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Background
Eukaryotic transcriptomes are large and complex: most genes can produce multiple 
isoforms, which may differ in their splicing pattern, localization of 5′ and 3′ ends and 
protein-coding potential [1]. RNA polymerase II continues well beyond the polyadenyla-
tion site as part of the mechanism of transcriptional termination, yet this read-through 
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Background:  The quality of gene annotation determines the interpretation of results 
obtained in transcriptomic studies. The growing number of genome sequence infor-
mation calls for experimental and computational pipelines for de novo transcriptome 
annotation. Ideally, gene and transcript models should be called from a limited set of 
key experimental data.

Results:  We developed TranscriptomeReconstructoR, an R package which implements 
a pipeline for automated transcriptome annotation. It relies on integrating features 
from independent and complementary datasets: (i) full-length RNA-seq for detection 
of splicing patterns and (ii) high-throughput 5′ and 3′ tag sequencing data for accurate 
definition of gene borders. The pipeline can also take a nascent RNA-seq dataset to 
supplement the called gene model with transient transcripts.

We reconstructed de novo the transcriptional landscape of wild type Arabidopsis 
thaliana seedlings and Saccharomyces cerevisiae cells as a proof-of-principle. A com-
parison to the existing transcriptome annotations revealed that our gene model is 
more accurate and comprehensive than the most commonly used community gene 
models, TAIR10 and Araport11 for A.thaliana and SacCer3 for S.cerevisiae. In particular, 
we identify multiple transient transcripts missing from the existing annotations. Our 
new annotations promise to improve the quality of A.thaliana and S.cerevisiae genome 
research.

Conclusions:  Our proof-of-concept data suggest a cost-efficient strategy for rapid 
and accurate annotation of complex eukaryotic transcriptomes. We combine the 
choice of library preparation methods and sequencing platforms with the dedicated 
computational pipeline implemented in the TranscriptomeReconstructoR package. The 
pipeline only requires prior knowledge on the reference genomic DNA sequence, but 
not the transcriptome. The package seamlessly integrates with Bioconductor packages 
for downstream analysis.
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transcription is missing from gene models [2]. Moreover, transcripts generated from 
non-coding regions of the genome are often poorly annotated yet may exert regulatory 
functions even despite the absence of a stable RNA product [3–5]. Steady-state RNA 
sequencing methods offer little information on transient non-coding RNA species and 
read-through transcription. However, such transcription events result in overlapping 
transcription units which may contribute to gene expression regulation [6].

In the past, building a gene model for a species from EST libraries and cDNA clones 
sequenced by the Sanger method could require years of labor by an international con-
sortium. Genome-wide detection of transcribed exons from RNA-seq data became fea-
sible with short-read sequencing platforms such as Illumina. Indeed, transcript models 
for many less characterized genomes are primarily based on short-read RNA-seq data, 
e.g. Pisum sativum [7], Oryza sativa [8] and Fragaria vesca [9]. Even for the model plant 
species Arabidopsis thaliana, the commonly used transcriptome annotations TAIR10 
and Araport11 are to a large degree based on Illumina RNA-seq datasets [10, 11].

However, the short read RNA-seq has some fundamental limitations. First, the RNA-
seq coverage gradually decreases towards gene borders, which limits accurate definition 
of 5′ and 3′ ends of transcripts [12]. Second, although the positions of splice sites can 
be determined with high accuracy, the correct resolution of isoform splicing patterns is 
limited. Third, sequencing of steady-state RNA in wild type samples gives little informa-
tion about transient non-coding transcripts. Taken together, these considerations offer a 
cautionary tale for gene annotations based on RNA-seq data.

Third generation sequencing techniques from Oxford Nanopore (ONT) and PacBio 
recently revolutionized the field of transcriptomics. Theoretically, a long RNA-seq read 
may cover the whole isoform from start to end, directly informing on the exon structure 
and splicing patterns. ONT also allows for direct sequencing of RNA molecules, thus 
eliminating biases associated with cDNA synthesis. This attractive feature makes ONT 
Direct RNA-seq a promising choice for de novo characterization of novel transcriptomes 
and validation of existing transcript models.

