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Background
The structure of the brain provides the machinery that enables behavior and cog-
nition. The human brain is extremely complex, comprising ~170 billion cells, of 
which ~86 billion are neurons. The mouse brain, a common model system used to 
study brain-behavior relationships, is much smaller yet still has ~109 million cells, ~70 
million of which are neurons [1]. By mapping the location of these many brain cells, 
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classifying them into types based on the expression of marker genes, and determining 
how cell type proportions and locations are altered by mutations or environmental 
factors, we can understand how changes in brain structure lead to changes in behav-
ior and/or cognition.

In order to map cell types within intact brains or any other tissue, a number of tis-
sue clearing techniques for making tissues transparent were recently introduced [2, 3]. 
Combined with high-speed image acquisition through light sheet microscopy, the full 
3D extent of adult mouse brain specimens can be imaged at micron resolution in a mat-
ter of hours [4–7].

Currently, these large-scale microscopy images are often used for qualitative visualiza-
tion rather than quantitative evaluation of brain structure, thus potentially overlooking 
key spatial information that may influence structure–function relationships for behavior 
and cognition. In order to quantify objects within annotated regions of the images from 
the brain or any other tissue, we need to distinguish morphological objects of interest 
(e.g., nuclei) from background [8]. Existing programs that perform object segmentation 
in cleared samples from tissue (for example, ClearMap [9], CUBIC [10]) or organoids 
[11] work well for cases with unambiguous morphological characteristics. However, for 
cases in which morphological objects are densely packed, nuclei segmentation results 
are less accurate using current computational tools, which obfuscates brain structure 
quantifications and comparisons. Recent deep learning-based nuclear segmentation 
algorithms such as multi-level convolutional neural networks show great promise for 
more accurately identifying each individual nucleus [12–15]. When colocalized with 
immunolabeling, nuclear segmentation additionally enables counting individual cell 
types. Present learning-based methods require two sets of manually labeled ‘gold stand-
ards’: (1) a large number of training objects to learn the morphometrical appearance of 
nuclei in the context of various backgrounds, and (2) independent benchmark datasets 
for evaluating the accuracy of automated segmentation results.

Gold standard datasets are derived from manual labels by trained and reliable raters. 
Manual labeling is both time-consuming and difficult because of ambiguities in nuclear 
boundaries and the inherent challenges of labeling 3D structures on a 2D screen. A few 
tools have been developed for manual labeling of objects in 2D [16] and 3D [17–23] 
images, including labeling in virtual reality environments [24]. Existing tools are gen-
erally optimized for segmenting objects derived from specific image modalities. For 
example, VAST [21] and WebKnossos [23] are optimized for electron microscopy imag-
ing where subcellular compartments can be resolved, and therefore enables hierarchi-
cal parent–child object relationships to be specified for segmentations, such as dendritic 
spines from dendritic arbors from a given neuron. Here, we focus on developing a new 
tool optimized for manual annotation of densely packed nuclei within large images 
derived from tissue clearing and fluorescence microscopy. In these images, the high vis-
ual complexity due to overlapping and/or neighboring nuclei boundaries within a 3D 
scene makes accurate segmentation challenging. We specifically focused on implement-
ing features that enhance the efficiency of this task, including synchronized 2D + 3D 
visualization and editing, intuitive visibility controls, and semi-automated correction of 
segmentation errors common to light sheet microscopy of brain tissue (e.g., incorrectly 
merged or split nuclear boundaries).
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We present Segmentor, an open-source tool for reliable, efficient, and user-friendly 
manual annotation and refinement of objects (e.g., nuclei) within 3D light sheet 
microscopy images from any tissue. This tool enables automated pre-segmentation 
of nuclei, refinement of objects in 2D and 3D, visualization of each individual nucleus 
in a dense field, and semi-automated splitting and merging operations, among many 
other features. Table 1 provides a feature-based comparison between Segmentor and 
four other tools that enable manual annotation of objects within 3D imaging data 
(VAST Lite [21], Labkit [22], Brainsuite [20], and webKnossos [23]). Segmentor has 
been used by 20 individuals to achieve reliable segmentation and labeling of thou-
sands of nuclei. We show results following a case study that editing simultaneously 
in both 2D and 3D significantly decreases labeling time, without impacting accu-
racy, as compared to the user being presented the same set of images with 2D editing 
capabilities only. Software releases of this tool and an example image are available 
at https://​www.​nucle​ininja.​org/, and source code and documentation are available 
at https://​github.​com/​RENCI/​Segme​ntor. We expect that increasing the number of 
manually labeled nuclei in 3D microscopy images through this user-efficient tool will 
help implement fully automated data-driven nuclear recognition via deep learning 
approaches.

