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Background
In recent years, the availability of large datasets and the exponential advancing in 
computing power led to a rapid growth of machine learning applications in a variety 
of fields. Partial linear regression (PLR), artificial neural network (ANN), support vec-
tor machine (SVM), evolutionary algorithm and random forest (RF) have been widely 
used for metabolomics analysis [1]. Simple linear methods are more interpretable but 
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do not perform as well. More complex learning methods, such as ANN and ensem-
ble learning, can provide high prediction accuracy but are almost impossible to inter-
pret [2]. These models remain mostly “black boxes” where the insights about the data 
and the working mechanisms of decision making are hidden in increasingly complex 
structures of the models. For deep neural networks, one needs numerous parame-
ters to describe the model and it is impossible to entirely understand its mechanistic 
under-working [3, 4].

Understanding why a decision has been made is critical to gain users’ trust, which is 
fundamental in fields like bioinformatics. One important means to understand how and 
why a machine prediction has been made is to investigate what variables or features con-
tribute to that decision-making, either through individual effect or interaction with one 
another. Novel approaches for interpretable machine learning with better information 
about the feature interactions would be particularly beneficial for analysis of omics data.

In particular, more advanced analysis methods for high throughput metabolic data 
with its closest link to actual cellular phenotype are highly desirable. Metabolomics com-
bined with appropriate analytical methodologies can provide both biological knowledge, 
leading to novel therapeutic approaches, as well as biomarker panels, aimed towards 
early diagnosis of significant phenotypic changes. Neurodegenerative disorders, includ-
ing dementia and Parkinson’s disease, are characterized by the progressive degeneration 
of the structure and function of the central or peripheral nervous system. Role of meta-
bolic changes in the development and progression of these diseases is increasingly rec-
ognised (recently reviewed in [5, 6]).

Currently, world-wide around 50 million people are living with dementia and about 
10 million new cases are being diagnosed every year. Alzheimer’s disease (AD) is the 
most prevalent age related dementia characterized, at the late stages, by the dysfunc-
tion and loss of synapses and eventual neuronal death induced by an accumulation of 
senile plaques and neurofibrillary tangles in the brain [7]. The symptoms of AD include 
memory loss, difficulty completing familiar tasks and personality changes. AD is a pro-
gressive neurodegenerative disease however causes of AD are still not fully understood. 
Genetically, ǫ4 allele of apolipoprotein E gene is widely accepted as a major genetic risk 
factor for AD [8] with APOEǫ4 leading to an increased risk and APOEǫ2 suggesting a 
decreased risk relative to the most common version of APOEǫ3 [9]. APOEǫ4 has been 
linked to the reduced efficiency in several brain pathways including as examples lipid 
transport and glucose metabolism. Recently, fructose metabolism in the brain has been 
proposed as a possible mechanism driving AD [10]. Dysfunction of many other meta-
bolic pathways have been outlined as part of AD development and progression including 
changes in the metabolism of glucose [11], insulin [12], ketones [13], oxidative stress [14, 
15], fructose [10], and bile acids [16]. Vitamine D [17] has, for example, been indicated 
as highly relevant in AD even suggesting that AD is a modern disease driven by changes 
in dietary lifestyle and its essence a metabolic disease [18]. Although all these and many 
other metabolic changes have been observed in AD patients or models it is still not clear 
what are the major disease drivers and early changes leading to this disease. Early diag-
nostic markers that can indicate AD related changes prior to symptom development and 
can show patients who will progress from mild cognitive impairment (MCI) stage to AD 
are sorely needed.



Page 3 of 17Sha et al. BMC Bioinformatics          (2021) 22:284 	

Metabolomics is the scientific study of chemical processes involving low-molecular-
weight molecules, which include lipids, amino acids, peptides, sugars, bile acids and 
organic acids. These metabolites are the result as well as drivers of processes that are 
actually occurring in the biological systems and are the footprint of complex biological 
processes as well as a reflection of the well-being of our body. By quantitatively studying 
metabolites and comparing body-fluid samples from phenotypically distinguished popu-
lations, researchers are able to better understand the pathology of complex diseases [19, 
20]. A number of recent studies have found that amino acids, glycoproteins, and lipids 
were significantly altered in AD patients [21, 22]. Advanced machine learning tech-
niques can help identify novel metabolic markers and links between metabolites in the 
disease development and progression leading to more informative, early markers for AD. 
Several recent reviews described different application of machine learning in metabo-
lomics in some detail [23–25]