However, ONT Direct RNA-seq has four key limitations. First, up to 30–40% of bases 
can be called with errors [13, 14]. To tolerate the sequencing errors, the dedicated align-
ers allow for more mismatches and thus inevitably sacrifice the accuracy of alignments. 
As a result, the alignment software may fail to detect true genomic origin of the read or 
correctly define the exon–intron borders. Second, a fraction of long reads cover only 
3′ portions of the original mRNA molecule, for example due to either RNA fragmenta-
tion, or premature termination of the sequencing reaction. Even when an intact mRNA 
molecule is fully sequenced from 3′ end to 5′ end, the last base of the read usually aligns 
a few tens of nucleotides downstream from the true transcription start site (TSS) [15]. 
Third, ONT sequencing is prone to homopolymeric tract skipping [16], which may 
appear as short exitrons (exonic introns) in Direct RNA-seq data. Fourth, the existing 
full-length RNA-seq protocols rely on RNA poly(A) tails for sequencing library con-
struction. Therefore, non-polyadenylated RNA species which include many long non-
coding RNAs (lncRNAs) will not be detected. Taken together, multiple factors preclude 
accurate transcript and gene model calling solely from the long reads.

Complementary genomics methods circumvent many of these limitations. For exam-
ple, CAGE-seq [17] and PAT-seq [18] can detect RNA 5′ and 3′ ends, respectively, with 
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high resolution, while nascent RNA methods such as GRO-seq [19] or NET-seq [20] can 
detect transient transcripts. Therefore, we posit that the highest quality transcript mod-
els can be constructed using integrative analysis levering the complementary strength of 
each of these methods.

We developed a de novo gene and transcript model construction pipeline Transcrip-
tomeReconstructoR which takes three datasets as input: (i) full-length RNA-seq (e.g. 
ONT Direct RNA-seq) to resolve splicing patterns; (ii) 5′ tag sequencing (e.g. CAGE-
seq) to detect TSS; (iii) 3′ tag sequencing (e.g. PAT-seq) to detect polyadenylation sites 
(PAS). Optionally, it can also take a nascent RNA-seq dataset (e.g. NET-seq) to find tran-
sient RNAs. The pipeline returns the discovered genes and transcripts. We also included 
the option to refine the de novo gene and transcript models by the existing transcriptome 
annotation. TransctiptomeReconstructoR thus can be used for validation or improve-
ment of existing gene models, as well as for data-driven annotation of non-model spe-
cies with no prior gene model available.

Implementation
We implemented the pipeline as an R package, available from the dedicated repository 
on GitHub (https://​github.​com/​Maxim-​Ivanov/​Trans​cript​omeRe​const​ructoR). The 
package is based on Bioconductor packages (GenomicRanges, GenomicAlignments, 
rtracklayer), as well as on tidyverse and collections packages from CRAN [21, 22]. It 
takes aligned BAM files as input and returns a set of GRanges and GRangesList objects 
which represent the gene and transcript models. These GenomicRanges objects can be 
either exported as BED files for visualization in genomic browsers, or directly used as 
input for downstream analysis by various packages available from the Bioconductor. 
The TranscriptomeReconstructoR workflow is streamlined and includes 6 consecutive 
function calls (optionally 8, if the nascent RNA-seq dataset is used). The accompany-
ing vignette contains the user manual, as well as in-depth description of the algorithm 
(Additional File 1).

The underlying basis for TranscriptomeReconstructoR is the correction and validation 
of long RNA-seq reads by the positions of TSS and PAS that are called from the inde-
pendent short read 5′ and 3′ tag datasets. Long reads from ONT Direct RNA-seq or 
PacBio Iso-Seq are extended towards nearby TSS and/or PAS, given that the extension 
distance does not exceed the reasonable limit (100 bp by default). After the extension, 
the long reads are classified as "complete" or "truncated", depending on the overlap with 
the independently called TSS and PAS (Fig. 1A). The extension procedure allows to res-
cue a substantial fraction of long reads and simultaneously decrease the number of arti-
fact transcript isoforms with alternative 5′- or 3′ terminal exons.

The method also suppresses the alignment noise of long reads by the adjustment of 
5′- and 3′ splice sites. The true alternative splice sites are assumed to be separated by a 
certain minimal distance (10 bp by default). Exonic subalignments of long reads with 5′ 
or 3′ borders differing by less than this value are grouped together, and their coordinates 
are unified by the majority vote (Fig.  1B). Otherwise the "fuzzy" borders of subalign-
ments might inflate the number of alternative 5′ and 3′ splicing events.

A common problem with full-length RNA sequencing reads aligned by dedicated 
aligners such as Minimap2 [23] is the under-splitting, i.e. erroneous extension of an exon 

https://github.com/Maxim-Ivanov/TranscriptomeReconstructoR
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over the adjacent intronic region [24]. As a result, the next exon appears as missing from 
such read, although it is present in other reads aligned within the same locus. The most 
probable explanation for this phenomenon is the inherent low sensitivity of long read 
aligners [24]. Assuming that the majority of reads still align correctly, we detect such 
alignment errors by comparing each subalignment in a long reads to the linear sequence 
of constitutive exons, that we extract from the whole set of long reads aligned to given 
locus. Subalignment with an alternative 5′- and/or 3′ border relative to a constitutive 
exon are considered valid alternative exons, only if the next constitutive exon is also pre-
sent in the read (Fig. 1C). Otherwise, the alignment is marked as a possible alignment 
error. Reads containing at least one alignment error are skipped from the transcript call-
ing procedure, thus further decreasing the number of artifact alternative 5′ and 3′ splice 
sites.

