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Background
Cancer develops due to changes that have occurred in the DNA sequence of the 
genomes of cancer cells, somatic mutations acquired during an individual’s lifetime [1]. 
Cancer genomes contain large numbers of somatic mutations, but most are “passen-
gers” that emerge simply as a result of genome instability during cancer progression and 
do not contribute to cancer development, and a small proportion are “drivers” that are 
implicated in oncogenesis [2–4]. Identifying molecular cancer driver genes is critical for 
personalized oncology as accurate identification of personalized driver genes will result 
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in precise diagnosis and allow the clinicians to possibly define personalized therapeutic 
targets [5, 6].

Several computational batch analysis approaches, extensively reviewed by Tokheim 
et al. and Cheng et al. [7, 8], have been developed to identify cancer driver genes. Some 
notable approaches for batch analysis include MuSiC [9], MutSigCV [10], MutPanning 
[11], MEMo [12], Hierarchical HotNet [13], TieDie [14], DriverNet [15], CaDrA [16], 
OncodriveFML [17] and LOTUS [18]. MuSiC uses the significance of a higher-than-
expected rate of mutations, pathway mutation rate, and correlation with clinical features 
to detect drivers. MutSigCV investigates the mutational significance of genes by identi-
fying genes that were mutated more often than expected by chance, given background 
mutation processes. MutPanning uses deviation of mutational context from charac-
teristic contexts around passenger mutations in addition to traditionally-used features 
(e.g., a higher-than-expected mutation rate) for driver gene identification. MEMo tries 
to detect small subnetworks of genes in the same pathway, exhibiting internal mutual 
exclusivity patterns. Hierarchical HotNet incorporates knowledge from protein–pro-
tein interaction networks (PINs) to find a hierarchy of altered subnetworks containing 
frequently mutated genes. TieDie incorporates PIN and mRNA expression data to find 
overlapping subnetworks exhibiting a high degree of mutation and expression values 
using heat diffusion. DriverNet tries to detect driver genes via their effect on mRNA 
expression networks by identifying a set of genes with mutations/copy-number altera-
tions that are linked to genes with deregulated expression in a given PIN. CaDrA uses a 
step-wise heuristic search approach to identify functionally relevant subsets of genomics 
features, maximally associated with a specific outcome of interest. OncodriveFML aims 
to detect driver genes by analyzing the functional impact bias of observed somatic muta-
tions. LOTUS is a machine-learning-based method for pan-cancer and cancer-specific 
driver gene prediction. Combining mutation frequency, functional impact, and pathway-
based information, LOTUS provides a single- and multi-task learning algorithm to pre-
dict driver genes.

The results of some of the batch analysis approaches mentioned above are available in 
DriverDBv3 [19]. A recent integrated database and analysis platform, OncoVar, which 
employed some of the methods discussed above and incorporated known driver events 
to identify driver mutations, driver genes, and pathogenic pathways with high confi-
dence, enables researchers to assess relationships and cancer drivers [20]. The Integra-
tive OncoGenomics (IntOGen) platform also summarizes somatic mutations, genes, and 
pathways involved in tumorigenesis [21]. The 2020-02-01 release has identified cancer 
drivers analyzing 221 tumor cohorts by combining results from seven different methods 
for cancer driver gene identification.

Although several approaches exist for identifying cancer driver genes in cohort-
scale genomics data, and several platforms contain curated drivers for different cancer 
cohorts, personalized driver gene identification approaches are still underdeveloped. 
Personalized driver gene prioritization is essential for numerous reasons: (1) it is neces-
sary to identify actual driver genes for the patient as some patients have alterations in 
many known driver genes, (2) there may be a need to identify putative driver genes in 
patients without any alteration in any known driver gene, (3) as the number of therapies 
that can be administered at the same time is limited due to toxicity and adverse events 
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[22, 23], there is a need to prioritize driver genes for the patient. Some methods that 
operate on a single patient’s data to identify and rank patient-specific driver genes have 
been developed. DawnRank uses a PageRank algorithm to rank mutated genes according 
to the effect on expression deregulation of downstream differentially-expressed genes 
(DEGs) in a directed PIN [24]. The single-sample controller strategy (SCS) aims to iden-
tify a set of mutated genes linked to downstream DEGs in a directed PIN [25]. iCAGES 
utilizes a statistical framework to identify driver variants by integrating contributions 
from coding, non-coding, and structural variants and identifies driver genes by combin-
ing genomics information and prior biological knowledge [26]. PRODIGY analyzes the 
expression and mutation profiles of the patient along with data on known pathways and 
PIN to quantify the impact of each mutated gene on every deregulated pathway using 
the prize-collecting Steiner tree model [27].