In this article, we propose a new interpretable machine learning framework for meta-
bolic data analysis. It uses an evolutionary algorithm to learn compact and interpret-
able predictive models and uses an ensemble of evolved models to identify the most 
potentially influential metabolites and their interactions associated with AD. Our bio-
informatics results provide new insights into the disease and generate hypotheses for 
further biological investigations. All source code to implement our method is publicly 
available. Moreover, in order to facilitate an easy adoption of our methodology and to 
benefit a larger research community, we developed a web interface that interprets and 
visualizes the learning results. We studied a published AD metabolomic dataset. Our 
approach was able to identify both known and novel metabolites and metabolite inter-
actions linked to the disease. Our results are expected to provide not only new insights 
into AD but also a powerful computational tool for metabolomics research.

Methods
Metabolomic data on AD

In this research, we analyzed a metabolomic dataset on AD from a study published 
and described in detail by Wang et al. [26]. The dataset includes 57 patients with AD, 
58 patients with amnestic mild cognitive impairment (aMCI, which is considered 
as an early form of AD), and 57 healthy individuals as controls. Fasting venous blood 
was collected from all the participants. The plasma samples were then analyzed using 
ultra-performance liquid chromatography-time-of-flight mass spectrometry and gas 
chromatography-time-of-flight mass spectrometry providing concentrations of 242 
plasma metabolites (including fatty acids, amino acids, nucleic acids and carbohydrates).

Prior to applying the machine learning analysis, we normalized the concentration lev-
els of metabolites to be within the range of [− 1, 1] , using the MinMaxScaler method 
from Scikit-learn Python library [27].

Systems metabolomics using interpretable learning and evolution (SMILE)

Overview of SMILE

We propose a computational framework for metabolomics data analysis, Systems 
Metabolomics using Interpretable Learning and Evolution (SMILE). SMILE uses an evo-
lutionary algorithm for learning interpretable predictive models, provides explanations 
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of its decision-making, and identifies key metabolites and their interactions associated 
with a complex trait. In order to benefit a wider research community, we also devel-
oped a web application for SMILE with a graphical user interface, where researchers can 
perform interpretable machine learning analysis and visualize the results of their own 
metabolomic data. The source code of SMILE and the metabolomic data used in this 
study are publicly available at https://​github.​com/​MIB-​Lab/​SMILE, the detailed docu-
mentation of function usage in SMILE is avaliable at https://​smile-​mib.​rtfd.​io, and its 
web application is published at https://​smile-​mib.​cs.​queen​su.​ca.

In the following subsections, we describe the core learning algorithm in SMILE, dis-
cuss the metabolite importance and interaction assessment approach, and show the uti-
lization of SMILE web application.

Evolutionary algorithm

Evolutionary algorithms define a collection of meta-heuristic optimization and model-
ling algorithms inspired by natural evolution [28]. An evolutionary algorithm maintains 
a population of diverse candidate solutions to a problem. An initial set of candidate solu-
tions are often generated randomly. Each new generation is produced by probabilistically 
selecting better solutions for reproduction, and introducing small stochastic changes 
using biologically inspired operators such as mutation and crossover. Evolutionary com-
puting has been successfully applied to machine learning problems, where it can auto-
matically derive a symbolic predictive model. Such a variant of evolutionary algorithms 
was proposed as genetic programming [29], and has been used to solve classification and 
regression problems.

The evolutionary algorithm we used in this research is linear genetic programming 
(LGP) [30, 31]. LGP represents candidate predictive models in an evolutionary popula-
tion using an imperative program. The fitness of a predictive model is defined as its clas-
sification accuracy. A population of diverse candidate models are initialized randomly 
and will improve fitness gradually through a large number of generations. After evolu-
tion, we obtain a best evolved model with the highest fitness score.

