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Abstract 

Background:  As a common and abundant RNA methylation modification, N6-meth-
yladenosine (m6A) is widely spread in various species’ transcriptomes, and it is closely 
related to the occurrence and development of various life processes and diseases. 
Thus, accurate identification of m6A methylation sites has become a hot topic. Most 
biological methods rely on high-throughput sequencing technology, which places 
great demands on the sequencing library preparation and data analysis. Thus, various 
machine learning methods have been proposed to extract various types of features 
based on sequences, then occupied conventional classifiers, such as SVM, RF, etc., for 
m6A methylation site identification. However, the identification performance relies 
heavily on the extracted features, which still need to be improved.

Results:  This paper mainly studies feature extraction and classification of m6A 
methylation sites in a natural language processing way, which manages to organically 
integrate the feature extraction and classification simultaneously, with consideration of 
upstream and downstream information of m6A sites. One-hot, RNA word embedding, 
and Word2vec are adopted to depict sites from the perspectives of the base as well as 
its upstream and downstream sequence. The BiLSTM model, a well-known sequence 
model, was then constructed to discriminate the sequences with potential m6A sites. 
Since the above-mentioned three feature extraction methods focus on different 
perspectives of m6A sites, an ensemble deep learning predictor (EDLm6APred) was 
finally constructed for m6A site prediction. Experimental results on human and mouse 
data sets show that EDLm6APred outperforms the other single ones, indicating that 
base, upstream, and downstream information are all essential for m6A site detection. 
Compared with the existing m6A methylation site prediction models without genomic 
features, EDLm6APred obtains 86.6% of the area under receiver operating curve on 
the human data sets, indicating the effectiveness of sequential modeling on RNA. 
To maximize user convenience, a webserver was developed as an implementation 
of EDLm6APred and made publicly available at www.​xjtlu.​edu.​cn/​biolo​gical​scien​ces/​
EDLm6​APred.

Conclusions:  Our proposed EDLm6APred method is a reliable predictor for m6A meth-
ylation sites.

Keywords:  m6A methylation modification, Word embedding, Deep learning, Predictor

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Zhang et al. BMC Bioinformatics          (2021) 22:288  
https://doi.org/10.1186/s12859-021-04206-4

*Correspondence:   
hui.liu@cumt.edu.cn 
1 Engineering Research 
Center of Intelligent Control 
for Underground Space, 
Ministry of Education, 
China University of Mining 
and Technology, 
Xuzhou 221116, China
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0002-7404-5231
http://www.xjtlu.edu.cn/biologicalsciences/EDLm6APred
http://www.xjtlu.edu.cn/biologicalsciences/EDLm6APred
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04206-4&domain=pdf


Page 2 of 15Zhang et al. BMC Bioinformatics          (2021) 22:288 

Background
N6-methyladenosine (m6A) methylation modification refers to the methylation that 
occurs on the sixth N atom of base A [1], accounting for 80% of eukaryotic mRNA 
methylation modifications [2, 3]. It was first discovered in the 1970s [4] and has been 
found to exist in many species such as animals, plants, bacteria, viruses [5]. All sites were 
found within sequences conforming to the degenerate consensus RRACH(A = m6A) [6, 
7]. Studies have found that m6A plays a crucial role in various biological processes and 
ontogeny, including mRNA transcription, translation, nucleation, splicing, and degrada-
tion [8], as well as early development, sex determination, T cell homeostasis, antiviral 
immunity, brain development, biological rhythms, sperm genesis and directed differen-
tiation of hematopoietic stem cells [9–13]. Besides, m6A methylation modification has 
been found to play a key role in the occurrence of diseases, such as glioma, leukemia, 
hepatocellular carcinoma, etc., [14–16]. Therefore, it is of great significance to unveil 
the mechanism of m6A methylation, where the specific modification sites should be first 
identified accurately.