As stated above, most approaches for driver gene prioritization are batch-analysis-
based. Furthermore, most methods utilize only genomics and/or transcriptomics data 
without exploiting prior biological knowledge. To improve on existing approaches, 
we aimed to develop a novel driver gene prioritization approach that utilizes somatic 
genomics information and incorporates prior biological knowledge, which we call 
driveR. We developed driveR intending to establish an accurate and reliable method 
for driver gene prioritization. The approach allows for personalized or batch analy-
sis of genomics data for driver gene prioritization by combining genomics information 
and prior biological knowledge. As features, driveR uses coding impact metaprediction 
scores, non-coding impact scores, somatic copy number alteration scores, hotspot gene/
double-hit gene condition, Phenolyzer [28] gene scores, and memberships to cancer-
related Kyoto Encyclopedia of Genes and Genomes (KEGG) [29] pathways. It uses these 
features to estimate cancer-type-specific probabilities of being a driver for each gene 
using a multi-task learning model. In this article, we demonstrate that our approach can 
help increase the accuracy of cancer driver gene detection and prioritization with the 
hopes of facilitating precise diagnosis, personalized therapy, and overall resulting in bet-
ter clinical decision-making.

Results
The variant impact metapredictor outperforms individual predictors

As described above, we trained a metapredictor model to estimate the pathogenicity of 
coding variants. Out of 6 different model types, the random forest metapredictor per-
formed the best (Additional file 2: Figure S2). As expected, this model also performed 
better than the individual impact prediction tools that were used as features to train the 
metapredictor, achieving an AUC of 0.911 (Fig. 1).

This metapredictor can be used to prioritize coding variants according to their patho-
genicity and was used for generating one of the features of the MTL classification model.

The cancer‑type‑specific driver gene prioritization approach performs well both for batch 

analysis and personalized analysis

Using genomics data and prior biological information, we next trained an MTL classifi-
cation model for obtaining cancer-type-specific driver gene predictions. The Biclustered 
coefficient matrix for the MTL model classification model is presented in Fig. 2. Based 
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on biclustering, three major categories of features were identified: one cluster containing 
only Phenolyzer score, a cluster of positively weighted features, and another cluster of 
negatively weighted features. Overall, the Phenolyzer score had relatively higher coeffi-
cient estimates, highlighting the importance of incorporating prior biological knowledge 
into the MTL model.

The MTL classification model’s batch analysis performance was assessed on the 28 test 
datasets (Fig.  3). The median AUC on the test datasets was 0.684 (range 0.651–0.861, 
Fig.  3A). Using different thresholds, the median number of predicted driver genes 
per test dataset ranged from 13 to 42.5 and, as expected, decreased with the increas-
ing threshold (Fig. 3B). The median number of predicted driver genes per test dataset 
was 35 (range 2–104) using cancer-type-specific thresholds. As expected, the percent-
ages of “True Driver Genes” (as curated by CGC) and “Actionable Genes” (as curated 
by TARGET [30], containing a total of 135 actionable genes) among all predicted driver 
genes across all datasets increased with increasing threshold values (Fig.  3C, range of 
median percentages of “True Driver Genes” = 63.84–94.59%, range of median percent-
ages of “Actionable Genes” = 55.29–85.71%). Using the cancer-type-specific thresholds 
(that maximized the accuracy on the validation datasets), a median of 71.29% predicted 
driver genes were found to be “True Driver Genes” (Fig. 3C left-hand panel), and 59.46% 
predicted driver genes were found to be “Actionable Genes” (Fig. 3C right-hand panel).