Finally, identical long reads without alignment errors are collapsed into transcripts. 
Such transcripts are divided into High Confidence (HC), Medium Confidence (MC) and 
Low Confidence (LC) groups, depending on the support from TSS and PAS datasets. HC 
transcripts are constructed from long reads which start in a TSS and end in a PAS (i.e. 
are supported by all three datasets). MC transcripts have either TSS or PAS, whereas LC 
transcripts are supported by long reads only. The MC and LC transcripts may originate 

Fig. 1  Outline of the TranscriptomeReconstructoR concept. A Genomic coordinates of TSS and PAS are 
called from 5’ and 3’ tag sequencing data, respectively. Terminal subalignments of long reads are extended 
towards the summits of the nearby TSS and PAS (within 100 bp distance on the same strand). An extended 
read is considered complete, if its 5’ and 3’ ends overlap with TSS and PAS, respectively. B Overlapping 
subalignments of complete reads are clustered together, if the pairwise distances between their borders do 
not exceed 10 bp. Within each cluster, the coordinates of subalignments are unified to the most frequently 
observed values. C Long reads sharing the same TSS and PAS are grouped together. Subalignments present 
in more than 50% of reads within the group are considered constitutive exons. Alignment errors are detected 
by comparing subalignments of each long read to the set of constitutive exons. A subalignment with 
alternative 3’ or 5’ border can be considered a novel alternative exon, only if the next subalignment in the 
same read precisely matches the next constitutive exon. Otherwise, if the next constitutive exon is absent 
from the read, the tested subalignment is marked as potential alignment error. D Continuous intervals of 
nascent transcription (green) cover a larger fraction of genome than the transcripts and genes called from 
steady-state long read RNA-seq data (grey). Nascent transcription intervals which do not overlap with regions 
of mature RNA production on the same strand, are classified into either read-through (RT) tails, or transient 
RNAs
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from partially fragmented RNA molecules and thus may have unreliable outer borders. 
They are called to rescue the loci where no complete reads were discovered, perhaps due 
to low expression level. Furthermore, the called transcripts are clustered into HC, MC 
and LC genes.

If a nascent RNA-seq dataset is available, the gene model can be further improved by 
intervals of nascent transcription which can be found outside of the called gene bounda-
ries (Fig. 1D). These often represent transient and/or non-polyadenylated RNAs which 
escape detection by the poly(A)-dependent steady-state RNA sequencing methods. 
Another phenomenon which can be observed only in the nascent RNA-seq track is read-
through transcription. The read-through (RT) "tails" immediately downstream from the 
protein-coding genes are explained by the "torpedo" termination model where RNAPII 
elongation may continue for up to a few kb beyond the cleavage and polyadenylation site 
[2]. If such "tails" were identified, we appended them to the respective called gene.

TranscriptomeReconstructoR returns a set of GRanges and GRangesList objects which 
exhaustively annotate the transcriptome. They contain the following information: (i) The 
coordinates of HC, MC and LC genes; (ii) The length of RT tails; (iii) The exon–intron 
structure of HC, MC and LC transcripts; (iv) The coordinates of intergenic and antisense 
transient RNA; (v) The exon–intron structure of fusion transcripts (i.e. transcripts which 
cover two or more adjacent genes due to inefficient termination). These GenomicRanges 
objects can be easily exported as BED files for visualization in genomic browsers.

