named Entity 
Recognition (BioNER) framework with label re-correction and knowledge distillation 
strategies, which could not only create large and high-quality datasets but also obtain 
a high-performance  recognition model. Our framework is inspired by two points: (1) 
named entity recognition should be considered from the perspective of both coverage 
and accuracy; (2) trustable annotations should be yielded by iterative correction. Firstly, 
for coverage, we annotate chemical and disease entities in a large-scale unlabeled 
dataset by PubTator to generate a weakly labeled dataset. For accuracy, we then filter 
it by utilizing multiple knowledge bases to generate another weakly labeled dataset. 
Next, the two datasets are revised by a label re-correction strategy to construct two 
high-quality datasets, which are used to train two recognition models, respectively. 
Finally, we compress the knowledge in the two models into a single recognition model 
with knowledge distillation.

Results:  Experiments on the BioCreative V chemical-disease relation corpus and NCBI 
Disease corpus show that knowledge from large-scale datasets significantly improves 
the performance of BioNER, especially the recall of it, leading to new state-of-the-art 
results.

Conclusions:  We propose a framework with label re-correction and knowledge distil-
lation strategies. Comparison results show that the two perspectives of knowledge in 
the two re-corrected datasets respectively are complementary and both effective for 
BioNER.

Keywords:  Biomedical named entity recognition, Knowledge distillation, Label 
re-correction
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Introduction
Biomedical Named Entity Recognition (BioNER) is a fundamental step for down-
stream biomedical natural language processing tasks. BioNER is a great challenge 
due to the following reasons: various ways of naming biomedical entities, ambigui-
ties caused by the frequent occurrences of abbreviations, and new entities constantly 
and rapidly reported in scientific publications [1]. To promote the performance 
of BioNER, many challenging BioNER tasks have been proposed, such as chemical 
and disease named entity recognition in the BioCreative V chemical-disease relation 
(CDR) task [2] and disease named entity recognition in the NCBI Disease task [3].

Recent Named Entity Recognition (NER) studies employ neural network models to 
generate quality features [4, 5]. However, neural network models require large-scale 
datasets to train millions of parameters. It is too expensive and time-consuming to 
manually annotate large-scale datasets.

This motivates some researchers to automatically create large-scale annotation 
datasets with semi-structured resources and semi-supervised methods [6, 7]. They 
generate named entity annotations by leveraging the link structure of Wikipedia.

Inevitably, these methods generate many false labels during the annotation process. 
Zhu et  al. [8] design a neural correction model trained with a small human-anno-
tated NER dataset to correct false labels. They illustrate that correction process could 
greatly improve the quality of the annotation dataset. Nevertheless, noisy labels still 
exist and cannot be further reduced by their method.

Bagherinezhad et al. [9] propose an iterative process called Label Refinery to reduce 
false labels caused by crop-level augmentation, and observe that labels improve itera-
tively even when the same architecture model is used to refine the dataset multiple 
times.

In biomedical domain, there is no large-scale semi-structured dataset like Wiki-
pedia. Instead, many large-scale structured knowledge bases are constructed, such 
as CTDbase [10], MeSH [11] and RGD [12]. These repositories link PubMed iden-
tifiers (PMIDs) with entity identifiers (IDs), such as <PMID: 6893628, disease ID: 
D010264> from MeSH. How to make use of these resources for BioNER is more chal-
lenging, and becomes an urgent demand. Wei et al. [13] first collect mentions from 
structured knowledge bases, and then correlate them with the text mined span from a 
name entity recognition and link tool PubTator [14] for mention disambiguation.

In addition, it has been long observed that combining the predictions of multiple 
networks usually exceeds the performance of an individual network. Unfortunately, 
the space to store multiple networks and the time to execute them at prediction time 
prohibit their use, especially when the individual models are large scale neural net-
works. Recently, a promising ensemble method, knowledge distillation [15–17], is 
raised to overcome this problem. It could distill diverse knowledge from different 
trained (teacher) models into a single (student) model.

Considering coverage and accuracy of NER, we construct two datasets. As for 
coverage, we automatically annotate the spans of chemical and disease mentions in 
a large-scale unlabeled dataset by PubTator to construct a weakly labeled dataset. 
And as for accuracy, multiple large-scale structured knowledge bases (i.e. CTDbase, 
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MeSH, RGD) are utilized to filter out the mentions if their IDs are not contained in 
the current PMID. In this way, we construct two large-scale weakly labeled datasets.