At present, high-throughput sequencing technologies are widely used in the study of 
m6A modification, among which MeRIP-Seq is the most commonly used [17]. The pro-
cedure for MeRIP-Seq involves randomly fragmenting the RNA to fragments (namely 
reads) before immunoprecipitation, these reads are expected to map to a region that 
contains the m6A site near its center. Reads from the immunoprecipitation sample are 
frequently mapped to mRNAs and clustered as distinct peaks [18, 19]. Experimental-
based high-throughput sequencing methods can perform sample-specific m6A site 
detection [20]. However, the MeRIP-Seq technology is relatively complicated with high 
cost and time, which limits its extensive use. Thus, some computational methods that 
can help predict m6A modification sites computationally are urgently needed.

Most conventional machine learning methods developed for sequence-based m6A site 
prediction often extract features first, then, developed classifiers to predict whether a site 
is methylated or not based on previously extracted features. For example, iRNA-Methyl 
extracts features based on pseudo dinucleotide composition, three RNA physiochemi-
cal properties, and uses SVM to construct a site prediction model [21]. SRAMP extracts 
features with three encoding methods, including positional binary encoding of nucleotide 
sequence, K-nearest neighbor (KNN) encoding as well as nucleotide pair spectrum encod-
ing, then predicts sites by random forest classifiers respectively. Finally, the prediction 
scores of the random forest classifiers are combined through the weighted summing for-
mula [22]. AthMethPre extracts the features of the positional flanking nucleotide sequence 
and position-independent k-mer nucleotide spectrum then uses an SVM classifier to pre-
dict m6A methylation sites [23]. The WHISTLE method firstly integrates 35 additional 
genomic features besides the conventional sequence features and then establishes an SVM 
classifier to predict m6A sites [24]. The prediction performance was greatly improved 
through the use of genomic features. However, genomic features are not always available 
under the scenarios that only some RNA sequences are given for m6A site identification. It 
is shown that the extraction of RNA sequence features and the design of classifiers all have 
an impact on the prediction performance of m6A modification sites. The methods men-
tioned above all establish a closed feature extraction model, which is independent of the fol-
lowing classifiers. Feature extraction is the key issue for most machine learning tasks. The 
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quality of feature extraction is extremely critical. which greatly affects the performance of 
the final site prediction. On the contrary, deep learning models often follow the end-to-end 
design. From raw data to final output, the features are extracted based on both the input 
data and the final identification/prediction task. Besides, considering that RNA sequence 
contains abundant semantic information, which is similar to text sequences, it is heuris-
tic that some text sequence representation methods developed in the field of NLP (Natural 
Language Processing) may apply to the RNA sequence. To be more specific, Gene2vec uses 
Word2vec [25] and Convolutional Neural Network (CNN) to predict m6A sites [26]. Deep-
Promise uses ENAC, One-hot [27], and RNA embedding [28] to achieve feature encoding 
of RNA sequences, and then integrates CNN model scores to achieve m6A site prediction 
[29]. By integrating BGRU with word embedding and a Random Forest classifier with a 
novel encoding of enhanced nucleic acid content (ENAC), BERMP can better identify m6A 
sites, which demonstrates that the deep learning framework is more suitable for address-
ing the prediction task with larger datasets [30]. However, the prediction performance of 
existing methods can still be improved. Thus, this paper further proposes an ensemble deep 
learning m6A site predictor EDLm6APred based on a recurrent neural network frame-
work. It uses three encoding methods, including One-hot, RNA word embedding as well 
as Word2vec to depict RNA sequences. Based on the vectorized sequence representation 
obtained by the above-mentioned encoding methods, bi-directional long short-term mem-
ory (BiLSTM) is then constructed to achieve feature extraction and site prediction simul-
taneously. Finally, the prediction of m6A modification sites was completed  by weighted 
integration of three prediction scores figured by the BiLSTM model trained with three dif-
ferent feature encodings. Fivefold cross-validation experiments on 3 independent test sets 
were conducted, with metrics such as the area under the ROC curve (AUROC), accuracy 
(ACC), precision (Precision), recall (Recall), and Matthews correlation coefficient (MCC) 
were calculated to compare with the performance of state-of-the-art methods such as Gen-
e2vec and DeepPromise.