Results
De novo annotation of the Arabidopsis transcriptome

We tested and validated TranscriptomeReconstructoR on 2 weeks old wild type Arabi-
dopsis thaliana seedlings (Col-0 ecotype). The following published datasets were used as 
input: ONT Direct RNA-seq [25], CAGE-seq [26], PAT-seq [27] and plaNET-seq [28]. 
The CAGE-seq and PAT-seq data produced 30,973 TSS and 36,729 PAS, respectively. 
Using these data, out of 3.7 M raw ONT reads, 43.8% started in a TSS, 78.6% ended in 
a PAS, and 35.2% satisfied both conditions. After extension of 5′ and 3′ ends of the long 
reads towards nearby TSS and PAS within 100 bp (see Fig. 1A), the fraction of "com-
plete" reads was more than doubled, raising from 35.2 to 71.6%. The extended long reads 
contained 14.5 M exonic subalignments. Among them, 531,690 internal subalignments 
were adjusted at either 5′- or 3′ splice site by the majority vote within 10 bp offset (see 
Fig. 1B). As a result, the number of unique exons has decreased by 9.6% (from 965,012 
to 872,565). Thus, small alignment errors at exon borders may inflate the diversity of 
called exons. In addition, 3.5% of the long reads likely contained at least one alignment 
error (see Fig. 1C). These results demonstrate that the complexity of alternative isoforms 
could be substantially overestimated, if long reads were neither validated by the orthogo-
nal 5′ and 3′ tag sequencing data nor corrected by comparison to the common alignment 
pattern of the locus.

This final set of corrected long reads was used to call HC, MC or LC transcripts which 
were further clustered into genes. Minor isoforms (supported by less than 1% of long 
reads in given gene) were skipped. The final annotation consists of 65,864 HC transcripts 
in 15,884 HC genes, 4914 MC transcripts in 3478 MC genes and 2092 LC transcripts in 
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1799 LC genes. In addition, we detected 438 fusion transcripts that span two or more 
adjacent genes.

As final step, we augmented the gene model with nascent transcription data from the 
plaNET-seq dataset (see Fig. 1D). We found that 86.5% of all called genes have a read-
through (RT) tail longer than 50 bp, and the median length of such RT tails was 351 nt. 
In addition, we found 5064 transient transcripts that are supported only by plaNET-seq 
reads and likely correspond to unstable and/or non-polyadenylated lncRNAs.

The de novo annotation for A.thaliana is available from author’s GitHub (see “Materi-
als and methods”).

Validation of the de novo annotation

The gene and transcript models generated by TranscriptomeReconstructoR were com-
pared to the two existing annotation sets for Arabidopsis—TAIR10 and Araport11 [10, 
11]. It is important to note that these two gene annotation builds are markedly differ-
ent. The TAIR10 is conservative, focused on protein-coding genes and contains very 
few non-coding transcripts. Conversely, Araport11 includes thousands of non-coding 
RNA genes not present in TAIR10. In addition, gene borders are substantially different 
between these two annotations. In particular, Araport11 genes tend to be longer, i.e. they 
have more upstream 5′ ends and more downstream 3′ ends compared to their mates 
in TAIR10 (Additional File 2: Fig. S1). Since our pipeline is agnostic to current annota-
tions and used independent datasets, we reasoned that the resulting output could help 
to assess the accuracy of existing annotations. To this end, we compared our de novo 
annotation to TAIR10 and Araport11 at the gene and exon levels.

In general, our HC and MC genes agreed well with known genes from both annota-
tions. In particular, more than 95% of HC genes have a unique mate (i.e. overlap with a 
single annotated gene on the same strand) in both TAIR10 and Araport11 (Fig. 2A). The 
majority of called genes have strong base-pair overlap (defined as intersection to union 
ratio of distances between 5′ and 3′ gene borders) with their mates in TAIR10 and Ara-
port11 (Fig. 2B). For example, 85% and 61% of HC genes had at least 90% overlap with 
TAIR10 and Araport11 genes, respectively. Moreover, 5′ and 3′ borders of the called 
genes often coincided with respective borders of TAIR10 genes (Fig. 2C, upper panel).

On the other hand, the gene borders may differ between called genes and their 
mates in the existing annotations. Notably, the called 5′ and 3′ gene borders were 
systematically shifted downstream and upstream, respectively, from the genomic 
positions predicted by Araport11 (Fig.  2C, lower panel). This is consistent with the 
observation that Araport11 genes are in general wider than in TAIR10 (see Additional 
File 2: Fig. S1). Moreover, we found that 5′ borders of HC genes in our gene model 
are in a better agreement with independent experimental mapping of 5′ boundaries 
by TSS-seq [29] than positions predicted from either TAIR10 or Araport11 (Fig. 2D). 
Similarly, 3′ borders of HC genes coincided with Helicos 3′ DRS-seq [30], an inde-
pendent method to detect PAS, substantially better than 3′ ends of the correspond-
ing annotated genes (Fig. 2E). Transcription of Arabidopsis genes frequently produces 
short promoter-proximal RNAs (sppRNA) which are sensitive to the HEN2 exonu-
clease and terminate about 100 nt downstream from the TSS [31]. We found that 5′ 
borders of genes called by TranscriptomeReconstructoR are in a better agreement 
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with the sppRNA termination sites than 5′ borders of their annotated mates in both 
TAIR10 and Araport11 (Additional File 2: Fig. S2). This finding supports the idea that 
the gene models resulting from TrancriptomeReconstructoR are in better agreement 
with independent transcriptomic datasets than both commonly used annotations.