Similar to an imperative program, an LGP model consists of several instructions. Each 
instruction is either an assignment or a conditional statement. An assignment statement 
has three registers, i.e., one return register and two operand registers. For instance, in 

Fig. 1  Representation of an LGP program. This example program has seven instructions, which will be 
executed in a sequential order. An instruction can be an assignment statement or an if statement. Registers 
are used to store input variables and to perform computation. r[1] to r[5] are calculation registers and r[6] to 
r[10] are input registers. Register r[0] is the designated output register and its final value after the execution of 
all instructions will be the output of this program

https://github.com/MIB-Lab/SMILE
https://smile-mib.rtfd.io
https://smile-mib.cs.queensu.ca
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the LGP program shown in Fig. 1, instruction 1 assigns the value of r[8] minus a con-
stant 4 to r[1]. The set of instructions are executed sequentially. The conditional if state-
ment controls the program flow. If the condition is true, the subsequent instruction is 
executed, otherwise the subsequent instruction is skipped. In case of nested if state-
ments, all conditions need to be true for the subsequent instruction to be executed. For 
example, in Fig. 1, line 5 is executed only if the conditions in line 3 and line 4 are both 
true. Register r[0] is the designated output register, and its final value after execution will 
be projected using a Sigmoid function to classify a sample either as diseased or healthy.

Note that not all instructions modify the final value stored in r[0]. We define an effec-
tive instruction as one that contributes to the final output, and a non-effective instruc-
tion otherwise, e.g., line 2 and line 6 in Fig. 1.

A register stores the value of a variable. There are two types of variables in our 
LGP programs, the input variables and the calculation variables. Input variables are 
predictive features, i.e., metabolite concentrations, in this work. A calculation vari-
able is used as a buffer to enhance computation capacity. The designated output reg-
ister r[0] is a special calculation register. Constants are chosen from a user-defined 
interval. Furthermore, a return register, i.e., the one on the left side of an assign-
ment, can only be a calculation register. In this way, our method inherently prevents 
overriding of the input feature values.

In each generation, parent models are chosen using a tournament selection, i.e., a 
randomly chosen set of models compete and the fittest two will be picked to repro-
duce. To these selected parents are then applied genetic operations including cross-
over, macro-mutation, and micro-mutation with a certain probability. Crossover 
combines the genetic information of two parents to generate two new offspring. Two 
crossover points are picked randomly in each parent model, the instructions defined 
by the two points are swapped between two parent models. Macro-mutation insert 
or delete an instruction in a model. Micro-mutation randomly picks an instruction 
in a model and changes either a register or the operation in that instruction.

Then, the two new offspring replace the worst two models in the tournament, 
and their fitness values are computed. In each run of this evolutionary algorithm, 
this process is repeated until the limit of the number of generations is reached. The 
model with the highest fitness score will be saved as a result of evolution. A flow-
chart of our LGP algorithm is shown in Fig. 2.

Due to the stochastic nature of evolutionary algorithms, each run may yield a dif-
ferent resulting best model. We collected 1000 independent runs of this LGP algo-
rithm. The main parameters used are shown in Table. 1. We randomly partitioned 
the data into a training set ( 80% ) and a testing set ( 20% ) and used a different ran-
dom seed for each independent run of the algorithm. The fitness value of a model 
is computed as the training classification accuracy. In order to prevent overfitting 
and to reduce the computational overhead of fitness calculation, we used boot-
strapping and sampled 50–100% of the training set, without replacement, each time 
when computing the fitness of an individual model. The final best evolved predictive 
model of each run is then evaluated using the testing set. The testing accuracy and 
other prediction performance metrics are thus computed using unseen testing sam-
ples unique to each evolved best model.
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Fig. 2  LGP algorithm flowchart. After initialization, this evolutionary algorithm repeats the processes of 
parent selection, mutation, crossover, and replacement, until the generation limit has been reached

Table 1  Parameter configuration in the LGP algorithm

Parameter Setting

Fitness function Accuracy score

Program initialization Random

Program initialization length [10, 40]

Max program length 300

Population size 800

Number of generations 240

Operator set +, -, x, ÷ , exponent, if < , if >

Constant set Random int from 1 - 10

Parent selection Tournament with size 8

Crossover probability 0.75

Micro-mutation probability 0.5

Macro-mutation probability 0.75

Random sampling Bootstrap without replacement
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Feature importance and interaction analysis

Note that input features, i.e., metabolite concentrations, are stored in registers in 
an LGP program. In the initialization of the program population, some input regis-
ters may be chosen in an instruction of a program, and some may not. In addition, 
an input register may be mutated or lost as a result of the mutation and crossover 
operations. An input register may also become ineffective when its value does not 
contribute to the calculation of the final value of r[0]. For instance, in Fig. 1, remov-
ing input register r[7] does not alter the final value of r[0], thus it is considered as 
an ineffective register, and its represented feature is considered as an ineffective 
feature. Therefore, the selection of effective metabolite features is embedded in the 
LGP algorithm and co-evolved with predictive models.