Next, the personalized analysis performance of the driveR approach was assessed 
on the 5157 test patients (Fig. 4). The median AUC value among all test patients was 
0.773 (Fig. 4A, top, range 0–1). The median AUC values of patients per test dataset 
were similar (Fig. 4A bottom, range of median AUC per dataset = 0.655–1). For each 
different threshold, the median number of predicted driver genes per patient was 
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Fig. 1  Metapredictor of coding variant impact outperforms individual predictors. ROC curves displaying the 
performances of the random forest (RF) metapredictor and individual impact prediction tools



Page 5 of 17Ülgen and Sezerman ﻿BMC Bioinformatics          (2021) 22:263 	

1 (Fig.  4B). The median number of predicted driver genes per patient was 1 (range 
0–26) using cancer-type-specific thresholds. The median percentages of “True Driver 
Genes” and “Actionable Genes” among all predicted driver genes in each patient per 
all different thresholds were 100% (Fig.  4C). Using the cancer-type specific thresh-
olds, the median percentages were again 100%. This implies that each gene (if any) 
predicted by driveR to be a driver in an individual is most likely a true driver gene and 
an actionable gene.
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The driver gene predictor approach outperforms existing approaches

The ROC curves of the performances of different batch analysis approaches per each 
dataset are presented in Additional file 3: Figure S3. The median AUC of driveR across 
all test datasets (median AUC = 0.684) was significantly higher than all of MutSigCV 
(0.579, Wilcoxon rank-sum test p < 0.001), DriverNet (0.614, p < 0.001), OncodriveFML 
(0.546, p < 0.001) and MutPanning (0.591, p < 0.001) (Fig. 5).

Next, performances of driveR and other personalized analysis tools on test patients 
from 16 datasets, for which analyses with all approaches could be performed, were com-
pared (Fig. 6). It was observed that driveR had higher median AUC (0.728) compared 
to DawnRank (median AUC = 0.693, p < 0.001) and PRODIGY (median AUC = 0.679, 
p < 0.001) overall. When the performances were compared for all patients per dataset, 
driveR again displayed higher performance (Additional file 4: Figure S4).

Discussion
Alterations in driver genes are the putative underlying causes of oncogenesis and tumor 
formation [3, 4]. Although numerous driver genes are experimentally validated [21, 31–
33], there is great potential clinical benefit in identifying individual patients’ driver genes 
[5, 6].

In this study, we established a simple, model-based approach, driveR, that can accu-
rately prioritize cancer driver genes, sorting through a vast amount of passengers 
observed in cancer genomes [1]. Using 26 features based on somatic genomics data, 
we trained a multi-task learning classification model to estimate driver gene probabili-
ties in a cancer-type-specific context for 21 different cancer types. Compared to other 
approaches, driveR achieved better performance on different test datasets by accurately 
prioritizing cancer driver genes in analyses on both cohort-scale and personalized data. 
Below we discuss several unique aspects of driveR.

Driver genes are diverse among different cancer types [21, 31–33]. Different cancers 
may possess different driver genes. The driveR approach attempts to define cancer-type-
specific driver genes based on somatic genomics features, incorporating prior biological 
knowledge. The multi-task learning model at the core of our approach allows for can-
cer-type-specific identification of driver genes. The approach is available for use for 21 
different cancer types. Analysis in a cancer-type-specific context allows driveR to more 
accurately identify driver genes that may be specific to a particular cancer type.

Most approaches for driver gene prioritization are designed for analyzing tumor 
cohorts. These approaches usually fail to identify low-frequency driver genes, not to 
mention patient-specific driver genes. Patient-specific driver genes may be rare or not 
match the organ-of-origin. In this study, we demonstrate that driveR can be utilized to 

Fig. 3  Batch analysis performance of driveR on 28 test datasets. a ROC curves of driveR prioritization results 
per each test dataset. AUC value per test dataset is indicated in the bottom-right legend. Median AUC and 
range are indicated on the top-left. b Boxplots of numbers of predicted driver genes using the specified 
thresholds across all test datasets. “cancer-specific” indicates that the cancer-type-specific thresholds 
were used to predict driver genes. c Boxplots of percentages of “True Driver Genes” (left) and “Actionable 
Genes” (right) among all predicted driver genes by using the specified thresholds across all test datasets. 
“cancer-specific” indicates that the cancer-type-specific thresholds were used to predict driver genes

(See figure on next page.)
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rapidly and accurately analyze both patient-specific and cohort-scale genomics data to 
prioritize cancer driver genes. This makes driveR a suitable option for studying driver 
genes for individual patients.