We also analyzed the base-pair overlaps of internal exons between the called genes 
and their mates in each of the existing annotations. For more than 78% of called 
internal exons there was a unique known matching exon (where both 5′ and 3′ bor-
ders differed by no more than 5 bp) when compared to either TAIR10 or Araport11 
(Fig.  3A). Within those, the vast majority of splicing acceptor and donor sites were 
exact matches (Fig. 3B). The remaining 22% called exons could represent novel alter-
native exons. The most prominent class among them are novel intron retention (IR) 
events, whereas alternative 5′ or 3′ exon borders are less common (see Fig. 3A).

We also found 740 and 337 exons which do not overlap with any known exon in 
TAIR10 and Araport11, respectively. These could represent newly discovered exons. 
To test this hypothesis, we used the plaNET-seq dataset. We demonstrated that the 
raw plaNET-seq data are enriched for reads with the first base aligned exactly to the 
donor splice sites [28]. These reads correspond to splicing intermediates, and they 
appear in the plaNET-seq data due to co-purification of the spliceosome together 
with the transcriptionally engaged RNAPII complex. Interestingly, we found that 
such splicing intermediate reads are also enriched at the newly discovered donor sites 

Fig. 2  Comparison of called gene borders to TAIR10 and Araport11. A Stacked barplot shows the counts 
of High Confidence (HC), Medium Confidence (MC) and Low Confidence (LC) genes which either: (a) have 
no overlap with any annotated gene (white); (b) have a unique mate in the annotation (i.e. overlap a single 
annotated gene which in turn does not have any other overlaps among the called genes; dark grey); (c) 
have multiple matches in the annotation (light grey). Only overlaps on the same strand are considered valid. 
Only the uniquely matched pairs of genes were used on the next subfigures. B Distribution of pairwise 
overlap values between called HC (red), MC (green) or LC genes (blue) and their unique mates in TAIR10 
or Araport11. Y axis shows the number of gene pairs, X axis shows the overlap calculated as the ratio of 
intersection (common length) to union (total length) of the overlapping genomic intervals. Area under the 
curve is proportional to the number of gene pairs in the group. C Distribution of differences between 5’ or 3’ 
borders (left and right panels, respectively) of the matched gene pairs. Y axis shows the number of gene pairs, 
X axis shows the difference of genomic coordinates (in bp). A negative (positive) difference value means that 
the border of the called gene is located upstream (downstream) from the respective border of its mate in 
TAIR10 (upper panel) or Araport11 (lower panel). A narrow peak with summit at zero position on the X axis 
means that the gene pairs most often have identical positions of the borders. A smooth peak with multiple 
summits indicates high incidence of mismatched gene borders. Area under the curve is proportional to the 
number of gene pairs in the group. D Metagene profile of TSS-seq signal over 5’ gene borders. The HC/TAIR10 
and HC/Araport11 matched gene pairs were joined into HC/TAIR10/Araport11 triads. Thus, each gene has 
three alternative 5’ borders predicted by TranscriptomeReconstructoR, TAIR10 and Araport11. Fixed length 
genomic intervals (50 bp) were centered on the 5’ gene borders in each of the three groups. TSS-seq signal 
(which is proportional to TSS usage) was averaged among the genomic windows. Y axis shows the average 
sequencing coverage, X axis shows the genomic coordinates relative to the 5’ gene border (zero corresponds 
to the predicted gene start). The color of the wiggle line indicates the origin of the genomic windows: blue 
for TAIR10, red for Araport11 and green for the called HC genes. E Metagene profile of Helicos 3’DRS-seq 
signal over 3’ gene borders. Both TSS-seq (in panel D) and 3’ DRS-seq (in panel E) demonstrate a sharp peak at 
the respective gene borders derived from TAIR10 and HC genes, but not from Araport11 genes. This indicates 
that gene borders predicted by Araport11 often disagree with the experimental evidence. Moreover, the HC 
peak (green) is substantially higher than the TAIR10 peak (blue) in both TSS-seq and 3’ DRS-seq. This means 
that TSS and PAS positions predicted from the HC gene set are in a better agreement with the experimental 
data than the TAIR10

(See figure on next page.)
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(Fig.  3C). Thus, the plaNET-seq data support the conclusion that TranscriptomeR-
econstructoR discovered bona fide new exons.