We can rank individual features based on their occurrence frequencies in the col-
lected 1000 best evolved models. This ranking provides a means to assess feature 
importance, i.e., if a metabolite feature most frequently appears in the best evolved 
models it may have a strong influence on explaining the prediction of the disease 
status.

In addition, if two features tend to co-occur frequently in a same best evolved 
model, they may have a strong synergistic interaction effect associated with the 
disease. We calculated this co-occurrence frequency for all pairs of features. Sub-
sequently, we can construct a metabolite synergy network by including the top 
metabolite pairs that show the strongest synergistic interactions. These most fre-
quently co-occurring metabolite pairs are represented as edges and their two end 
points. Such a network can help us visualize a large collection of pairwise feature 
interactions, and identify important metabolites that interact with many others.

Algorithm implementation

To facilitate a wider adoption of our proposed approach, we published all the source 
code of implementing our algorithm. For a robust prediction result and a comprehen-
sive feature analysis, we recommend to collect a large number, e.g., 1000, of independent 
runs of the LGP algorithm. This can in turn require high computational power.

For the implementation and analysis included in this study, we used a large-
scale high-performance computer cluster, Graham, from Compute Canada. We 
ran an array of 1000 jobs in parallel. Each job (an independent run of SMILE) took 
8–10 hours and up to 500 MB memory running on one CPU core (Intel Xeon CPU 
E5-2667 v4 3.2 GHz).

After an individual job is completed, the result can be saved via calling the 
save_model() method. This method uses Python pickle module to implement object 
serialization. This will generate a .pkl result file that can be uploaded to the web 
interface later for interpretation and visualization. The web application also requires 
an original dataset .csv file. Users need to format the .csv file where rows are samples 
and columns are features (metabolite concentrations). The file header is the metabo-
lite names and the first row is the class label (named “category”). Users can check 
formatting errors using an automated python file on SMILE’s Github page. Finally, 
users can upload the .pkl and .csv files to our web application.
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Web application

We developed a web interface, https://​smile-​mib.​cs.​queen​su.​ca, for interpreting and 
visualizing the analysis results. First, a testing accuracy filter is provided for the user 
in order to include only the best-performing evolved models among all collected final 
evolved models by running the algorithm independently for 1000 times.

There are three modules for the result interpretation and visualization. The first mod-
ule is Feature Importance Analysis. Users can decide to investigate LGP models with a 
specified number of effective features. Then, features are ranked based on their individ-
ual occurrence frequencies and showed in the “Feature Occurrence” graph. Clicking a 
feature of interest in this graph will show all LGP models containing that feature in the 
“Model Accuracy” graph. Further selection of a point in this graph will show its repre-
sented model in “Detailed Model Info” panel. This allows users to investigate and inter-
pret a selected predictive model based on its testing accuracy and metabolite features 
involved.

Upon selecting the “Pairwise Co-occurrence Analysis” panel, users can see a heat map 
of “Feature Pairwise Co-occurrence”, which shows all the pairwise co-occurrence fre-
quencies in the selected LGP models. Moreover, users can manually choose a pair of 
features to see their distributions in diseased cases and healthy controls in “Two-Feature 
Scatter Plot”.

The second module is Co-occurrence Network Analysis. Users can visualize a net-
work of the top most common metabolite pairs. In this graph visualization, a node is a 
metabolite and an edge links two metabolites if their co-occurrence frequency is above 
the top threshold. The node size is proportional to individual feature’s occurrence fre-
quency. The edge width is proportional to pairwise co-occurrence frequency, which is 
also labeled on each edge.

Users can also investigate a metabolite/feature of particular interest. The third module 
of SMILE is Search a Feature. This module allows users to enter the name of a specific 
feature, and will show this feature’s individual occurrence frequency and its interacting 
features, ranked by their co-occurrence frequencies. In addition, SMILE provides a visu-
alization of the synergy sub-network of this feature that includes all its directly interact-
ing neighbours.