In our approach, we incorporated prior biological knowledge into the MTL model. We 
used Phenolyzer, a database-mining tool, which integrates 15 different biological knowl-
edge databases to score a gene’s prior association with cancer. Additionally, member-
ships of genes to cancer-related KEGG pathways were also taken into consideration. This 
integration of extensive biological knowledge improved the accuracy of the MTL model 
because the final model used for driver gene prioritization was based not only on the 
genomics features but also guided by expert knowledge from decades of research.

We devised driveR to be less demanding on the data type. Other driver prioritization 
tools usually require multiple omics data for the patient, including mutation data, tumor 
expression data, and normal expression data. However, obtaining transcriptomics data is 
not always feasible due to cost and other practical issues. We devised driveR based only 
on somatic genomics data (somatic mutation and SCNA) because targeted sequenc-
ing or whole exome/genome sequencing is more widely utilized in both the clinical and 
research settings and technical analysis of genomics data is less complicated compared 
to transcriptomic data.
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We demonstrated that the overall performance of driveR in identifying true drivers 
is adequate on both batch analyses and personalized analyses. Additionally, a high pro-
portion of driveR predictions were also clinically-actionable genes. We also demonstrate 
that driveR outperforms other tools in both personalized and batch analyses. These 
demonstrate that driveR performs well in successfully prioritizing driver genes in a can-
cer-type-specific context.

Conclusions
In this study, we devised a novel approach, driveR, for prioritizing cancer-type-specific 
driver genes using somatic genomics data. As demonstrated, driveR can be utilized for 
both analyzing individual cancers and cancer cohorts to accurately prioritize patient-
specific or cohort-scale driver genes. We also demonstrated that our approach out-
performs existing driver gene prioritization methods. We hope that this approach can 
provide further insight into cancer driver gene discovery and help progress personalized 
cancer research.
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Methods
Coding variant impact metaprediction

Initially, we fitted coding impact metapredictor models to assign an estimated probabil-
ity of damaging each somatic variant’s impact. We later used this model to generate a 
feature for each gene in the multi-task learning classification model. We ensured that the 
genomic coordinates used in this study are hg19.

For training the coding impact metapredictor models, a benchmarking dataset from 
the Martelotto et  al. study [34] was obtained. All mutations within the dataset were 
annotated using ANNOVAR [35] with 12 impact predictors’ scores using dbNSFP v3.0 
[36]: SIFT [37], PolyPhen-2 [38] (HumDiv scores), LRT [39], MutationTaster [40], Muta-
tion Assessor [41], FATHMM [42], GERP++ [43], PhyloP [44], CADD [45], VEST [46], 
SiPhy [47] and DANN [48]. Variants with any missing predictor scores were excluded. 
Additionally, we excluded variants with the label “uncertain”; hence, the final dataset 
consisted of 135 “neutral” and 814 “non-neutral” variants.

Before training the models, pairwise Pearson correlations of all variables (including the 
outcome variable) were investigated to determine any collinearity issue and evaluate the 
predictors’ predictive strength (Additional file 1: Figure S1A). The correlogram revealed 
that each of the individual scores provides a different facet of information for a coding 
variant. Additionally, violin plots of all 12 predictors by outcome status (i.e., “neutral” or 
“non-neutral”) were visualized for investigating the distributions of the two status labels 
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distributions of AUC values of each approach across all test patients. The brackets display p values per each 
comparison



Page 11 of 17Ülgen and Sezerman ﻿BMC Bioinformatics          (2021) 22:263 	

and detect any outliers (Additional file 1: Figure S1B). The violin plots revealed that the 
distributions of scores in “neutral” and “non-neutral” variants were different. There were 
no noticeable outliers.

The final dataset was split into training and test datasets by randomly selecting 75% 
of each “neutral” and “non-neutral” variants as the training set and the remaining as the 
test set.

In total, six different classification models were trained and evaluated: logistic regres-
sion, naïve Bayes, support vector machine (SVM) with linear kernel, SVM with radial 
kernel, random forest, and gradient boosting machine. Each of the six classification 
models was trained using the training dataset using tenfold 3-times-repeated cross-val-
idation, maximizing the area under curve (AUC) metric, and tested on the test dataset. 
Additional file 2: Figure S2 shows the receiver operating characteristic (ROC) curves and 
AUC values for each of the six classification models in the training, test, and validation 
datasets.