Our annotation also identified novel genes. We found 63 HC genes, 234 MC genes, 
428 LC genes and 2094 transient transcripts that did not overlap on the same strand 
with any known gene from either TAIR10, Araport11 or the custom lncRNA catalogue 
defined by Zhao and co-authors [32]. However, the vast majority of these novel tran-
scription units (TUs) were found antisense to known genes in TAIR10 and/or Araport11 
(Fig. 4A). The novel TUs were validated by independent pNET-seq dataset which shows 
the intensity of nascent RNAPII transcription [33]. The averaged pNET-seq signal is 
markedly increased over the bodies of the novel TUs and decreased at their borders, 
thus confirming their transcriptional activity (Fig. 4B). Importantly, transposons offer no 
explanation for these novel TUs. Only 1 MC gene, 2 LC genes and 14 transient RNA 
have at least 50% overlap with any transposon discovered in the comprehensive study of 
Panda and co-authors [34].

Representative screenshot of a novel HC gene (Fig.  4C) shows that it is further 
supported by two other independent datasets—chrRNA-seq and stranded RNA-seq 
[35, 36]. These two complementary methods show nascent RNA or mature RNA, 

Fig. 2  (See legend on previous page.)
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respectively. In contrast, a representative novel transient RNA (Additional File 2: Fig. 
S3) is supported by chrRNA-seq signal but not by RNA-seq, consistent with a tran-
script subject to nuclear RNA degradation.

Our gene model also resolves potential mis-annotations in TAIR10 and Araport11. 
For example, a gene may appear as a continuous transcription unit in the existing 
annotations, whereas our results suggest that it consists of two or more independ-
ent non-overlapping transcripts. We detected 82 TAIR10 genes which overlap two or 
more called genes by more than 75% of their lengths on the same strand. A repre-
sentative example of such gene on Fig. S4 (see Additional File 2) demonstrates that its 

Fig. 3  Comparison of called exon borders to TAIR10 and Araport11. A Overlaps of called internal exons vs 
TAIR10 and Araport11. On top, the schematic outline shows the possible overlap types for internal exons: 
(i) exact match (within 5 bp offset) at both borders of the same annotated exon; (ii) exact match at borders 
of two adjacent exons (intron retention); (iii) exact match only at 5’ exon border (alternative acceptor site); 
(iv) exact match only at 3’ exon border (alternative donor site). Notably, it is also possible that a called exon 
has no overlap with any annotated exon, or that the overlapping pattern is more complicated than those 
shown on the schematic. The bottom stacked barplot shows the counts of called internal exons with 
different type of pairwise overlaps, colored as in the schematic above, with their best mate exons in either 
TAIR10 or Araport11. B Histogram shows the distribution of called 5’ or 3’ exon borders (left and right panel, 
respectively) relative to the acceptor and donor sites from their best mates in TAIR10. The central (zero) 
position on X-axis corresponds to exact match between called and annotated exon borders. C Metagene plot 
shows the average density of spliceosome intermediate reads in the plaNET-seq dataset over 50 bp windows 
centered at 3’ exon borders (donor splice sites) of either re-discovered (blue) or newly discovered (red) called 
exons. The shaded areas show the normal-based confidence intervals for the mean. The presence of sharp 
peaks exactly at the called 3’ exon borders (at zero position on the X axis) in the newly discovered exons 
indicate that they represent functional donor sites. The absolute peak height is proportional to the average 
expression levels of genes in each group
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split nature can be further supported by independent TIF-seq dataset which detects 
both ends of mature RNA transcripts [31].

De novo annotation of the yeast transcriptome

We also tested TranscriptomeReconstructoR on budding yeast Saccharomyces cerevisiae 
using ONT Direct RNA-seq, CAGE-seq, 3′READS and NET-seq datasets [37–40]. The 
de novo yeast annotation contains 6251 HC genes, 2010 MC genes, 1274 LC genes and 
505 transient transcripts. We found that 31.5% of all called genes have RT tails longer 