Table 1  Comparison of features among Segmentor and three other tools [20–23] that enable 
manual editing of segmentation volumes

Segmentor 
0.3.2

VAST Lite 1.4.0 Labkit 0.2.6 Brainsuite 
v19.b

webKnossos

Available pack‑
ages

Windows, Mac, 
Linux

Windows Windows, Mac, 
Linux

Windows, Mac, 
Linux

Web-based

Image File 
Format

.nii,.vti,.tiff (single 
and multistack)

.vsv,.vsvol,.vsvi,.
vsvr

.tiff .img,.img.gz,.nii,.
nii.gz

.czi,.nii,.raw,.dm3,.
dm4,.png,.tiff 
(single and 
multistack)

Segmentation 
file format

.nii,.vti,.tiff (single 
and multistack)

.vss,.vsseg .tiff,.h5 .nii.gz .stl

2D + 3D editing Yes No No No No

Synchronized 
2D + 3D views

Yes No No No Yes

3D visibility 
controls for 
densely packed 
objects

Yes Yes No No Yes

Voxel-level edit‑
ing

Yes Yes Yes Yes Yes

Region-level 
controls (e.g., 
merge/split)

Yes Yes No No Yes

Hierarchical 
object relation‑
ships

No Yes No No Yes

Source code 
available

Yes No Yes Yes Yes
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Implementation

Software

The Segmentor tool was developed in C++ using open-source cross-platform libraries, 
including VTK [25] and Qt [26]. 3D image volumes and segmentation data can be loaded 
in TIFF, NIfTI, or VTI format. To increase efficiency, the tool is primarily designed for 
manually refining existing annotations rather than beginning annotations completely 
anew. The user can load initial segmentation data generated by a tool external to Seg-
mentor (e.g., NuMorph [12], CUBIC [10], or ClearMap [9]), or generate an initial global 
intensity threshold-based segmentation [27] from within Segmentor. The interface con-
sists of panels with 2D (right panel) and 3D (left panel) views and a region table (Fig. 1). 
The 2D view consists of a single slice through the volume and enables the user to see 
both the voxel intensities as well as 2D visualizations of the segmented regions. The 3D 
view enables the user to see 3D surfaces of the segmented regions and inspect them for 
non-uniform morphology that is difficult to visualize using only the 2D view. The 2D and 
3D views are synchronized such that navigating (i.e., rotating, translating, or zooming) 

Fig. 1  Demonstration of Segmentor software for nuclear refinement. a Raw microscopy volumes of the 
brain are loaded into the software. b Segmentor provides an initial segmentation of nuclei within the image 
(alternatively, pre-segmentations from other programs can be loaded). c The segmented images are manually 
refined within Segmentor using (1) the 3D visualization of segmented nuclei and (2) the 2D slices. (3) The 
region table enables the user to track progress during segmentation. d Finally, the manually refined image 
that can be used as gold standard input to deep learning programs is shown (grey regions indicate those the 
user has marked as completed). Image made in part using BioRender
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in one view updates the other view simultaneously. The hybrid 2D + 3D visualization 
and editing capabilities are important as each view offers multidimensional context for 
the annotation procedure, e.g., the 2D view is useful for manually selecting voxels based 
on image intensity, whereas the 3D view is useful for identifying incorrectly segmented 
regions of densely packed nuclei. This feature, to our knowledge, is not found in other 
existing image annotation software to date (Table 1).

Visualization features

The 2D view provides outline and solid overlay representations of the segmented 
regions, and window/level controls for the voxel intensities. The 3D view has controls for 
smooth shading and surface smoothing. The user can also toggle a representation of the 
current 2D slice plane in the 3D view. Edits made in either view are immediately updated 
in the other view. Various modes were designed to enhance the ability to annotate in the 
3D view and render 2D + 3D scene information, including 1) the current slice plane, 2) 
the currently selected region and close neighbors, and 3) the currently selected region 
only.