Results
Performance evaluation

In this paper, we adopted widely used evaluation indexes to evaluate the performance of 
EDLm6APred, including Area Under the Receiver Operation Curve (AUROC), Precision, 
Recall, Accuracy (ACC), and the Matthews correlation coefficient (MCC). These are the 
most widely used metrics for binary classifier evaluation, and the definition of ACC, Preci-
sion, Recall, and MCC are given in (1–4) [31, 32].

(1)precision = TP

TP + FP

(2)Recall = TP

TP + FN

(3)Acc = TP + TN

TP + TN + FP + FN
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where TP refers to true positives, counting the number of positive samples that are truly 
predicted as positive. TN refers to true negatives, indicating the number of correctly 
classified negative samples. FP refers to false positives, which is the number of negative 
samples that are incorrectly classified as positive. FN is false negatives, which refers to 
the number of positive samples that are incorrectly classified as negative.

Results analysis

In this paper, we first evaluated the effect of different sequence pre-processing meth-
ods, different sequence representation methods, and commonly used deep learning 
models on the prediction results respectively. Then, we evaluated the performance of 
the EDLm6APred predictor. Finally, we also compared our method with the newest 
predictor of m6A sites.

First, we tested three different sequence pre-processing methods based on human 
data set to compare their impact on model performance, which are overlapping equal 
length, overlapping variable length, and non-overlapping equal length. For example, 
given a sequence:

In the processing of overlapping equal-length, a sliding window of size 3nt was used 
to slide on the sequence with one stride. Finally, we obtained a series of sub-sequences 
composed of 3 bases. The processing result of the above hypothetical sequence is as 
follows:

In the processing of overlapping variable length, K was sampled from the discrete 
uniform distribution Uniform (Klow, Khigh) to determine each window’s size. In this 
paper, we set Klow = 3 and Khigh = 5. The processing result of the above hypothetical 
sequence is as follows:

In the processing of non-overlapping equal length, a sliding window of size 3nt 
was used to slide on the sequence with three strides. Finally, we obtained a series of 
sub-sequences composed of 3 bases. The processing result of the above hypothetical 
sequence is as follows:

After pre-processing, all the sub-sequences produced by the above three methods are 
fed into the Word2vec based predictor for further site identification. The ROC curves 
are shown in Fig. 1. It shows that the performance of prediction with overlapping equal 
length method is better than the others. Therefore, the overlapping equal length method 
was used to complete the sequence pre-processing in the following experiments.

(4)MCC = TP × TN − FP × FN√
(TP + FP)× (TP + FN )× (TN + FP)× (TN + FN )

AGGTCAGCATGC

AGG GGT GTC TCA CAG AGC GCA CAT ATG TGC

AGG GGTC GTC TCAGC CAG AGCA GCAT CATGC

AGG TCA GCA TGC
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Next, the BiLSTM model has been compared with the LSTM and CNN models. 
This group of experiments adopted Word2vec to represent sequences, which were 
denoted as CNNWord2vec, LSTMWord2vec, and BiLSTMWord2vec respectively. The evalua-
tion results and ROC curves of the fivefold cross-validation on the human data set are 
shown in Table 1 and Fig. 2. It shows that the AUROC of the three models from high 
to low is BiLSTMWord2vec, LSTMWord2vec, and CNNWord2vec. LSTMWord2vec is nearly 2% 
higher than CNNWord2vec, and BiLSTMWord2vec is nearly 1% higher than LSTMWord2vec. 
The reason may be that the essence of CNN is to extract the local features of the 
sequence while ignoring the context. However, the LSTM and BiLSTM model based 
on RNN can better capture the interaction between distant elements in the sequence 
and obtain the relative position relation between each sub-sequence. Thus, they can 
extract the global features of the sequence. Besides, the pooling layer after CNN may 
lead to the loss of important location information. In addition, BiLSTM performs bet-
ter than LSTM, possibly because BiLSTM is composed of forward LSTM and back-
ward LSTM, which can capture context information simultaneously, while one-way 
LSTM may capture upstream or downstream information only.