Fig. 4  Novel genes and transient RNAs in A.thaliana. A Stacked barplot shows the counts of novel HC, MC 
and LC genes and transient RNAs which have no overlap with any known gene or lncRNA on the same 
strand. Novel transcription units which overlap any known gene on the opposite strand are considered 
antisense (red), otherwise intergenic (blue). B Metagene plot of pNET-seq signal over the whole bodies of 
novel HC, MC and LC genes and novel transient RNAs. The called genes have variable length, therefore they 
were scaled to 100 bins. The 100 bp upstream and downstream flanking regions were scaled to 20 bins 
each. The vertical lines in the plotting area denote the starts and ends of novel genes. Red and blue wiggle 
lines show the average RNAPII elongation activity in novel genes and transient RNAs, respectively. Red and 
blue shaded areas show normal-bases 95% confidence interval for the respective means. C Example of a 
novel gene encoding a stable transcript. Features on forward and reverse strands are shown in red and blue, 
respectively. HC_gene_10019 is a High Confidence gene which was called on forward strand, i.e. in antisense 
orientation to lncRNA-encoding locus (denoted as AT3G05945 in Araport11, and as LincRNA_1146 in the 
annotation of Zhao et al. [32]). This novel gene has support from both ONT Direct RNA-seq (not shown), 
PAT-seq, CAGE-seq and plaNET-seq. Since the first two methods depend on the presence of poly(A) tail, the 
transcript is most probably polyadenylated. Moreover, the gene was validated by three independent datasets 
(pNET-seq, chrRNA-seq and RNA-seq). Given that the gene is clearly visible even in RNA-seq data, it remains 
unclear why it is absent from both TAIR10 and Araport11 annotations
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than 50 bp (with median length 127 bp). The called genes were compared to the SacCer3 
gene annotation which was extended by cryptic unstable transcripts (CUT) and stable 
unannotated transcripts (SUT) [41]. We found that 73.3% of HC genes, 30.0% of MC 
genes and 24.9% of LC genes have a unique mate among the SacCer3 genes. The 5′ and 
3′ borders of called HC genes were systematically shifted outwards with respect to the 
respective borders of their mates in SacCer3 (Fig. 5A). This effect was most pronounced 
for the 3′ borders (see Fig. 5A, right panel). These observations were further validated by 
independent TSS-seq and 3′ mRNA-seq datasets [42, 43]. Metagene profile of TSS-seq 
signal has a sharp peak coinciding with 5′ borders of HC genes, but not with 5′ borders 
of the matched SacCer3 genes (Fig. 5B). The same is true for the 3′ gene borders and the 
3′ mRNA-seq signal which denotes polyadenylation sites (Fig. 5C). Thus, gene coordi-
nates predicted by the de novo annotation are in a better agreement with the experi-
mental evidence than the SacCer3 gene model. We also found that 337 HC, 934 MC, 
866 LC genes and 254 lncRNAs do not overlap with any known SacCer3 gene, CUT or 
SUT. Validation by independent NET-seq dataset [44] has shown that these novel TUs 
are transcriptionally active (Fig. 5D).

Fig. 5  Comparison of called yeast genes to SacCer3. A Distribution of differences between 5’ or 3’ borders 
(left and right panels, respectively) of the matched gene pairs. Y axis shows the number of gene pairs, X 
axis shows the difference of genomic coordinates (in bp). A negative (positive) difference value means 
that the border of the called gene is located upstream (downstream) from the respective border of its 
mate in SacCer3. B Metagene profile of TSS-seq signal over 5’ gene borders on matched HC/SacCer3 gene 
pairs. Fixed length genomic intervals (200 bp) were centered on the 5’ gene borders predicted by either 
TranscriptomeReconstructoR or SacCer3. Y axis shows the average sequencing coverage of TSS-seq, X axis 
shows the genomic coordinates relative to the 5’ gene border (zero corresponds to the predicted gene start). 
Color of the wiggle line indicates the origin of the genomic windows: blue for SacCer3 and red for the called 
HC genes. C Metagene profile of 3’ mRNA-seq signal over 3’ gene borders on matched HC/SacCer3 gene 
pairs. D Metagene plot of NET-seq signal over the whole bodies of novel HC, MC and LC genes and novel 
transient RNAs. The genes were scaled to 100 bins. The 100 bp upstream and downstream flanking regions 
were scaled to 20 bins each. The vertical lines in the plotting area denote the starts and ends of novel genes. 
Red and blue wiggle lines show the average RNAPII elongation activity in novel genes and transient RNAs, 
respectively. Red and blue shaded areas show normal-bases 95% confidence interval for the respective 
means
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Discussion
We developed TranscriptomeReconstructoR motivated by the observation that Ara-
port11, the A.thaliana annotation considered to be the most comprehensive in terms of 
non-coding transcripts, has highly inaccurate TSS positions [26]. This inaccuracy limits 
genome-wide analyses that are dependent on accurate positions of gene promoters. For 
example, analyses for enriched sequence motifs at a fixed distance from mis-annotated 
TSS may lead to incorrect results. Previously, we demonstrated low sensitivity of meta-
gene profile analysis at 5′ and 3′ gene borders predicted from Araport11, compared to 
TAIR10 [28]. Conversely, the "classical" TAIR10 annotation is too conservative, as it is 
focused on protein-coding genes and largely ignores non-coding transcription. However, 
the Arabidopsis genome is rich in non-coding transcripts [45]. Thus, there is no "gold 
standard" gene annotation, even for a well-studied model species as A.thaliana. We built 
a new annotation to test if a data-driven gene model could reflect the actual transcrip-
tional landscape of wild type A.thaliana seedlings more accurately than both TAIR10 
and Araport11. Refining an existing annotation with experimental data offers one pos-
sible solution. While this approach can be useful [28], errors and limitations of the input 
gene model would be inherited by the output annotation. To avoid this problem, we 
focused on a de novo transcriptome reconstruction approach.