Editing features

Various editing features are provided. Most operations can be applied in either the 2D 
or 3D view, although certain features are only applied in the 2D X–Y plane due to the 
improved resolution in that plane for most microscopy volumes. Standard editing fea-
tures include voxel-level painting and erasing of the currently selected region. The user 
can select a customizable brush radius, applied in the X–Y plane, for these edits.

In addition to these standard editing features, more advanced features are also pro-
vided. The user can apply a constrained region growing or shrinking operation in the 
X–Y plane by selecting a voxel outside (growing) or inside (shrinking) the current region. 
For region growing, all voxels with an intensity equal to or higher than the selected voxel 
that are reachable from the current region, and no farther than the selected voxel, are 
added to the region. This is similar to a dilation of the current region, but only includ-
ing voxels with intensities greater than or equal to the current region. Region shrinking 
works similarly, but removes voxels with intensities less than or equal to the selected 
voxel.

Common segmentation problems from automatic methods include divided nuclei, 
when more than one region is present within a single nucleus, and joined regions, when 
multiple nuclei are incorrectly included as the same region. Semi-automated methods 
are provided for correcting these issues. To fix divided nuclei, the user can select any 
region to merge with the current region by reassigning the voxel labels. Splitting joined 
regions is more challenging (Fig. 2). We employ an intensity threshold method: using the 
2D and 3D views, the user determines how many nuclei are in the current region that 
should be separated. After specifying this number, a fully-automated approach is applied. 
An increasing intensity threshold is repeatedly applied to the voxels in the region. As the 
intensity increases, the region is typically broken up into smaller regions. The threshold 
resulting in the specified number of regions (via connected component analysis) with 
the largest volume for the smallest of the three regions (making the method less sensi-
tive to noise) is used to define seed regions (intensities are typically higher toward the 
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center of the nuclei). Each seed region is then successively grown similarly to the region 
growing method described above, by stepping the region growing intensity down from 
the seed region threshold, constraining the growing to a 1-voxel radius at each step, and 
to the original region voxels. After splitting, the user can perform any necessary adjust-
ments using the other editing features.

Region table

To help the user manage the complexity of segmenting many nuclei in a given volume 
(e.g. ~ 460 nuclei are found within a typical image volume of 96 μm × 96 μm × 160 μm of 
the adult mouse cortex that we use for manual labeling), a region table provides informa-
tion on each segmentation region, including label color, size (in voxels), modified status 
(whether the label has been modified since the last save), and done status (whether the 
user considers segmentation complete for that region). The user can sort by label, size, 
or status, and select any region to zoom in on that region in the 2D and 3D views. The 
user can mark any region as done to keep track of their progress. Such regions will be 
greyed out in the other views. Modified and done statuses are stored in a separate JSON 
metadata file stored with the segmentation data.

Typical workflow

All users undergo an initial training period in which they receive the same standard-
ized training image containing 39 nuclei. Each user then generates an initial automated 
segmentation, which s/he manually edits. Labeling reliability is then iteratively assessed 
by comparing segmentations to those of an experienced rater (CMM) until a Dice score 

Fig. 2  Examples of automated nuclear splitting within Segmentor. a An incorrectly joined region is shown 
(top), which after visual inspection is determined to represent two nuclei. After the user specifies that there 
are two nuclei in the joined region, the automated splitting function result is shown (bottom). b Similar to (a), 
but three nuclei are incorrectly joined (top) and the automated result is shown (bottom)
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[28] of ≥ 0.85 is achieved and label counts are within ± 1 nucleus of the ‘gold standard’ 
training segmentation (i.e., 39 ± 1 nuclei).