Next, we propose a novel label re-correction strategy to improve the recall without 
significantly introducing noise in the weakly labeled datasets iteratively, and obtain 
two high-quality complementary datasets. They are used to train two BioNER models, 
respectively.

Finally, to integrate diverse knowledge in the two models and save time and space, we 
utilize them as teachers to teach a distilled student model with knowledge distillation.

In summary, we mainly make the following contributions:

•	 We construct two weakly labeled datasets considering from coverage and accuracy 
respectively by utilizing multiple knowledge bases and PubTator.

•	 We propose a novel label re-correction strategy for iteratively improving the recall 
without significantly introducing noise in the weakly labeled datasets, and obtain two 
high-quality datasets.

•	 We introduce knowledge distillation to compress the recognition models trained on 
the two datasets into a single recognition model. Experimental results show that our 
model yields state-of-the-art results on the CDR and NCBI Disease corpus.

Related work
Most existing approaches treat BioNER as a sequence tagging problem. Recently, various 
neural network architectures have been proposed for BioNER with word and character 
embeddings, among which bidirectional long short-term memory with conditional ran-
dom field (BiLSTM-CRF) model exhibits promising results [5].

Besides word and character features, linguistic features and domain resource features 
[1, 18, 19] are also used to enrich the information of each token. These approaches heav-
ily rely on quality and quantity of the labeled corpora. However, such BioNER resources 
of each entity type are scarce.

To address this problem, datasets of different types of entities are used to augment 
resources for knowledge transfer by multi-task learning [20–22]. However, combining 
several limited datasets of different tasks could hardly meet the needs of large-scale 
training parameters, and the relatedness among tasks usually limits NER performance.

A recent trend in transfer learning is to take advantage of unlimited amount of unla-
beled datasets by unsupervised pre-training. BERT is designed to pre-train language 
representations with large-scale unlabeled datasets, which has been proved effective 
for improving many natural language processing tasks [23]. Lee et  al. [24] pre-train 
BioBERT on general and biomedical domain corpora, and illustrate that it achieves bet-
ter performance than BERT on BioNER tasks.

 Methods
In this section, we introduce our neural network-based BioNER framework with 
label re-correction and knowledge distillation strategies, as shown in Fig.  1. Firstly, 
two large-scale weakly labeled datasets are constructed with Pubtator and knowledge 
bases (“Weakly labeled dataset construction” section). Then we apply BiLSTM-CRF or 
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BioBERT-CRF as the basic model (“Basic model” section) and correct noisy labels itera-
tively with label re-correction strategy (“Label re-correction strategy” section). Finally, 
we utilize knowledge distillation to compress the knowledge in two teacher models 
trained on the two re-corrected datasets into a student model (“Knowledge distillation” 
section).

 Weakly labeled dataset construction

Inspired by Wei et  al. [13], we use both the records in knowledge bases and the text 
mined span from PubTator for dataset generation. Two large-scale weakly labeled data-
sets are automatically constructed for coverage and accuracy, respectively. As shown in 
Fig. 2, the pipeline used to create two datasets is illustrated in the following steps:

Step 1: Download PubMed abstracts whose PMIDs are in CTDbase since these 
abstracts contain both chemical and disease entities. CTDbase associates PMIDs with 
pairs of chemical-disease relations, such as < PMID: 6893628, Chemical ID: D003620, 
Disease ID: D015451 > . However, none of the repositories provides the location of the 
mentions.

Step 2: Automatically recognize chemical and disease mentions with PubTator to 
obtain the first weakly labeled dataset. PubTator provides spans of mentions, which are 

Fig. 1  The framework of our BioNER with label re-correction and knowledge distillation

Fig. 2  Illustration of the dataset generation pipeline from the perspectives of coverage and accuracy. The 
chemical and disease mentions are highlighted in yellow and green, respectively.
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automatically extracted by machine learning-based taggers. These taggers were previ-
ously evaluated and achieved 80–90% of F-score in recognition and normalization. From 
the perspective of coverage, we do not filter any mentions.

Step 3: Filter the spans whose entity IDs are not associated with the current PMID by 
using the repositories, i.e. CTDbase, MeSH, RGD. Obviously, many false positives exist 
in the first dataset. From the perspective of accuracy, only the spans that are matched 
with the repository records are remained. For example, the span of “spastic paraplegia” 
with entity ID D008223 and the span of “malignant lymphoma” with entity ID C536857 
recognized by PubTator in Fig.  2 are filtered because they are not recorded in PMID 
6893628 in repositories. Note that, CTDbase only associates PMIDs with pairs of chem-
ical-disease relations. Therefore, MeSH and RGD are employed to complement records.