Results
Best evolved classification models

For the determination of significant metabolites and metabolite interactions in AD and 
aMCI we ran our algorithm 1000 times and collected 1000 evolved classification mod-
els for each of the three pairwise comparisons among AD patients, aMCI patients, and 
healthy controls. In this section, we discuss the result of comparing AD patients with 
healthy controls. Fig. 3 shows the classification performance of these 1000 models. Most 
of these models achieved a testing accuracy higher than 80%, i.e., they correctly classi-
fied 19 out of 23 testing samples.

The models were then evaluated using F1 and AUC scores. The F1 score can be inter-
preted as a weighted average of the precision (  True Positive

True Positive+False Positive ) and recall 
(  True Positive
True Positive+False Negative ). It is computed as F1 = 2×precision×recall

precision+recall  . An F1 score is between 

https://smile-mib.cs.queensu.ca
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1 (best) and 0 (worst). Receiver operating characteristic curve (ROC curve) shows the 
performance of a classification model at all classification thresholds. It uses false positive 
rate as the x-axis and true positive rate as the y-axis. Area under the ROC curve (AUC) 
measures the entire two-dimensional area under the ROC curve. A higher AUC value 
indicates a better classification performance of a model. The distributions of F1 and AUC 
scores are shown in Fig. 3B, C. There are over 200 models, out of the 1000 we collected, 
that have a perfect AUC score of 1.0. Similarly, the majority of the models achieved an F1 
score greater than 0.8. These results suggest that the classification models evolved by our 
LGP algorithm are of very high quality.

We looked at the number of effective features in our evolved models. As shown in 
Fig. 3D, about 900 classification models use only 1–3 effective features. This suggested 
the existence of a few strong biomarkers that can effectively distinguish AD patients 
from healthy individuals in the data.

Then, we investigated the correlation between the number of effective features and the 
testing classification accuracy. Fig. 4 shows the violin plot of model testing accuracy in 

Fig. 3  Classification performance of applying SMILE to the AD metabolomic data. The figure shows the 
distribution of the 1000 evolved best models in terms of A testing accuracy, B F1 score, C AUC score, and D 
number of effective features
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relation to the number of effective features used in a model. The observed correlation is 
neither strong nor significant. (Pearson’s correlation r = 0.049 , p = 0.123).

Most important features and interactions

Figure 5A shows the top 20 individual features based on their occurrence frequencies 
in the 1000 best evolved models. The top metabolite cis-5,8,11,14-Eicosatetraenoic acid 
appears in about 55% of all models. N,N-dimethylglycine and dUMP are also found in 
approximately 20% and 15% evolved models, respectively. In addition to these three top 
ranked individual metabolites, glutamine, glutamic acid, thymine, 2-Aminoadipic acid 
were found in more than 5% of the evolved models. SMILE also allows us to filter the 
collected 1000 evolved models using a threshold of testing accuracy and the number 
of effective features in a predictive model. For instance, Fig.  5B illustrates the feature 
occurrence ranking using 176 models that have a testing accuracy higher than 80% and 
include two effective features.

Clicking on the most important feature (cis-5,8,11,14-Eicosatetraenoic acid) in Fig. 5B 
will show all models containing this feature in Fig. 6A. Further clicking on a point (e.g., 
model m274) in this graph will show the detailed predictive model in Fig. 6B. This model 

Fig. 4  Model testing accuracy in relation to the number of effective features. For all models using a given 
number of effective features, a violin plot shows the distribution of their testing accuracy. The correlation 
between testing accuracy and the number of effective features is neither strong nor significant

Fig. 5  Individual feature importance ranking. A The overall feature importance ranking using 1000 evolved 
models. B A feature occurrence graph generated on SMILE’s web interface using 176 filtered models with a 
higher than 80% testing accuracy and using two effective features. The x-axis shows feature index and y-axis 
shows feature occurrence frequency. The corresponding feature name will be shown with mouse hover
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has a testing accuracy of 1, contains two instructions, and uses metabolites cis-5,8,11,14-
Eicosatetraenoic acid and N,N-dimethylglycine as effective features. Essentially, a predic-
tion is made by comparing the sum concentration of the two metabolites to a constant.