The model with the best performance in all of the datasets was the random forest clas-
sification model, and this model was used as the coding variant impact metapredictor.

Driver gene prioritization

The overview diagram of our approach to prioritize driver genes is presented in Fig. 7. 
We again ensured that the genomic coordinates used in this study are hg19.

We trained a multi-task learning (MTL) classification model to prioritize cancer driver 
genes in a cancer-type-specific context. For this purpose, initially, all somatic muta-
tion and somatic copy number alteration (SCNA) data from The Cancer Genome Atlas 
(TCGA) program available on the International Cancer Genome Consortium (ICGC) 
data portal [49] was obtained. This data consisted of genomics data for 21 different can-
cer types (Additional file 5: Table S1). Genomics data from each of these different can-
cer types were randomly split into training (75% of patients) and test (25% of patients) 
data. Additional data for testing were obtained for four datasets of four different cancer 

Fig. 7  The overview of the driveR approach for driver gene prioritization
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types from cBio Cancer Genomics Portal [50] (namely, BRCA-METABRIC [51], COAD-
CPTAC [52] and LUAD-ONCOSG [53]) and four datasets of three different cancer types 
from ICGC (namely OV-AU, PACA-AU, PACA-CA, and PRAD-CA).

“True positive” driver genes were defined as the 723 experimentally-validated driver 
genes curated by the Cancer Gene Census (CGC, v92) [54]. Using ANNOVAR annota-
tions, SCNA tables, and Phenolyzer gene scores, 26 features were generated:

The maximum coding variant impact score

The maximal coding variant metaprediction score for each gene was used as a feature in 
the driver gene classification model.

The maximum non‑coding variant impact score

For non-coding variants, the Phred-scaled CADD scores were used. The maximal score 
for each gene was used as a feature in the driver gene classification model.

Proxy SCNA score

To score gene-level SCNA events, firstly, the gene-level SCNA events were determined 
using segment-level SCNA data. If a segment overlapped at least 25% (the default 
threshold value) of the gene, the gene-level SCNA event was called. The log2 ratio for 
any gene was determined as the ratio with the maximum |log2 ratio| value among all 
segments overlapping it. Genes on sex chromosomes were excluded. Gene-level SCNA 
events with |log2 ratio|< 0.25 (the default threshold value) were also excluded.

A Minimal Common Region (MCR) is the minimal region of copy number amplifi-
cations or deletions representing a common genomic alteration across the examined 
cancers [55]. We obtained pan-cancer MCR data from Kim et  al. [56] who analyzed 
chromosomal aberrations in 8000 cancer genomes. Genes overlapping an MCR region 
with the same direction of SCNA event (amplification or deletion) were assigned the 
MCR’s SCNA density (SCNA / Mb). This SCNA density was used as a feature in the 
driver gene classification model.

Hotspot or double‑hit gene condition

Genes containing hotspot mutations (used as an indication of oncogenes) were deter-
mined using the Catalogue of Somatic Mutations in Cancer (COSMIC) [57] v92 occur-
rence annotations. A mutation with an occurrence greater than 5 (the default threshold) 
was defined as a hotspot mutation. Additionally, genes with a non-synonymous muta-
tion and a homozygous copy number loss (defined as |log2 ratio| < − 1) was defined as 
a double-hit gene (used as an indication of tumor suppressor genes). Whether or not a 
given gene was a hotspot gene or a double-hit gene was used as a binary feature in the 
driver gene classification model.

Phenotype based gene analyzer score

Phenotype Based Gene Analyzer (Phenolyzer) [28] is a tool for phenotype-based pri-
oritization of candidate genes using prior biological knowledge and phenotype infor-
mation. All genes from genomics data were used as an input for Phenolyzer and were 
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scored based on previous biological knowledge regarding the specific cancer type. The 
cancer-type-specific Phenolyzer gene scores were used as a feature in the driver gene 
classification model.