In this way, two Chemical and Disease Weakly labeled datasets for Coverage and 
Accuracy are created called CDWC and CDWA with same abstracts but different anno-
tations. The statistics of the two datasets are listed in the first two rows of Table 1.

 Basic model

We use BiLSTM-CRF or BioBERT-CRF model as our basic model, which has four layers 
as shown in Fig. 1.

In the embedding layer, for BiLSTM-CRF, a sentence w =< w1,w2, . . . ,wn > is repre-
sented as X =< x1, x2, . . . , xn > , where xi is the concatenation of 100-dimension word 
embedding pretrained on the PubMed articles provided by Wei et al. [14] and character 
embedding learned by a character-level convolutional neural network [4]. For BioBERT-
CRF, we use the tokenization and embedding layer provided by Lee et al. [24]

Table 1  Various statistics of the datasets

# Abstract: the number of abstracts
# Chemical: the number of chemical mentions
# Disease: the number of disease mentions
$ Chemical: the number of unique chemical mentions
$ Disease: the number of unique disease mentions

Dataset #Abstract #Chemical #Disease $Chemical $Disease

Weakly labeled CDWC 70,026 706,593 514,964 34,696 58,985

CDWA 70,026 503,700 283,293 17,939 24,600

CDRC (BiLSTM-CRF) 70,026 770,159 541,235 40,135 38,715

CDRA (BiLSTM-CRF) 70,026 781,039 532,198 38,858 42,420

CDRC (BioBERT-CRF) 70,026 795,096 557,434 50,018 52,447

CDRA (BioBERT-CRF) 70,026 812,516 542,353 51,458 47,687

DRC (BiLSTM-CRF) 70,026 – 469,849 – 69,567

DRA (BiLSTM-CRF) 70,026 – 473,728 – 69,342

DRC (BioBERT-CRF) 70,026 – 546,515 – 83,436

DRA (BioBERT-CRF) 70,026 – 487,636 – 66,582

Human annotated CDR training data 500 5203 4182 991 1384

CDR development data 500 5347 4244 976 1254

CDR test data 500 5385 4424 1239 1474

NCBI disease training data 593 – 5145 – 1495

NCBI disease development 
data

100 – 787 – 334

NCBI disease test data 100 – 960 – 382
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In the encoder layer, for BiLSTM-CRF, X is fed to a BiLSTM layer to obtain the hidden 
representation of each token by concatenating its forward and backward context repre-
sentations. For BioBERT-CRF, X is  fed to BioBERT to catch the context information.

The tanh layer consists of two linear transformations with a Tanh activation in 
between. It is used to predict confidence scores P =< P1,P2, ...,Pn >∈ Rk×n for all 
tokens, where k is the number of distinct labels.

Finally, a CRF layer is applied to decode the best tag path in all possible tag paths. The 
score of X with a sequence of labels y =< y1, y2, ..., yn > is defined as the sum of transi-
tion scores and confidence scores:

where Ti,j represents the transition score from the i-th tag to the j-th tag.
During the training phase, the loss of the basic model is defined by:

where YX are all possible tag paths.
At inference time, Viterbi algorithm [25] is adopted to search for the label sequence 

with the highest conditional probability.

 Label re‑correction strategy

Inevitably, many false negative annotations exist in CDWC and CDWA. In this paper, 
we propose a novel label re-correction strategy to improve the recall without signifi-
cantly introducing noise in the weakly labeled datasets by leveraging a small manually-
annotated dataset, i.e. CDR or NCBI Disease. Here BiLSTM-CRF or BioBERT-CRF is 
used as our correction model.

There are two intuitions behind our label re-correction strategy: (1) the annotations in 
training dataset can help us learn how to generate annotations in the large-scale dataset; 
(2) the iterative procedure to update labels can improve both the dataset and the trained 
correction models.

Given training data T, development data D and a large-scale dataset L, the process of 
label re-correction is defined as follows: we firstly train a new correction model C on L; 
then we transfer the model C to T through fine-tuning C on T; finally, the correction 
model C is used to correct the label sequences in L. We put the sentence through the 
correction model C and rewriting the old tags with the new output of the correction 
model C. We repeat such a  correct procedure until the F-score on development data D 
does not increase.