Figure  6C shows the heat map of pairwise co-occurrence frequencies (the “Feature 
Pairwise Co-occurrence graph” on the website). Upon clicking on a cell in this graph, 
the distributions of the two corresponding metabolites in the populations are shown in 
a scatter plot (Fig. 6D). Of the AD metabolomic data used in this study, metabolite pair 
N,N-dimethylglycine and cis-5,8,11,14-Eicosatetraenoic acid, combined linearly, are able 
to clearly distinguish AD cases and healthy controls. This was also evidenced in the dis-
covered predictive model shown in Fig. 6B.

Feature co‑occurrence network

The top 3% most common metabolite pairs were used to construct a synergy network 
(shown in Fig. 7). Here, a vertex is a metabolite and its size is proportional to the cor-
responding metabolite’s individual occurrence frequency in the selected evolved mod-
els. The most important metabolites (see Fig. 5A), such as cis-5,8,11,14-Eicosatetraenoic 
acid, dUMP, and N,N-dimethylglycine, also appear in this network as larger vertices. An 
edge links two metabolites if their co-occurrence frequency is among the top 3%. The 
edge width is proportional to the co-occurrence frequency of a metabolite pair, which is 
also shown as the edge weight (label).

Fig. 6  Interpretable learning results of SMILE on the AD metabolomic data. All sub-figures are generated 
by SMILE web interface. A Model accuracy graph shows the testing accuracy of all predictive models that 
use a chosen feature by clicking a bar in Fig. 5B. This graph, for instance, shows the testing accuracy of 
models that use cis-5,8,11,14-Eicosatetraenoic acid as an effective feature. B Detailed model figure provides 
symbolic representation of a selected model, by clicking a point in A. C Feature pairwise co-occurrence 
graph represents the frequencies using a heat map, and provides the metabolite names though mouse 
hover. D Two-feature scatter plot depicts the distribution of the two chosen metabolites’ concentrations. The 
metabolite pair shown in this figure has the highest co-occurrence frequency in the AD metabolomic data
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Specifically, metabolite dUMP has 6 edges with an average edge weight of 11. In addi-
tion, cis-5,8,11,14-Eicosatetraenoic acid has strong connections with four other metabo-
lites. The strongest synergistic interaction between cis-5,8,11,14-Eicosatetraenoic acid 
and N,N-dimethylglycine, found in the AD metabolomic data, is also shown in this 
network.

Comparative studies

To further evaluate the classification performance and feature importance assessment of 
our algorithm, we compared its results with two widely-used learning and feature analy-
sis algorithm, random forest (RF) and support vector machine (SVM).

We implemented the RF algorithm with five-fold cross-validation using the random 
forest classifier and cross validate packages in Scikit-learn [27]. The RF hyper-parame-
ters were optimized using grid search. It exhaustively searches a manually specified sub-
set of the hyper-parameter space. The classifier with its hyper-parameter configuration 
that performs the best on the validation data will be chosen by the search. We used grid 
search to optimize RF hyper-parameters “max_depth”, “min_samples_split”, “n_estima-
tors”, and “max_features”. The optimized RF parameter values as well as other configura-
tions were shown in Additional file  1: Table  2. Similarly, we performed grid search to 
optimize SVM hyper-parameters “C” and “gamma”, and the final parameter values were 
shown in Additional file 1: Table 3.

The feature importance ranking is the average feature importance over five validation 
groups (shown in Fig. 8A). The F1 scores in each validation groups are {1, 0.95, 1, 0.95, 1} . 
The metabolites are ranked based on their Gini importance scores and the top 20 metab-
olites are shown in the figure. Metabolites dUMP and N,N-dimethylglycine are ranked 
among the top three by both RF and SMILE. There are 10 common metabolites among 
the top 20 ranked by both algorithms. Discrepancy can also be observed. For instance, 

Fig. 7  Synergy network of top 3% most common metabolite pairs in the AD metabolomic data. Metabolite 
pairs with the most frequent co-occurrences are represented as edges and their two end points. The edge 
width is proportional to pairwise co-occurrence frequency, also labeled on each edge. The vertex size is 
proportional to individual feature’s occurrence frequency
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metabolite 5-Oxoproline is ranked 8th by SMILE but absent in the top 20 by RF. This 
metabolite is also captured in the synergy network through strong interactions with 
dUMP and Glutamine (see Fig. 7).