Membership to cancer‑related pathways

The final features for the driver gene classification model were whether or not the 
gene is in the given selected cancer-related KEGG [29] pathways. The cancer-related 
KEGG pathways were determined as pathways related to the “Pathways in cancer” 
pathway: PPAR signaling pathway, MAPK signaling pathway, Calcium signaling path-
way, cAMP signaling pathway, Cytokine-cytokine receptor interaction, HIF-1 signal-
ing pathway, Cell cycle, p53 signaling pathway, mTOR signaling pathway, PI3K-Akt 
signaling pathway, Apoptosis, Wnt signaling pathway, Notch signaling pathway, 
Hedgehog signaling pathway, TGF-beta signaling pathway, VEGF signaling pathway, 
Focal adhesion, ECM-receptor interaction, Adherens junction, JAK-STAT signaling 
pathway, Estrogen signaling pathway. Memberships to these cancer-related pathways 
were used as binary features in the driver gene classification model.

For training the MTL model, the R package RMTL [58] was used. We trained an 
MTL model with sparse structure (lasso regularization). The framework for the algo-
rithm used by RMTL is provided in Eq. 1:

where L() is the logistic loss function. There are t tasks. W is the coefficient matrix, Wi is 
the ith column of W and refers to the coefficient vector of task i. X is the predictor matri-
ces, and Y is the response vectors of the t tasks. ||.||1 is the L1 norm and ||.||F is the Frobe-
nius norm. �1 aims to control the effect of cross-task regularization and �2 stabilizes the 
numerical results and is used to improve generalization performance.

Features for genes within the training data for all cancer types were further ran-
domly split into training genes (75% of genes) and validation genes (25% of genes) 
datasets. The optimal �2 value was obtained by assessing the performance on the vali-
dation dataset (determined to be 10–4). After determining the optimal �1 value using 
tenfold cross-validation (determined to be 10–5), the final classification model was 
built.

For predicting the labels (i.e., “driver”, “non-driver”) using the probabilities of being 
a driver gene, cancer-type specific thresholds were determined as probability values 
maximizing accuracy on the validation datasets.

The performance of each sub-model was assessed by calculating AUC for each 
test dataset. Additionally, the sub-models’ personalized analysis performances were 
assessed by calculating AUC per each patient in each test dataset.

Comparison with other batch analysis approaches

The performance of driveR was compared with the performances of the batch analy-
sis approaches MutSigCV, DriverNet, OncodriveFML, and MutPanning by comparing 
AUC values on the test datasets.

(1)min
W

∑t

i=1
L(Wi|Xi,Yi)+ �1||W ||1 + �2||W | |2F
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MutSigCV (version 1.3.5) analyses were performed using default settings on the 
GenePattern platform [59]. DriverNet analyses were performed using DriverNet 
version 1.28.0 with the BioGRID [60, 61] Homo sapiens PIN (version 4.0.189) using 
the default settings. OncodriveFML analyses were performed using OncodriveFML 
version 2.3.0 with the default settings. MutPanning (version 2.0) analyses were per-
formed using default settings on the GenePattern platform.

Comparison with other personalized analysis approaches

The personalized analysis performance of driveR was also compared with the personal-
ized analysis approaches with DawnRank and PRODIGY by comparing AUC values.

As both of these tools required normal tissue expression data, only 16 datasets, for 
which more than one normal tissue expression data were available, were used, namely: 
BLCA-US, BRCA-US, CESC-US, COAD-US, HNSC-US, KIRC-US, KIRP-US, LIHC-
US, LUAD-US, LUSC-US, PAAD-US, PRAD-US, READ-US, STAD-US, THCA-US, and 
UCEC-US.

DawnRank (version 1.2) analyses were performed with the BioGRID Homo sapiens 
PIN (version 4.0.189) using the default settings. PRODIGY (version 1.0) analyses were 
performed with the STRING [62] Homo sapiens PIN (version 11.0) and with KEGG 
curated pathways using the default settings. PRODIGY gene scores per pathway were 
aggregated into a single gene score for comparison purposes.

Abbreviations
PIN: Protein–protein interaction network; SCS: Single-sample controller strategy; DEG: Differentially-expressed gene; 
KEGG: Kyoto Encyclopedia of Genes and Genomes; SVM: Support vector machine; ROC: Receiver operating characteristic; 
AUC​: Area under curve; MTL: Multi-task learning; SCNA: Somatic copy number alteration; TCGA​: The Cancer Genome 
Atlas; ICGC​: International Cancer Genome Consortium; CGC​: Cancer Gene Census; MCR: Minimal common region; 
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