We tested the performance of TranscriptomeReconstructoR for fully automated call-
ing of gene and transcript models on four previously published datasets corresponding 
to 2  weeks old A.thaliana seedlings. Impressively, our de novo gene model could out-
perform both TAIR10 and Araport11 in certain aspects, for example in determining the 
5′ and 3′ gene borders (see Fig. 2D–E and Fig. S2). Thus, an important advantage of our 
annotation is the improved accuracy and sensitivity of metagene profile analysis around 
TSS and PAS. Moreover, we resolved some historical errors of TAIR10 and Araport11, 
as exemplified by two closely spaced genes which were merged into a single gene in both 
annotations (see Additional File 2: Fig. S4). In addition, TranscriptomeReconstructoR 
detected more than two thousand novel transcripts, most often in antisense orienta-
tion to the known genes, that were completely absent from the existing annotations (see 
Fig. 4A).

We also tested TranscriptomeReconstructoR on the budding yeast S.cerevisiae. 
This model organism is challenging because its genome is extremely gene-dense and 
enriched for overlapping genes. Moreover, the vast majority of yeast genes are devoid of 
introns. Nevertheless, the de novo gene annotations returned by TranscriptomeRecon-
structoR provides more accurate gene borders than the widely used annotation SacCer3 
(see Fig. 5B–C). In addition, we detected two thousand transcription units which were 
completely absent from both SacCer3 and the community annotation of non-coding 
transcripts [41]. Importantly, these novel transcripts were validated by an independent 
dataset (see Fig.  5D). Taken together, these observations validate the approach imple-
mented in TranscriptomeReconstructoR and suggest that the new annotations can 
complement and enhance the existing gene models in A.thaliana and S.cerevisiae tran-
scriptomic studies.

The list of newly sequenced species from all kingdoms of life is rapidly growing. At 
present, a popular way of constructing transcriptomes of the emerging species is the 
transcript assembly from the short read RNA-seq data. TranscriptomeReconstructoR 
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offers an attractive alternative with improved accuracy. We anticipate that research 
groups, rather than consortia, will employ this strategy to characterize draft transcrip-
tomes in non-model species with recently assembled genomes.

Conclusions
TranscriptomeReconstructoR is a user-friendly tool that combines Next generation and 
Third generation sequencing datasets for de novo calling of gene and transcript models. 
It offers assembly of draft transcriptome annotations in recently sequenced non-model 
species.

Materials and methods
Only publicly available datasets were used in this study. For A.thaliana, Direct RNA-seq 
and PAT-seq data were downloaded from the European Nucleotide Archive (accession 
numbers PRJEB32782 and SRP145554, respectively), Helicos 3′ DRS-seq data from the 
DNA Data Bank of Japan (accession ERP003245), chrRNA-seq (PRJNA591665) from the 
NCBI BioProject database, all other datasets from the NCBI Sequence Read Archive: 
CAGE-seq (GSE136356), plaNET-seq (GSE131733), pNET-seq (GSE109974), TSS-seq 
(GSE113677), RNA-seq (GSE81202) and TIF-seq (GSE129523). For S.cerevisiae, Direct 
RNA-seq (PRJNA408327) and CAGE-seq (PRJNA483730) data were downloaded from 
the NCBI PioProject, all other datasets from the NCBI SRA: 3′READS (GSE95139), TSS-
seq (GSE64139), 3′ mRNA-seq (GSE108550) and NET-seq (GSE55982 and GSE125843). 
Supplementary code to process the raw data and completely reproduce the results 
obtained in this study is available from https://​github.​com/​Maxim-​Ivanov/​Ivanov_​et_​al_​
2021. The data processing pipeline requires the TranscriptomeReconstructoR package 
which can be installed from https://​github.​com/​Maxim-​Ivanov/​Trans​cript​omeRe​const​
ructoR. The new annotations for A.thaliana and S.cerevisiae were deposited on https://​
github.​com/​Maxim-​Ivanov/​Ivanov_​et_​al_​2021/​tree/​main/​Annot​ation.
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