We also implemented the linear kernel SVM with five-fold cross-validation using 
the support vector classification and cross validate packages in Scikit-learn [27]. 
The feature importance ranking is based on the average feature importance over 
five validation groups (shown in Fig.  8B). The F1 scores in each validation groups are 
{1, 1, 0.96, 0.96, 0.91} . The importance of a metabolite is inferred based on its coefficient 
or weight in the linear kernel. Metabolites dUMP and cis-5,8,11,14-Eicosatetraenoic acid 
are ranked as the top two by SVM and among the top three by SMILE. On the other 
hand, the 8th ranking metabolite creatinine enol by SVM does not appear in the top 20 
list by SIMILE or RF.

Discussion
Our bioinformatics methodology and software SMILE demonstrates a great potential of 
applying interpretable machine learning to biomedical science. SMILE uses an evolu-
tionary algorithm for the discovery of key metabolites and provides an interactive web-
site for result visualization and interpretation. The evolutionary algorithm is able to train 
a large collection of high-performing predictive models, represented as computer pro-
grams. These programs are a compact set of instructions and can be easily interpreted, 
so the mechanistic explanation on a prediction can be transparent to an end-user. 
SMILE also provides a means to evaluate feature importance and feature interactions 
since selecting the most relevant features (metabolites) are embedded in the algorithm 
and co-evolved with predictive models. SMILE uses networks to visualize the impor-
tance of features and their interactions.

We demonstrate the powerful utility of SMILE by applying it to an AD metabolomic 
dataset [26]. SMILE was able to find compact predictive models using few metabolites 
with a high accuracy. This may be explained by the fact that the data were collected from 
late-stage AD patients, and using only a small number of key metabolites was able to 
clearly separate AD patients from healthy controls. Nevertheless, SMILE focused on 
producing interpretable learning results and indeed provided new insights into influen-
tial metabolites and their interactions.

Fig. 8  Feature importance ranking using RF and SVM. A Metabolite features are ranked based on the Gini 
importance in RF. B Metabolite features are ranked based on the linear kernel weight in SVM
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SMILE identified many key metabolites that have been previously linked to AD or 
are less researched but can be potentially linked to AD. Cis-5,8,11,14-Eicosatetraenoic 
acid (i.e. arachidonic acid), the most important metabolite found by our algorithm, is 
increased during neuroinflammation in the brain [32]. Arachidonic acid is highly prev-
elant polyunsaturated fatty acid in the brain with high presence in membranes primar-
ily in its esterified form. Free arachidonic acid plays a major role in neuroinflammatory 
response through conversion into pro-inflammatory eicosanoids [33] with role both in 
clearing the amyloid-beta plaque and increasing production of neurotoxic compounds. 
Additionally, free arachidonic acid acts as a retrograde synaptic messenger and a regu-
lator of neuromediator exocytosis. Finally, it is an activator of kinases involved in tau 
hyperphosphorylation. Arachidonic acid usually has an increased concentration in AD 
patients’ brain especially in the high densities of senile region with activated microglia. 
The senile plaques are infiltrated by activated microglia secrete inflammatory cytokines, 
where an increased expression of enzymes cPLA2 and sPLA2 leads to more inflamma-
tory arachidonic acid. Increased blood concentration of Arachidonic acids, together 
with changes in concentrations of other unsaturated and polyunsaturated fatty acids 
have been linked to neurological diseases including dementias [34]. Number of other 
fatty acids have been selected by our method as highly diagnostic for AD as well as aMCI 
including for example docohexaenoic acid (DHA) with known role in AD prevention 
and development [35]. N, N-dimethylglycine, second most significant metabolite in 
our analysis, is part of glycine, serine threonine metabolic pathway highly relevant for 
metabolism of choline, sarcosine, methhionine and betaine all of major importance in 
AD [36]. At the same time N,N-dimethylglycine in combination with glutamate, glycine 
and its N-methyl derivatives was shown to increase frequency and amplitudes of the 
NMDA receptor-mediated excitatory field potentials [37]. Importantly both glutamate 
(glutamic acid) and glutamine are among the top metabolites ranked by SMILE. It is 
well known that the glutamate-glutamine cycle between neurons and astrocytes requires 
an adequate supply of the neurotransmitter glutamate. Study found a drop in the gluta-
mate/glutamine ratio in AD and aMCI patients [38].