CDR corpus contains 1500 PubMed abstracts: 500 each for training, development and 
test set, as shown in Table 1. Following Luo et al. [1], the original training set and devel-
opment set are merged, and we randomly select 10% of them as development data D 
and the rest is training data T. Two weakly labeled datasets CDWA and CDWC are Re-
corrected to obtain two corresponding high-quality datasets called CDRA and CDRC, 
respectively.

(1)s(X, y) =

n∑

i=1

(Tyi−1,yi + Pi,yi)

(2)Lcrf = − log
es(X,y)∑

y′∈YX

es(X,y
′)
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For NCBI Disease, as shown in Table 1, we directly use development data as D and 
training data as T. Two weakly labeled datasets CDWA and CDWC are Re-corrected to 
obtain two corresponding high-quality datasets called DRA and DRC, respectively.

The statistics of the Re-corrected datasets are listed in Table 1. We can see that the 
number and coverage of chemical and disease annotations in most of the re-corrected 
datasets are both larger than those in original weakly labeled datasets. We believe that 
label re-correction strategy could effectively correct the false-negative entity labels.

 Knowledge distillation

Two re-corrected datasets aim to annotate chemical and disease entities from the per-
spectives of coverage and accuracy, respectively. We use them to train two recognition 
models Tj , j ∈ {c,a} , which are complementary.

We calculate the label similarity of each abstract predicted by two recognition models 
over large-scale dataset as follows:

where #same is the number of the words which have the same labels predicted by two 
recognition models, and #total is the number of the words in an abstract. We adopt the 
IOB tagging scheme, in which I stands for Inside, O stands for Outside, B stands for 
Beginning.

The label similarity distribution is shown in Fig. 3. From this figure, we can see that 
though most of predicted labels are  same, there are still a lot of differences between the 
two models. For the abstracts with label similarity less than 1, even the label similarity 
is high, there are still many different entities predicted by two recognition models. It is 
because that most of the same labels are O labels. For BioNER, there are inevitable many 
O labels in an abstract. The distribution means that each of the two recognition models 
still have its own knowledge. It is natural to combine them to get a better model.

We distill the knowledge from the two recognition models (teacher) and transfer it to a 
new recognition model (student). The structures of teachers and student could be iden-
tical or different. In this paper, the teachers Tj , j ∈ {c,a} and the student S are based on 
the same architecture. In this way, at inference time, comparing with using two teacher 

(3)label_similarity =
#same

#total

Fig. 3  Label similarity distribution over the large-scale dataset between the predictions of the two teacher 
models. Each bar represents the number of the abstracts with the probabilities of label similarity in the 
similarity interval.
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models, using the student model only spends half time and memory space. Though the 
training of student model takes more time.

The label sequences (hard labels) y and the confidence scores P (used to calculate soft 
labels) predicted by the two teacher models are both used to teach the student model. 
Once the teacher models are trained, their parameters are frozen during the student model 
training.

With the hard labels, the student model is trained by minimizing the loss of LTj

crf  in Eq. (2) 
based on yTj predicted by the teacher model Tj.

With the soft labels, the student model is trained by minimizing the similarity distance 
between soft labels of the reference teacher and the estimated student. The similarity met-
ric can be formulated as follows:

where qTj

i  and qSi  are soft labels generated by the teacher and the student, respectively, d 
is referred to as a distance function. In this work, we investigate three distance metrics 
as follows:

l1 distance: We apply a softmax layer on confidence scores PTj

i  and PS
i  of each token 

to get the corresponding soft labels qTj

i  and qSi  . l1 distance is the absolute differences 
between the soft labels:

l2 distance: Here, the soft labels are the same as those used in l1 distance. l2 distance 
is the straight-line distance in euclidean space between the soft labels:

lKD distance: Following Hinton et al. [15], we use a softmax layer to convert PTj

i /t 
and PS

i /t to soft labels qTj

i  and qSi  , where t is the temperature. Then the lKD distance is 
defined as the cross-entropy between the soft labels multiplied by t2:

The final objective loss for the distilled model is the sum of the hard label losses and the 
soft label losses:

(4)L
Tj

sim =

n∑

i=1

d(q
Tj

i , qSi )

(5)L
Tj

l1_sim
=

1

n

n∑

i=1

|q
Tj

i − qSi |

(6)L
Tj

l2_sim
=

1

n

n∑

i=1

||q
Tj

i − qSi ||
2
2

(7)L
Tj

KD_sim =
t2

n

n∑

i=1

q
Tj

i log qSi

(8)L =
∑

j∈{c,a}

L
Tj

sim + L
Tj

crf
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 Experiment and discussion
 Experimental settings

Dataset and evaluation metrics

We evaluate the proposed framework on CDR and NCBI Disease test set. The evaluation 
is reported by official evaluation toolkit, which adopts the standard Precision (P), Recall 
(R) and F-score (F) to measure the performance.