Case study

To quantify the efficiency and accuracy of manual labeling in 2D + 3D as compared to 
2D alone, two users (CMM, NKP) manually refined a series of four images using either 
‘2D only’ or synchronized ‘2D + 3D’ visualization and editing. Both annotators used Seg-
mentor v0.2.11 (Windows version) and achieved reliability on a separate standardized 
image prior to beginning the case study. One user (NKP) was assigned these 4 images 
balanced with respect to the order of ‘2D only’ or ‘2D + 3D’, to minimize ordering bias. 
This user alternated between ‘2D only’ and ‘2D + 3D’ using a toggle-enabled feature 
in Segmentor’s interface designed to hide the 3D visualization. In total, this user com-
pleted 2 manual refinements on each of the 4 images (i.e., labeling the same image twice 
per visualization modality). The other user (CMM) edited each of the four images in 
‘2D + 3D’ only for accuracy assessment. Both users recorded the time to completion 
using the freely available Clockify application. Manually refined annotations were com-
pared between users for accuracy (Dice score), and differences in time and accuracy 
between ‘2D only’ and ‘2D + 3D’ were evaluated using two-tailed paired t-tests in R.

Image acquisition

Images were acquired from iDISCO + tissue clearing [9] of postnatal day 15 (P15) 
C57Bl/6  J mice. Nuclei were labeled with TO-PRO-3 and imaged on a light sheet 
microscope (Ultramicroscope II from LaVision Biotec) at a final resolution of 
0.75 μm × 0.75 μm × 2.50 μm. Blocks from the cortex were used for labeling with Seg-
mentor. Further details about image acquisition can be found in [12].

User survey

Six users consented to provide Segmentor usability feedback in a 28-question survey (24 
Likert scale questions on a 7-point scale, in which ‘1’ means ‘not useful’ and ‘7’ means 
‘extremely useful,’ followed by 4 open-ended questions). QualtricsXM was used to distrib-
ute the survey and analyze participant results (see Additional File 1).

Results
Twenty users have used Segmentor for manual refinement of 3D microscopy volumes. 
Segmentations from one expert user were defined as the gold standard and results from 
every other user were compared to this segmentation via Dice score and nuclei counting 
to assess reliability. After several iterations, a Dice score of ≥ 0.85 was achieved by each 
user (average final Dice score = 0.885). We did not quantify the intra-operator agree-
ment, but we expect that it would be higher than the inter-operator agreement.

We designed a case study to test the impact of simultaneous visualization and edit-
ing in 2D and 3D on manual labeling efficiency and accuracy. One user labeled nuclei 
in 4 images containing ~ 39 nuclei, using either the 2D view alone with the 3D view and 
editing features turned off, or using the synchronous 2D and 3D views and editing fea-
tures. A separate expert user annotated the same images with both the 2D and 3D views 
to serve as gold standard for accuracy comparisons. The use of both 2D and 3D led to 
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a 45.1% reduction in tracing time needed to manually refine automated segmentations 
(2D: 554 ± 15 min; 2D + 3D: 304 ± 21 min; p = 0.00027; mean difference = 250 min; 95% 
CI [210.19, 289.81]; Fig.  3 and Additional File 2: Table  1). Using both the 2D and 3D 
views, manual annotation of the full 3D extent of a nucleus takes approximately 8 min. 
However, we found that use of both 2D and 3D views was not associated with differ-
ences in annotation accuracy relative to the gold standard rater (mean Dice score for 
2D: 0.82 ± 0.024; mean Dice score for 2D + 3D: 0.81 ± 0.023; p = 0.86; mean differ-
ence = 0.0033; 95% CI [-0.052, 0.059]; Fig. 3 and Additional File 2: Table 1). These find-
ings indicate that combined use of the 2D and 3D views increases speed for manual 
refinements without sacrificing accuracy in segmentation.

The user survey complemented the case study results, as 2D and 3D views were both 
found to be useful. Questions focused on the usefulness of editing segmentations in 2D 
and 3D received respective means of 6.33 (Q1) and 6.83 (Q2) on a 7-point Likert scale, 
and questions focused on the usefulness of 2D and 3D visualizations received respective 
means of 5.5 (Q3) and 7.0 (Q4). The region splitting feature was also confirmed to be 
useful, with a mean of 6.67 (Q6), and questions addressing features related to the region 
table had an overall mean of 6.63 (Q11-14). Visualizing non-axis-aligned slices in the 2D 
view supports synchronization of the 2D and 3D views, but scores on the utility of this 
feature varied, with a mean value of 3.33 and a standard deviation of 2.43 (Q10), perhaps 
due to artifacts caused by voxel anisotropy. Future work will explore more flexible cou-
pling of the 2D and 3D views to more effectively utilize the strengths of each view.