Fig. 1  ROC curves of different sequence pre-processing methods on the human independent test set. 
The sequence pre-processing methods are overlapping equal length, overlapping variable length, and 
non-overlapping equal length respectively

Table 1  Evaluation results of different deep learning models

The evaluation indexes with BiLSTM better than LSTM and CNN are show in bold

Classifiers AUROC MCC ACC​ Precision Recall

CNNWord2vec 0.8214 0.5098 0.7458 0.8348 0.6102

LSTMWord2vec 0.8430 0.5368 0.7650 0.8155 0.6821

BiLSTMWord2vec 0.8510 0.5497 0.7695 0.8361 0.6678
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Besides, the prediction performance of the three different feature encoding meth-
ods was compared. This group of experiments firstly encoded the sequences by 
One-hot, RNA word embedding, and Word2vec respectively, then adopted the same 
BiLSTM classifier framework for further site identification. The performance all went 
through the above procedure. A fivefold cross-validation experiment was carried out 
on the human data set. The ROC curves on the independent test set are shown in 
Fig.  3. It can be seen that the AUROC of Word2vec based model achieves 0.8510, 
which is higher than RNA word embedding and One-hot based ones.

Fig. 2  ROC curves of different deep learning models on the human independent test set. The deep learning 
models are CNN, LSTM, and BiLSTM respectively

Fig. 3  ROC curves of different sequence encoding modes on the human independent test set. The 
sequence encoding modes are One-hot, RNA word embedding, and Word2vec respectively
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These three encoding methods represent sequences from different perspectives. In 
this paper, a deep prediction model EDLm6APred was constructed to perform weighted 
integration of the three predictors. fivefold cross-validation experiments were conducted 
on the human data set, mouse data set, and mixed data set of human and mouse respec-
tively. The results in the independent test set are shown in Table 2. All the performance 
of EDLm6APred is superior to any single predictor. The integration of the three predic-
tors not only considers the location information of the sequence but also considers its 
context information, which achieves the complementary advantages.

This paper compared EDLm6APred with DeepPromise. We replaced the CNN model 
in DeepPromise with BiLSTM to construct BiLSTMDeepPromise and replaced the ENAC 
encoding in BiLSTMDeepPromise with Word2vec to construct our EDLm6APred predic-
tor. Fivefold cross-validation experiments were conducted on the human data set, mouse 
data set, and mixed data set of human and mouse respectively. The results are shown in 
Table 3.

The AUROC of EDLm6APred is significantly better than DeepPromise and 
BiLSTMDeepPromise. Since ENAC encoding only considers the nucleic acid com-
position and position information of the sequence but fails to consider the more 

Table 2  Evaluation results of single predictor and integrated predictor based on different species

The evaluation indexes with EDLm6 APred better than its any single predictor are show in bold

Species Classifiers AUROC MCC ACC​ Precision Recall

Human BiLSTMOne-hot 0.7810 0.4409 0.7159 0.7716 0.6095

BiLSTMEmbedding 0.8504 0.5602 0.7739 0.8470 0.6661

BiLSTMWord2vec 0.8510 0.5497 0.7695 0.8361 0.6678

EDLm6APred 0.8660 0.5819 0.7843 0.8617 0.6750
Mouse BiLSTMOne-hot 0.7838 0.4354 0.7088 0.7901 0.5739