Implementation details

Word2Vec [26] is employed to pretrain 100-dimension word embeddings on the Pub-
Med articles provided by Wei et al. [14]. Other parameters are initialized randomly from 
uniform distributions. The dimension of character embeddings is 50. Mini-batch size is 
set to 32 and 4 for the model trained on the large-scale dataset and training dataset, 
respectively. RMSProp optimizer with learning rate 1e-3 is used to minimize the loss. All 
the experiments were conducted on GeForce GTX 1080 using PyTorch. The runtime of 
the different models is shown in Table 2.

Table 2  The runtime of the experiments

“Time” denotes training time for one epoch. “Weakly labeled” and “Training” are the training time of the model trained on 
the weakly labeled dataset and CDR training dataset, respectively. “Distillation” is the training time of knowledge distillation

Models Time (min)

Weakly labeled (BiLSTM-CRF) 320

Training (BiLSTM-CRF) 2

Distillation (BiLSTM-CRF) 625

Weakly labeled (BioBERT-CRF) 334

Training (BioBERT-CRF) 4

Distillation (BioBERT-CRF) 554

Table 3  Comparison of BiLSTM-CRF model results trained on CDWC and CDWA with different 
re-correction times

The highest scores are highlighted in bold

All results are evaluated on the CDR test set. The first two lines are the baselines. For the last 5 lines, each dataset is 
constructed by the correction model trained with the dataset right above it. The superscript represents the re-correction 
times. That is, CDWC1 is the dataset constructed by the correction model trained on the CDWC. The third row datasets are 
the weakly labeled datasets without re-correction. What’s more, CDWC3 is CDRC, and CDWA2 is CDRA

Dataset P (%) R (%) F (%) Dataset P (%) R (%) F (%)

CDR 91.42 83.59 87.86 CDR 91.42 83.59 87.86

CDR + CDWC 90.17 84.49 87.24 CDR + CDWA 94.02 71.02 80.92

CDWC 89.72 83.65 86.58 CDWA 94.75 67.27 78.68

CDWC1 89.84 89.32 89.58 CDWA1 90.16 88.94 89.55

CDWC2 90.00 89.35 89.67 CDWA2 (CDRA) 91.03 88.31 89.65
CDWC3(CDRC) 89.80 89.82 89.81 CDWA3 90.28 89.03 89.65

CDWC4 89.90 89.70 89.80
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 Effects of label re‑correction

We first investigate the effects of the label re-correction strategy. Since we do not have 
the gold labels of weakly labeled datasets, we use the performance on the CDR test set 
to show the quality of the re-corrected dataset. Table 3 shows the results of the BiLSTM-
CRF model trained on the two weakly labeled datasets, respectively. For CDWC and 
CDWA, the label re-correction process is repeated multiple times before convergence.

Comparing the first two lines in the table, the model trained on the CDR training 
set perform better than the models trained on the combination of CDR training set 
and weakly labeled datasets. This proves that there are many false negative labels in 
weakly labeled datasets.

In addition, we can observe that although the first re-correction process signifi-
cantly improves the F-score, especially the recall, correcting only once is not enough. 
As the label re-correction process is further performed iteratively, the labels of the 
two datasets improve gradually, and thereby benefit the correction models.

Afterwards, we also find that CDRA and CDRC have a positive effect on recall com-
paring with CDWA and CDWC, respectively. However, the precision of CDRA is lower 
than CDWA. The reason for the reduced precision is perhaps that each correction pro-
cedure pays close attention to the F-score rather than the property of dataset itself.

Finally, we can see that the results on CDWC datasets keep a relatively high recall, 
while those on CDWA datasets have a relatively high precision, which is in line with 
our original motivation.