Discussion
A user-friendly tool for manual delineation of nuclei in 3D image volumes will greatly 
accelerate the training of automated recognition algorithms necessary to quantify nuclei 
in tissue cleared images of the brain. To this end, we have developed Segmentor to make 
3D manual annotation easier and more efficient. Segmentor has been tested and itera-
tively updated based on the feedback of 20 users. Segmentor provides new features that 
allow the user to parse relevant information and navigate in dense images, automatically 

Fig. 3  Results of case study to determine accuracy and efficiency of manual refinement when editing and 
visualizing in 2D only vs. 2D + 3D. a Dice score measuring accuracy relative to an expert rater for either the 
labels only from the 2D segmentations or from 2D + 3D segmentations. b Time comparison between 2D vs 
2D + 3D showing a 45.1% reduction to manually refine nuclei (p = 0.00027)
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split or merge nuclei, keep track of progress during segmentation, and efficiently use 
both 2D and 3D visual information. While we have designed the tool and demonstrated 
use cases for segmentation of nuclei from fluorescence microscopy images, Segmentor 
also can be used to annotate objects from other imaging modalities, such as MRI and 
CT.

Here, we focus on identifying the borders of the 3D extent of the nucleus rather than 
using a marker to label one voxel within the nucleus. Though counting applications 
only require one voxel (or crosshair) within a nucleus to be labeled, labeling the surface 
or volumetric boundaries of nuclei enables measurements of nuclear shape, facilitates 
more accurate colocalizations with markers across channels, and allows for evaluation 
of precision and recall by determining whether an automated segmentation lies within 
the boundaries of the manually defined nucleus. We also believe that the added infor-
mation of the nuclear boundaries will provide more useful heuristics to deep learning 
approaches about contextual features that distinguish the nucleus from the background 
and possibly other (touching) nuclei [14].

How many manually annotated nuclei are sufficient for training an accurate image 
segmentation tool using deep learning methods? In recent work [14], 80,692 manually 
labeled nuclei (from 1,102 images) were used to train a highly accurate 2D segmentation 
method [29]. Learning 3D nuclei segmentation is more challenging than its 2D coun-
terpart, so it is necessary to develop more complex neural networks (with more param-
eters), which require larger numbers of training samples for fine tuning the network 
parameters. Each 3D nucleus is composed of ~5 slices of 2D segmentations at the image 
resolution used in this work. Thus, our goal is to acquire ~20,000 high-quality manual 
3D nuclei annotations using our Segmentor software (comprising ~100,000 2D masks), 
which will be used to train, validate, and test our neural network model in a tenfold cross 
validation manner.

The results of our case study suggest that visualization in both 2D and 3D views 
increases efficiency without impacting accuracy. Because a large number of training 
samples are needed to train a deep learning-based segmentation model, we expect that 
the improvement of manual labeling efficiency suggested by our case study will greatly 
contribute to the performance of automated segmentation software.

Finally, the current approach involves the segmentation of a full 3D image containing 
40–400 cells, which still can take 5 to 50 h of manual effort per user, respectively. We 
expect that as automated initial segmentations improve through training on manually-
corrected annotations, time for manual refinement will decrease because fewer manual 
refinements will be required. Future implementation of a client–server architecture 
will enable refinement of the machine learning model in conjunction with Segmentor 
interface enhancements. It will also enable streamlining the ingestion of newly manu-
ally annotated training data from Segmentor as input to the machine learning model, 
and improved machine learning-based initial segmentations as input to Segmentor for 
manual refining. Additionally, we expect that by chunking these segmentation tasks into 
smaller units of single cells or clumps of cells, a greater number of users can partici-
pate in segmentation simultaneously with reduced overall time commitment. This would 
allow annotations at a massive scale, through a citizen science approach.
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Conclusions
Segmentor is a freely available software package that increases efficiency of manual 
refinement in 3D microscopy images. We expect that use of this software will greatly 
increase the number of training samples and thereby result in higher accuracy of 
learning-based automated segmentation algorithms, enabling the efficient quantifica-
tion of brain structural differences at cellular resolution.
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