BiLSTMEmbedding 0.8390 0.5394 0.7642 0.8296 0.6691

BiLSTMWord2vec 0.8464 0.5369 0.7604 0.8429 0.6442

EDLm6APred 0.8588 0.5664 0.7754 0.8579 0.6639

Mix BiLSTMOne-hot 0.8055 0.4758 0.7361 0.7687 0.6755

BiLSTMEmbedding 0.8459 0.5670 0.7801 0.8313 0.7028

BiLSTMWord2vec 0.8463 0.5477 0.7707 0.8189 0.6952

EDLm6APred 0.8605 0.5787 0.7862 0.8355 0.7128

Table 3  Compare with DeepPromise predictors

The evaluation indexes with EDLm6 APred better than DeepPromise are show in bold

Species Classifiers AUROC MCC ACC​ Precision Recall

Human DeepPromise 0.8302 0.5164 0.7576 0.7769 0.7196

BiLSTMDeepPromise 0.8592 0.5707 0.7780 0.8593 0.6626

EDLm6APred 0.8660 0.5819 0.7843 0.8617 0.6750

Mouse DeepPromise 0.8381 0.5242 0.7613 0.7832 0.7272

BiLSTMDeepPromise 0.8524 0.5625 0.7760 0.8409 0.6847

EDLm6APred 0.8588 0.5664 0.7754 0.8579 0.6639

Mix DeepPromise 0.8348 0.5208 0.7599 0.7766 0.7298

BiLSTMDeepPromise 0.8546 0.5748 0.7840 0.8354 0.7075

EDLm6APred 0.8605 0.5787 0.7862 0.8355 0.7128
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in-depth semantic information of the sequence, while Word2vec can better represent 
the sequence. In addition, BiLSTM is more suitable to capture the features of the RNA 
sequence than CNN.

Discussion
In this paper, the m6A site predictor EDLm6APred was constructed based on the word 
embedding algorithm and Bi-directional Long Short-Term Memory Recurrent Neu-
ral Network to explore various RNA sequence pre-processing and feature encoding 
methods. We compared Three data pre-processing methods, including overlapping 
equal length, overlapping variable length, and non-overlapping equal length. Finally, 
the overlapping equal length method was selected to complete the pre-processing of 
the RNA sequence. Then, we obtained the feature representation of the sequence by 
three encoding methods of One-hot, RNA word embedding, and Word2vec. Moreover, 
we compared the effect of three deep learning models respectively on the site predic-
tion performance, including CNN, LSTM as well as BiLSTM. The experimental results 
showed that the BiLSTM model can significantly improve the prediction performance. 
Considering that different encoding approaches depict the sequence from different per-
spectives, which may be complementary to each other, EDLm6APred combined the for-
mer mentioned encoding methods followed by the BiLSTM model together with weights 
to obtain the final prediction.

Conclusions
The contribution of this paper lies in the proposition of an m6A site predictor 
EDLm6APred under a deep recurrent neural network framework. In this paper, different 
RNA sequence feature encoding methods were employed to decipher RNA sequences 
more thoroughly, and the BiLSTM model was employed to better take advantage of con-
textual information for m6A site prediction.

Methods
Data and its sequence representation

This paper is based on the two sets of human and mouse data sets established by Zou 
et  al. Both data sets obtained complementary DNA (cDNA) sequence data from the 
Ensemble database [33]. After obtaining mRNA sequences through reverse complemen-
tation, sequences that were not GAC or AAC motif in the center were removed, and 
sequences shorter than 1001nt were filled with the character “X”. Finally, the sequences 
of the data sets used for algorithm training are 1001nt, and the proportion of positive 
and negative samples is 1:1. See the data sets on the webserver www.​xjtlu.​edu.​cn/​biolo​
gical​scien​ces/​EDLm6​APred for details.

The effective feature encoding method determines the performance of the site predic-
tion model. The sequences are first encoded in the way of one-hot, RNA word embed-
ding, and Word2vec respectively. One-hot and RNA word embedding are standard 
approaches for RNA sequence encoding. High-dimensional sparse binary word vector 
and low-dimensional dense word vector are obtained to characterize RNA modifica-
tion sites. Word2vec can effectively extract relevant semantic features according to the 

http://www.xjtlu.edu.cn/biologicalsciences/EDLm6APred
http://www.xjtlu.edu.cn/biologicalsciences/EDLm6APred
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upstream and downstream context of the base, then translate them into word vector 
expression.