Different combinations of knowledge distillation

We further explore the effects of knowledge distillation on the CDR test set, which 
are summarized in Table 4. We investigate the influences of different combinations of 
hard label losses and soft label losses for knowledge distillation.

The first row indicates the model trained on the combination of CDRA and CDRC. 
Comparing this row with others, it is observed that without knowledge distillation, 
the performance drops, which demonstrate the effectiveness of knowledge distilla-
tion. The second row indicates the model only use hard label losses. Comparing this 
row with the rows using both hard label losses and soft label losses, to our surprise, 
it is observed that using single hard labels can achieve competitive performance with 

Table 4  Performance comparison of the distilled models trained with different combinations of 
losses

The highest scores are highlighted in bold

Adv: the short for adversarial learning

Lcrf L
T

crf
L
T
KD_sim

L
T

l1_sim
L
T

l2_sim
Adv F (%)

✔ 89.99

✔ 90.13

✔ ✔ 90.16

✔ ✔ 90.13

✔ ✔ 90.35
✔ ✔ ✔ 90.16
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both soft labels and hard labels. It is probably because the training dataset is so large 
that hard labels could contain most of the information encoded in soft labels.

Besides, adversarial learning is commonly used in knowledge distillation. We also 
introduce adversarial learning into our model as Shen et  al. [17] do (last row in 
Table 4). Unfortunately, it does not work. The possible reason is that there exists some 
potential conflict of information between the two teachers. It is difficult to force the 
student to generate similar outputs to the two teachers’ at the same time.

 Ablation study

To better understand the function of key components of our framework, we conduct 
some ablation studies on the CDR test set in Table 5.

 Does label re‑correction strategy really need to be applied to the weakly labeled datasets?

See the second row, instead of using re-corrected datasets CDRC and CDRA, we use 
weakly labeled datasets CDWC and CDWA to train the teachers. The recall of the dis-
tilled student model drops significantly. This proves the effectiveness of label re-correc-
tion, especially for reducing false negatives in the weakly labeled datasets.

Are both the datasets for coverage and accuracy beneficial?

See the last two rows, when we only use the dataset from one perspective, the perfor-
mance of each student model drops but is still promising. This suggests that the datasets 
from two perspectives are complementary and both effective. It also proves the effective-
ness of knowledge distillation.

Main results

We compare our distilled recognition model with state-of-the-art methods on the Bio-
Creative V CDR task and NCBI Disease task in Table 6. The BiLSTM-CRF and BioBERT-
CRF model trained on the CDR and NCBI Disease training dataset are our baselines. 
These relevant models are divided into four groups. Except our model encoded with 
BioBERT and the method proposed by Lee et al. [24], all these methods are based on 

Table 5  Ablation study results

The highest scores are highlighted in bold

w/o label re-correction: we train the teachers on the two weakly labeled datasets CDWC and CDWA rather than CDRC and 
CDRA

w/o CDRC: we train a single teacher without CDRC (i.e. only with CDRA)

w/o CDRA: we train a single teacher without CDRA (i.e. only with CDRC)

the marker * and ** represent P value < 0.05 and P value < 0.01, respectively, using pairwise t-test against our best (BiLSTM-
CRF). Firstly, the formula of the pairwise t-test is defined as the sum of the differences of each pair divided by the square root 
of n times the sum of the differences squared minus the sum of the squared differences, overall n − 1. n is the number of 
pair. Then in this paper we use a two-tailed test in which the critical area of a distribution is two-sided and tests whether a 
sample is greater than or less than a certain range of values

Model P (%) R (%) F (%)

Our best (BiLSTM-CRF) 90.71 89.99 90.35
w/o label re-correction 91.34 80.76 85.73**

w/o CDRC 90.48 89.14 89.81*

w/o CDRA 90.17 89.55 89.86**
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BiLSTM-CRF. To compare with other method in detail, the evaluation is performed on 
chemical type, disease type and both types.

Comparing group 1 and group 2, we find that rich features indeed improve the 
performance However, designing and extracting such features is laborious and 
time-consuming.

While comparing group 1 and group 3, we can see that multi-task learning could 
improve performance to a certain extent though data augmentation.