In many bioinformatics data, features can correlate given the intertwined relation-
ships of entities in complex biological systems [39]. In the AD metabolomics data, it is 
also plausible that metabolites are involved in the same biochemical reactions and their 
concentrations in a sample correlate. We performed pairwise feature correlation analysis 
(see Additional file 1: Fig.8) and found 61 pairs of metabolites that have a Pearson’s cor-
relation coefficient greater than 0.8 and a p-value less than 0.05. These metabolite pairs 
are listed in Additional file 1: Table 1. None of these highly correlated pairs showed up 
together in the top 20 list by SMILE. However, the correlated pair N,N-dimethylglycine 
and 2-Aminoadipic acid ( r = 0.91 , p < 10−50 ) were ranked 1st and 6th by RF.

In addition to comparing AD patients with healthy population, we performed the same 
analysis comparing aMCI with AD, as well as comparing aMCI with healthy controls. 
The evaluation results of aMCI versus controls are shown in Additional file 1: Fig.1, Fig.2, 
and Fig.3. The majority of the evolved models achieve an AUC score greater than 0.8 and 
a F1 score greater than 0.75. In the feature importance graph Additional file 1: Fig.3, the 
top 10 metabolites are very similar to that of comparing AD patients with healthy con-
trols. The top metabolite cis-5,8,11,14-Eicosatetraenoic acid, identified previously, also 
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shows in ∼50% of the evolved models. Metabolites dUMP and thymine have increased 
importance, ranked second and third when comparing aMCI with controls. We also 
compared the performance of our approach with that of RF and SVM studying aMCI 
versus healthy controls. The feature importance rankings by RF and SVM are shown in 
Additional file 1: Fig.4.

Using the SMILE result of comparing aMCI with AD, the top 3% most common 
metabolite pairs were shown in a synergy network (shown in Additional file  1: Fig.5). 
Metabolites cis-5,8,11,14-Eicosatetraenoic and dUMP, the top two features interacting 
with the most other metabolites while comparing AD with controls, were also identified 
comparing aMCI with controls. Once again several other fatty acids have been deter-
mined as significant such as DHA linoleic acid as well as number of other poly-unsat-
urated and unsaturated fatty acids that have been indicated before for their role in AD 
development [40]. Metabolites dUMP and 2-Amionadipic acid have the strongest syner-
gistic interaction with a co-occurrence frequency of 31.

Neither SMILE nor RF performed well when comparing AD with aMCI populations. 
Additional file  1: Fig.6 shows the classification result using SMILE. The AUC and F1 
scores are around 0.5. Additional file 1: Fig.7 shows the resting result of RF, which had 
an AUC score of 0.45. This indicates that the metabolites investigated in the dataset were 
not able to distinguish between AD and aMCI. This would suggest that in this cohort 
set aMCI population is further on the path of full AD development and possibly also 
explains observed similarity in markers between healthy versus AD and healthy versus 
aMCI.

Conclusion
SMILE is an interpretable machine learning approach and can be a useful addition to 
metabolomics analysis tools. It is able to (1) evaluate both individual metabolite impor-
tance and pairwise interactions, and (2) evolve interpretable predictive models that pro-
vide insights into the underlying biochemical mechanisms. Most commonly used feature 
importance algorithms focus on ranking features separately but less on synergistic fea-
ture interactions. More powerful learning algorithms, such as deep neural nets, are able 
to produce highly accurate predictions but struggle to translate the learned knowledge 
embedded in the “black-box” models.

The limitation of our approach is the computational cost of running an evolutionary 
algorithm and collecting a large number of independent runs, since the algorithm main-
tains a large population of candidate predictive models. This can be alleviated by utiliz-
ing parallel computation and high-performance computing infrastructure.

Our methodology and software provide a novel bioinformatics framework for metab-
olomics. We make all our source code publicly available in order to benefit a wider 
research community and contribute to Python machine learning tool ecosystem. Our 
next steps include (1) generalizing this approach to data types other than metabolomics, 
and (2) improving our methodology in order to address common challenges in biomedi-
cal data analyses including high dimensionality, insufficient data samples, and hidden 
sub-types in complex diseases and disorders.
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