5-dimensional binary vectors are introduced as one-hot encoding to represent each 
single base in the RNA sequence, corresponding to four nucleotides and the filling char-
acter “X” respectively. To be specific, A = [1, 0, 0, 0, 0], T = [0, 1, 0, 0, 0], G = [0, 0, 1, 0, 
0], C = [0, 0, 0, 1, 0] and X = [0, 0, 0, 0, 1]. Therefore, each sequence of 1001 bps in the 
dataset is converted to binary vectors of 5005 bits.

Following the idea of RNA Word embedding coding, a 3nt window is used to slide 
over for each sequence to obtain 999 sub-sequences composed of 3 bases. Finally, 105 
different sub-sequences and the unique integer indexes corresponding to the 105 sub-
sequences in the dictionary are obtained. A unique integer index represents the pseudo-
RNA word, and each pre-processed sequence is converted into an integer sequence with 
a corresponding integer index, then fed into the embedding layer. Therefore, a sequence 
of 1001nts in the dataset is converted into a matrix of 999 × 100, where 100 is the dimen-
sion of the word vector.

Word2vec encoding can be achieved following CBOW or Skip-gram models. The 
CBOW model is usually used to predict the current word based on its context, while 
the Skip-gram model predicts the context based on the current word. CBOW model is 
known to run faster than the skip-gram model in training. Besides, the number of data 
sets used in our experiment is relatively large, and the types of words in the corpus are 
small (105 types). There are no uncommon words and words with low frequency. Thus, 
the CBOW model is followed to encode RNA sequences in this paper. To be more spe-
cific, the sequences are first divided into sub-sequences of length 3nt by overlapping 
equal length, then the CBOW model is used for training. Therefore, each sub-sequence 
is transformed to represent the semantic word vector, and then the obtained word vec-
tor is used to represent the sequence of 1001nt in the data set into a matrix of 999 × 100. 
The input and output of these encoding methods are shown in Table 4.

BiLSTM

BiLSTM is developed from RNN (Recurrent Neural Network) and consists of two parts, 
the forward LSTM(Long Short-Term Memory) layer and the backward LSTM layer [34, 
35]. Its structure is shown in Fig. 4. The forward calculation is performed from moment 
1 to moment t in the forward LSTM layer to obtain and save the forward hidden lay-
er’s output at each moment. At the same time, the backward calculation is performed 
from moment t to moment 1 in the backward LSTM layer to obtain and save the back-
ward hidden layer’s output at each moment. Finally, the final output is obtained at each 
moment by combining the output results of the forward LSTM layer and the backward 
LSTM layer at corresponding moments.

Table 4  Three feature encoding input and output formats

Encoding Input Output

One-hot 1nt sequences of length 1001 Binary vectors of length 5005

RNA word embedding 3nt sequences of length 999 Matrix (999 × 100)

Word2vec 3nt sequences of length 999 Word vectors with dimension 100
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For basic LSTM structure, a set of memory units are employed to learn when to for-
get historical information and when to update, as shown in Fig. 5. At moment t, the 
memory unit Ct records all historical information up to the current moment, and it is 
also controlled by three “gates”: the forgetting gate ft, the input gate it, and the output 
gate ot. The forgetting gate ft determines what information to discard from the cellu-
lar state, as shown in (5). It views ht−1 (the previous hidden state) and xt (the current 
input), then prints a number between 0 and 1 for each number in the state Ct−1 (the 
previous state), with 1 being wholly retained and 0 being completely deleted.

The input gate determines what information is stored in the cellular state. First, the 
input gate’s Sigmoid activation function determines which values we will update, as 
shown in (6).

(5)ft = σ(Wf · [ht−1, xt ] + bf )

Fig. 4  BiLSTM model diagram, which consists of the forward LSTM layer and the backward LSTM layer

Fig. 5  LSTM model diagram, which is controlled by three “gates”: the forgetting gate ft, the input gate it, and 
the output gate ot. Besides, a set of memory units are employed to learn when to forget historical information 
and when to update
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Then, an activation function tanh() creates a candidate vector C̃t(new information), 
which will be added to the cell state, as shown in (7). Finally, combine the two vectors 
to create the updated value.