Our model and Lee et al. [24] leverage large-scale unlabeled datasets, significantly out-
performing other methods. Lee et al. [24] pre-train BioBERT on the datasets with totally 
21.3B words, and then fine-tune it on the  training data, while our model encoded with 
BiLSTM is trained on the datasets with only 14.8 M words. The amount of their data-
sets and the parameter scale of their model are much larger than ours. Even though, 
our model with vector dimension 100 achieves a competitive performance of Lee et al. 
[24] with vector dimension 768 on both. This demonstrates the effectiveness of our label 
re-correction and knowledge distillation strategies. Our weakly labeled dataset is con-
structed specifically for chemical and disease entity recognition, which is more task-
specific than directly using BioBERT. During the training process on the weakly labeled 
dataset, our word vector is fine-tuned at the same time, so the word vector could remain 
rich knowledge about chemical and disease entity recognition.

And when we use BioBERT as encoder to re-correct the weakly labeled datasets and 
train a distilled recognition model, it outperforms Lee et al. [24].

 Case study

 Knowledge distillation

To better understand in which conditions the knowledge distillation helps, we give 
the annotations of the same input sentence predicted by the models before and after 

Table 6  Comparison with some state-of-the-art methods

The highest scores are highlighted in bold

1: models with word and character features

2: models with additional domain resource features and linguistic features

3: models with multi-task learning

4: models with large-scale unlabeled datasets

*Indicates that the results are calculated by us according to their reported results in chemical and disease

Methods CDR 
chemical 
F(%)

CDR disease F(%) CDR both F(%) NCBI disease F(%)

1 Habibi et al. [5] 91.05 83.49 87.63* 84.44

Our baseline (BiLSTM-CRF) 91.42 83.59 87.86 83.96

Our baseline (BioBERT-CRF) 93.69 86.19 90.31 87.47

2 Luo et al. [1] 92.57 – – –

Dang et al. [18] 93.14 84.68 89.30* 84.41

3 Wang et al. [21] – – 88.78 86.14

Yoon et al. [22] 92.74 82.61 88.15* 86.36

4 Lee et al. [24] 93.47 87.15 90.60* 89.71

Our model (BiLSTM-CRF) 94.17 85.69 90.35 85.71

Our model (BioBERT-CRF) 95.22 87.34 91.64 89.75
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distillation in Fig. 4. To clearly explain why the student out-performs the teachers, we 
also output the label probabilities of the words “Coxon” and “scoline” in Fig. 5.

For the word “Coxon”, teacher Ta correctly predicts it as “O” with the probability of 
80.17%, while teacher Tc incorrectly predicts it as “B-Chemical” with the probability 
of 89.66%. However, through the knowledge distillation, the student selectively learns 
from the two teachers and balances their probability values. Finally, the probability of 
label “O” is 55.31%, which is larger than that of label “B-Chemical” with the probabil-
ity 23.38%. This illustrates that student can effectively distill the trustable knowledge 
from the teachers.

Similarly, for the word “scoline”, the label probabilities of the two teachers are 
quite different. The student effectively distills the knowledge from the two teachers, 
finally assigning the probability of 90.70% to the right label “B-Chemical”.

Finally, we find that the student could identify some synonyms in the CDR. The 
gold standard annotates “fasciculations” as disease, while our model annotates 
“muscle fasciculations” as disease. From our understanding, neither our model nor 
the gold standard are wrong, because the entity our model identified is synonymous 
with the one in the gold standard.

Fig. 4  Case study of knowledge distillation effectiveness. Yellow for chemical and green for disease

Fig. 5  Label probabilities of the words “Coxon” and scoline predicted by Tc , Ta and our model
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Re‑correction

To better shown that the new corrected dataset is indeed of higher quality than 
the weakly labeled ones, the annotations of the same input sentence in CDWA and 
CDRA are shown in Fig. 6.

From the figure, we can see that the missed chemical mention “anastrozole” and 
“letrozole” in CDWA are got back in CDRA. This proves that the re-correction pro-
cedure indeed reduce some false negatives.

Conclusion
In this paper, we address the problem of insufficient training set that BioNER suffers 
from. A novel label re-correction strategy is proposed to make full use of PubTator 
and knowledge bases to obtain two large-scale high-quality datasets for coverage and 
accuracy, respectively. Further, we introduce knowledge distillation to transfer knowl-
edge from two recognition models into a distilled recognition model. Experiments 
show that label re-correction benefits recognition significantly and knowledge distil-
lation further improves recognition. As a result, we achieve the new state-of-the-art 
results on CDR and NCBI Disease. In terms of further work, we would like to inte-
grate semi-supervised learning and multi-task learning to construct large-scale data-
sets for broader knowledge transfer.
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