Update the last status value Ct−1 to Ct. Multiply the previous state value Ct−1 by ft to 
indicate what we expect to forget. Then add the obtained value it ∗ C̃t and get the new 
state value Ct, as shown in (8).

The output gate determines what to output, and this output will be based on the cur-
rent cell state. First, a Sigmoid activation function is used to determine which parts of 
the cell state we want to output, as shown in (9).

Then, the cell state is passed tanh to normalize the value between − 1 and 1 and multi-
plied by the output of the output gate to complete the output of which part of the infor-
mation is determined by the output gate, as shown in (6).

where xt is the input of the time network. ft, it and ot represent the states of forgetting 
gate, input gate, and output gate respectively. Wf, Wi, Wc, Wo and bf, bi, bc, bo represent 
weight matrix and deviation vector respectively.

LSTM has shown great advantages in modeling time series data due to its design 
characteristics, which can effectively solve long-term dependence and gradient disap-
pearance existing in standard recurrent neural networks [36]. BiLSTM, by combining 
forward and backward LSTM, not only solves the gradient disappearance or gradient 
explosion problem but also fully considers the meaning of the current base fragment 
context [37].

m6A site prediction based on BiLSTM

Three m6A site predictors are constructed by combining the BiLSTM and three sequence 
feature encoding methods, such as One-hot, RNA word embedding, and Word2vec 
respectively. Take Word2vec as an example, the predictor adopts a five-layer architec-
ture, including the input layer, BiLSTM layer, flattening layer, full connection layer, and 
prediction layer, among which the input layer handles data pre-processing, as shown in 
Fig. 6.

The Word2vec model trains the pre-processed sequences, and the word vectors of 
each pseudo-RNA word are obtained to form a dictionary. Then, each sequence’s subse-
quence is represented by the corresponding word vector in the dictionary, and the fea-
ture matrix of 999 × 100 is finally obtained, which is exactly the input of the BiLSTM 

(6)it = σ(Wi · [ht−1, xt ] + bi)

(7)C̃t = tanh(Wc · [ht−1, xt ] + bc)

(8)Ct = ft ∗ Ct−1 + it ∗ C̃t

(9)ot = σ(Wo · [ht−1, xt ] + bo)

(10)ht = ot ∗ tanh(Ct)
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layer. BiLSTM has the memory capacity to learn the long-term context-dependence of 
sequence and extract the global features of sequences. To avoid overfitting, the dropout 
[38] module is adopted in the BiLSTM layer with the “drop” probability being 0.2. The 
data was then flattened into one dimension, followed by a full connection layer for final 
output. The full connection layer in Fig. 6 consists of three full connections, consisting 
of 256, 128, and 64 neurons, respectively, which helps to improve the complexity of the 
model. More full connection layers, the nonlinear expression ability of the model can be 
improved, such that the learning ability of the model is improved. Each neural is acti-
vated by ReLU [39] function, and dropout is also employed with 0.5 dropout probability. 
Finally, Sigmoid [40] defined in (11) is adopted to predict the probability of the existence 
of m6A sites in the given sequence.

Fig. 6  Predictors based on Word2vec and BiLSTM circular neural network, which adopts a five-layer 
architecture, including the input layer, BiLSTM layer, flattening layer, full connection layer, and prediction layer, 
among which the input layer handles data pre-processing
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As is known, different feature encoding method views sequence from different perspec-
tives. One-hot and RNA word embedding describe the specific information of the RNA 
modification site in the sequence window. Word2vec utilizes an external neural net-
work to thoroughly learn the semantic information between the context of the sequence. 
Thus, different predictors may take complementary effects on prediction performance. 
Therefore, an ensemble predictor named EDLm6APred based on One-hot, RNA word 
embedding, and Word2vec followed by BiLSTM is formulated, and the structure is 
shown in Fig. 7. With three predictors with different encodings, it aims to represent the 
sequences from more thorough perspectives. The weighted weights of the three predic-
tors are obtained by the grid search method.
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